In a reaction, 5.3 g of sodium carbonate reacted with 6 g of ethanoic acid. The products were 2.2 g of carbon dioxide, 0.9 g water and 8.2 g of sodium ethanoate. Show that these observations are in agreement with the law of conservation of mass. Sodium carbonate + ethanoic acid \rightarrow sodium ethanoate + carbon dioxide + water Answer:

In the given reaction, sodium carbonate reacts with ethanoic acid to produce sodium ethanoate, carbon dioxide, and water.

Mass of sodium carbonate = 5.3 g (Given)

Mass of ethanoic acid = 6 g (Given)

Mass of sodium ethanoate = 8.2 g (Given)

Mass of carbon dioxide = 2.2 g (Given)

Mass of water = 0.9 g (Given)

Now, total mass before the reaction = (5.3 + 6) g

= 11.3 g

And, total mass after the reaction = (8.2 + 2.2 + 0.9) g

= 11.3 g

∴Total mass before the reaction = Total mass after the reaction

Hence, the given observations are in agreement with the law of conservation of mass.

Question 2:

Hydrogen and oxygen combine in the ratio of 1:8 by mass to form water. What mass of oxygen gas would be required to react completely with 3 g of hydrogen gas?

Answer:

It is given that the ratio of hydrogen and oxygen by mass to form water is 1:8. Then, the mass of oxygen gas required to react completely with 1 g of hydrogen gas is 8 g.

Therefore, the mass of oxygen gas required to react completely with 3 g of hydrogen gas is 8×3 g = 24 g.

Question 3:

Which postulate of Dalton's atomic theory is the result of the law of conservation of mass?

Answer:

The postulate of Dalton's atomic theory which is a result of the law of conservation of mass is:

Atoms are indivisible particles, which can neither be created nor destroyed in a chemical reaction.

Question 4:

Which postulate of Dalton's atomic theory can explain the law of definite proportions?

Answer:

The postulate of Dalton's atomic theory which can explain the law of definite proportion is:

The relative number and kind of atoms in a given compound remains constant.

Define atomic mass unit.

Answer:

Mass unit equal to exactly one-twelfth $\left(\frac{1}{12^{th}}\right)$ the mass of one atom of carbon-12 is called one atomic mass unit. It is written as 'u'.

Question 2:

Why is it not possible to see an atom with naked eyes?

Answer:

Thesize of an atom is so small that it is not possible to see it with naked eyes. Also, the atom of an element does not exist independently.

Question 1: Write down the formulae of (i) sodium oxide (ii) aluminium chloride (iii) sodium suphide (iv) magnesium hydroxide Answer: (i) Sodium oxide $\rightarrow Na_2O$ (ii) Aluminium chloride → AlCl₃ (iii) Sodium suphide → Na₂S (iv) Magnesium hydroxide → Mg(OH)₂ Question 2: Write down the names of compounds represented by the following formulae: (i) $Al_2(SO_4)_3$ (ii) CaCl₂ (iii) K₂SO₄ (iv) KNO₃ (v) $CaCO_3$ Answer: (i) $Al_2(SO_4)_3 \rightarrow Aluminium sulphate$ (ii) CaCl₂ → Calcium chloride (iii) $K_2SO_4 \rightarrow Potassium sulphate$

Question 3:

What is meant by the term chemical formula?

(iv) $KNO_3 \rightarrow Potassium nitrate$ (v) $CaCO_3 \rightarrow Calcium carbonate$

The chemical formula of a compound means the symbolic representation of the composition of a compound. From the chemical formula of a compound, we can know the number and kinds of atoms of different elements that constitute the compound.

For example, from the chemical formula CO_2 of carbon dioxide, we come to know that one carbon atom and two oxygen atoms are chemically bonded together to form one molecule of the compound, carbon dioxide.

Question 4:

How many atoms are present in a

- (i) H₂S molecule and
- (ii) PO_4^{3-} ion?

Answer:

- (i) In an H_2S molecule, three atoms are present; two of hydrogen and one of sulphur.
- (ii) In a PO_4^{3-} ion, five atoms are present; one of phosphorus and four of oxygen.

```
Question 1:
```

Calculate the molecular masses of H₂, O₂, Cl₂, CO₂, CH₄, C₂H₆, C₂H₄, NH₃, CH₃OH.

