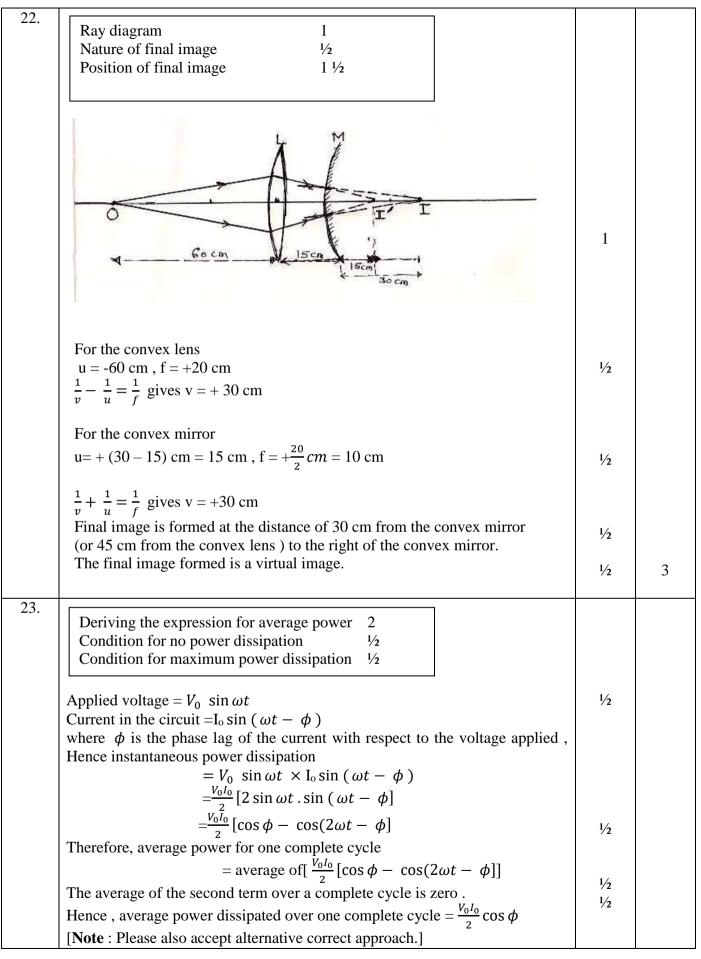

MARKING SCHEME SET 55/1

	SET 55/1		
Q. No	Expected Answer / Value Points	Marks	Total
			Marks
1.	Definition : One ampere is the value of steady current which when maintained in each of the two very long, straight, parallel conductors of negligible cross section and placed one metre apart in vaccum, would produce on each of these conductors a force equal of $2 \ge 10^{-7}$ N/m of its length. <i>Alternatively</i> If the student writes $F = \frac{\mu_0}{2\pi} \frac{I_1 I_2}{R} L$ and says that when $I_1 = I_2 = 1$ ampere R = 1 meter and $L = 1$ meter, then $F = 2 \ge 10^{-7}$ N <i>Award full 1 mark</i> <i>Alternatively</i> If the student draws <u>any one</u> of the two diagram, as shown,	1	
	$1 \text{ ampere} \qquad \qquad$		
	Award full 1 mark		1
2.	$X - rays / \gamma - rays$	1	1
3.	Force decreases	1	1
4.	Intensity of radiation depends on the number of photons incident per unit area per unit time. [Note: Also accept the definition: 'number of quanta of radiation per unit area per unit time'. Also accept if the student writes: All photons, of a particular frequency, have the same kinetic energy and momentum, irrespective of the intensity of incident radiation. <i>Alternatively</i> The amount of light energy / Photon energy, incident per metre square per second is called intensity of radiation SI Unit : W/m ² or J/(s- m ²)	1/2 1/2	1
5.	Clockwise	1	
	Alternatively		
	\diamond		
	\checkmark		1
	A B		