Answer:

Molecular mass of $H_2 = 2 \times Atomic mass of H$

$$= 2 \times 1$$

$$= 2 u$$

Molecular mass of $O_2 = 2 \times Atomic mass of O$

$$= 2 \times 16$$

$$= 32 u$$

Molecular mass of $Cl_2 = 2 \times Atomic mass of Cl$

$$= 2 \times 35.5$$

$$= 71 u$$

Molecular mass of CO_2 = Atomic mass of $C + 2 \times$ Atomic mass of O

$$= 12 + 2 \times 16$$

$$= 44 u$$

Molecular mass of CH_4 = Atomic mass of $C + 4 \times Atomic mass of H$

$$= 12 + 4 \times 1$$

$$= 16 u$$

Molecular mass of $C_2H_6 = 2 \times Atomic mass of C + 6 \times Atomic mass of H$

$$= 2 \times 12 + 6 \times 1$$

$$= 30 u$$

Molecular mass of $C_2H_4 = 2 \times Atomic mass of C + 4 \times Atomic mass of H$

$$= 2 \times 12 + 4 \times 1$$

$$= 28 u$$

Molecular mass of NH_3 = Atomic mass of $N+3 \times Atomic mass of H$

$$= 14 + 3 \times 1$$

$$= 17 u$$

Molecular mass of CH_3OH = Atomic mass of $C+4\times Atomic$ mass of H + Atomic mass of O

$$= 12 + 4 \times 1 + 16$$

$$= 32 u$$

Calculate the formula unit masses of ZnO, Na_2O , K_2CO_3 , given atomic masses of Zn

$$= 65 \text{ u}$$
, Na $= 23 \text{ u}$, K $= 39 \text{ u}$, C $= 12 \text{ u}$, and O $= 16 \text{ u}$.

Answer:

Formula unit mass of ZnO = Atomic mass of Zn + Atomic mass of O

$$= 65 + 16$$

$$= 81 u$$

Formula unit mass of $Na_2O = 2 \times Atomic mass of Na + Atomic mass of O$

$$= 2 \times 23 + 16$$

$$= 62 u$$

Formula unit mass of $K_2CO_3 = 2 \times Atomic mass of K + Atomic mass of C + 3 \times$

Atomic mass of O

$$= 2 \times 39 + 12 + 3 \times 16$$

If one mole of carbon atoms weighs 12 gram, what is the mass (in gram) of 1 atom of carbon?

Answer:

One mole of carbon atoms weighs 12 g (Given)

i.e., mass of 1 mole of carbon atoms = 12 g

Then, mass of 6.022×10^{23} number of carbon atoms = 12 g

Therefore, mass of 1 atom of carbon
$$= \frac{12}{6.022 \times 10^{23}} \text{ g}$$

 $=1.9926\times10^{-23}$ g

Question 2:

Which has more number of atoms, 100 grams of sodium or 100 grams of iron (given, atomic mass of Na = 23 u, Fe = 56 u)?

Answer:

Atomic mass of Na = 23 u (Given)

Then, gram atomic mass of Na = 23 g

Now, 23 g of Na contains = 6.022×10^{23} number of atoms

$$= \frac{6.022 \times 10^{23}}{23} \times 100$$
number of atoms

Thus, 100 g of Na contains

 $= 2.6182 \times 10^{24}$ number of atoms

Again, atomic mass of Fe = 56 u(Given)

Then, gram atomic mass of Fe = 56 g

Now, 56 g of Fe contains = 6.022×10^{23} number of atoms

$$s = \frac{6.022 \times 10^{23}}{56} \times 100$$
number of atoms

Thus, 100 g of Fe contains

 $=1.0753\times10^{24}$ number of atoms

iron.			

Therefore, 100 grams of sodium contain more number of atoms than 100 grams of

A 0.24 g sample of compound of oxygen and boron was found by analysis to contain 0.096 g of boron and 0.144 g of oxygen. Calculate the percentage composition of the compound by weight.

Answer:

Mass of boron = 0.096 g (Given)

Mass of oxygen = 0.144 g (Given)

Mass of sample = 0.24 g (Given)

$$\frac{0.096}{0.24} \times 100\%$$

Thus, percentage of boron by weight in the compound = 0.24

= 40%

$$\frac{0.144}{0.24} \times 100\%$$

And, percentage of oxygen by weight in the compound = 0.24

= 60%

Question 2:

When 3.0 g of carbon is burnt in 8.00 g oxygen, 11.00 g of carbon dioxide is produced. What mass of carbon dioxide will be formed when 3.00 g of carbon is burnt in 50.00 g of oxygen? Which law of chemical combinations will govern your answer?

Answer:

Carbon + Oxygen → Carbon dioxide

3 g of carbon reacts with 8 g of oxygen to produce 11 g of carbon dioxide.

If 3 g of carbon is burnt in 50 g of oxygen, then 3 g of carbon will react with 8 g of oxygen. The remaining 42 g of oxygen will be left un-reactive.

In this case also, only 11 g of carbon dioxide will be formed.

The above answer is governed by the law of constant proportions.

Question 3:

What are polyatomic ions? Give examples?

A polyatomic ion is a group of atoms carrying a charge (positive or negative). For example, ammonium ion (NH_4^+) , hydroxide ion (OH^-) , carbonate ion (CO_3^{2-}) , sulphate ion (SO_4^{2-}) .

Question 4:

Write the chemical formulae of the following:

- (a) Magnesium chloride
- (b) Calcium oxide
- (c) Copper nitrate
- (d) Aluminium chloride
- (e) Calcium carbonate

Answer:

- (a) Magnesium chloride → MgCl₂
- (b) Calcium oxide → CaO
- (c) Copper nitrate \rightarrow Cu (NO₃)₂
- (d) Aluminium chloride → AlCl₃
- (e) Calcium carbonate → CaCO₃

Question 5:

Give the names of the elements present in the following compounds:

- (a) Quick lime
- (b) Hydrogen bromide
- (c) Baking powder
- (d) Potassium sulphate

Compound	Chemical formula	Elements present
Quick lime	CaO	Calcium, oxygen
Hydrogen bromide	HBr	Hydrogen, bromine
Baking powder	NaHCO ₃	Sodium, hydrogen, carbon, oxygen
Potassium sulphate	K ₂ SO ₄	Potassium, sulphur, oxygen

Question 6:

Calculate the molar mass of the following substances:

- (a) Ethyne, C₂H₂
- (b) Sulphur molecule, S₈
- (c) Phosphorus molecule, P_4 (atomic mass of phosphorus = 31)
- (d) Hydrochloric acid, HCl
- (e) Nitric acid, HNO₃

Answer:

- (a) Molar mass of ethyne, $C_2H_2 = 2 \times 12 + 2 \times 1 = 28$ g
- (b) Molar mass of sulphur molecule, $S_8 = 8 \times 32 = 256$ g
- (c) Molar mass of phosphorus molecule, $P_4 = 4 \times 31 = 124 \text{ g}$
- (d) Molar mass of hydrochloric acid, HCl = 1 + 35.5 = 36.5 g
- (e) Molar mass of nitric acid, $HNO_3 = 1 + 14 + 3 \times 16 = 63$ g

Question 7:

What is the mass of—

- (a) 1 mole of nitrogen atoms?
- (b) 4 moles of aluminium atoms (Atomic mass of aluminium = 27)?
- (c) 10 moles of sodium sulphite (Na₂SO₃)?

- (a) The mass of 1 mole of nitrogen atoms is 14 g.
- (b) The mass of 4 moles of aluminium atoms is (4×27) g = 108 g
- (c) The mass of 10 moles of sodium sulphite (Na₂SO₃) is

$$10 \times [2 \times 23 + 32 + 3 \times 16] g = 10 \times 126 g = 1260 g$$

Question 8:

Convert into mole.

- (a) 12 g of oxygen gas
- (b) 20 g of water
- (c) 22 g of carbon dioxide

Answer:

(a) 32 g of oxygen gas = 1 mole

Then, 12 g of oxygen gas =
$$\frac{12}{32}$$
 mole = 0.375 me

(b) 18 g of water = 1 mole

Then, 20 g of water =
$$\frac{20}{18}$$
 mole = 1.11 moles (approx)

(c) 44 g of carbon dioxide = 1 mole

Then, 22 g of carbon dioxide =
$$\frac{22}{44}$$
 mole = 0.5 mole

Question 9:

What is the mass of:

- (a) 0.2 mole of oxygen atoms?
- (b) 0.5 mole of water molecules?

Answer:

(a) Mass of one mole of oxygen atoms = 16 g

Then, mass of 0.2 mole of oxygen atoms = $0.2 \times 16g = 3.2 g$

(b) Mass of one mole of water molecule = 18 g

Then, mass of 0.5 mole of water molecules = $0.5 \times 18 \text{ g} = 9 \text{ g}$

Question 10:

Calculate the number of molecules of sulphur (S₈) present in 16 g of solid sulphur.

Answer:

1 mole of solid sulphur $(S_8) = 8 \times 32 g = 256 g$

i.e., 256 g of solid sulphur contains = 6.022×10^{23} molecules

$$\frac{6.022\times10^{23}}{256}\times16 \text{ molecules}$$

Then, 16 g of solid sulphur contains = 3.76×10^{22} molecules (approx)

Question 11:

Calculate the number of aluminium ions present in 0.051 g of aluminium oxide.

(Hint: The mass of an ion is the same as that of an atom of the same element.

Atomic mass of AI = 27 u)

Answer:

1 mole of aluminium oxide (Al₂O₃) = $2 \times 27 + 3 \times 16$

= 102 g

i.e., 102 g of $Al_2O_3 = 6.022 \times 10^{23}$ molecules of Al_2O_3

$$=\frac{6.022\times10^{23}}{102}\times0.051$$
 molecules

Then, 0.051 g of Al_2O_3 contains =

= 3.011×10^{20} molecules of Al_2O_3

The number of aluminium ions (Al^{3+}) present in one molecule of aluminium oxide is 2.

Therefore, the number of aluminium ions (Al³+) present in 3.011×10^{20} molecules (0.051 g) of aluminium oxide (Al₂O₃) = $2 \times 3.011 \times 10^{20}$

$$= 6.022 \times 10^{20}$$