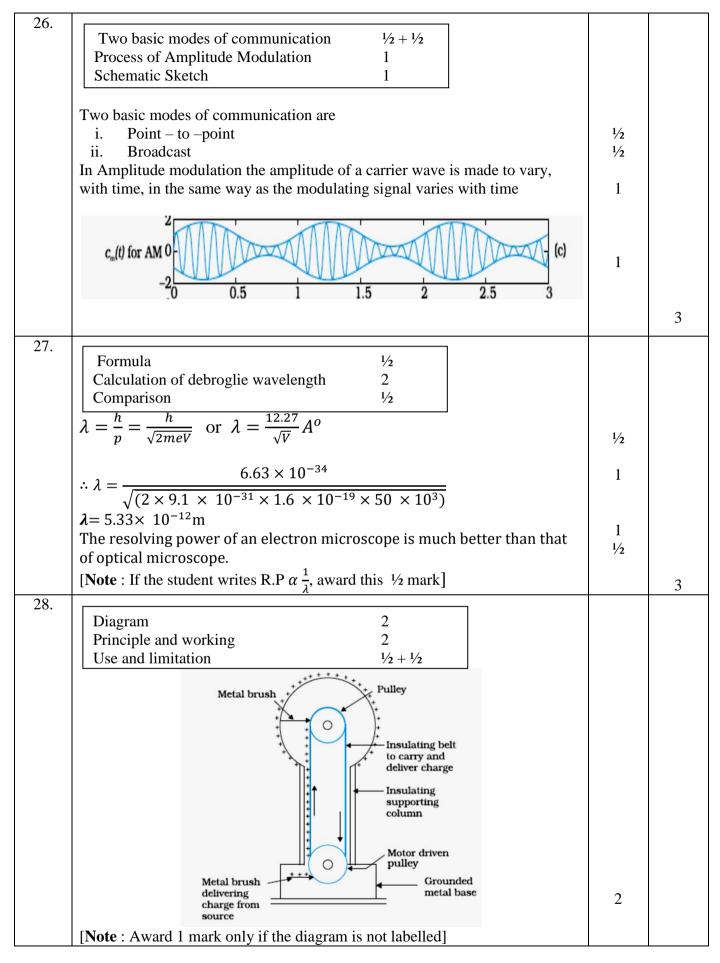
6.	Neutrinos are neutral (chargeless), (almost) massless particles that hardly	1	
	interact with matter.		
	Alternatively		
	The neutrinos can penetrate large quantity of matter without any interaction OR		
	Neutrinos are chargeless and (almost) massless particles.		1
7.	<u>Any two</u> of the following (or any other correct) reasons :		
	i. AC can be transmitted with much lower energy losses as compared to		
	DC		
	ii. AC voltage can be adjusted (stepped up or stepped down) as per		
	requirement. iii. AC current in a circuit can be controlled using (almost) wattless	$\frac{1}{2} + \frac{1}{2}$	
	devices like the choke coil.	72 + 72	
	iv. AC is easier to generate.		1
8.	As a diverging lens	1/2	
	Light rays diverge on going from a rarer to a denser medium.		
	[Alternatively	1⁄2	
	Also accept the reason given on the basis of lens marker's formula.]		1
9.			1
9.	Derivation of energy expression $1\frac{1}{2}$		
	Significance of negative sign $\frac{1}{2}$		
	As per Rutherford's model		
	$\frac{mv^2}{r} = \frac{1}{4\pi\epsilon_0} \frac{ze^2}{r^2}$		
	$r 4\pi\epsilon_0 r^2$	1⁄2	
	$\Rightarrow mv^2 = \frac{1}{4\pi\epsilon_0} \frac{ze^2}{r} \qquad \qquad$		
	Total energy = $P.E + K.E.$ +ze	1/2	
	$= -\frac{1}{4\pi\epsilon_0} \frac{ze^2}{r} + \frac{1}{2} mv^2$	12	
	$4\pi\epsilon_0$ r 2		
	$1 1 ze^2 \qquad 1 ze^2$	1⁄2	
	$= -\frac{1}{2} \cdot \frac{1}{4\pi\epsilon_o} \frac{ze^2}{r} = -\frac{1}{8\pi\epsilon_o} \frac{ze^2}{r}$		
	<u>Negative Sign</u> implies that	1/	
	Electron – nucleus form a bound system.	1⁄2	
	<i>Alternatively</i> Electron – nucleus form an attractive system)		2
	Licetion nucleus form un utilienve system)		2
	OR		
	Bohr's Postulate ¹ / ₂		
	Derivation of radius of nth orbit 1		
	Bohr's radius ¹ /2		
	For the electron, we have		
	Bohr's Postulate $(mvr = \frac{nn}{2\pi})$	1/	
		1⁄2	

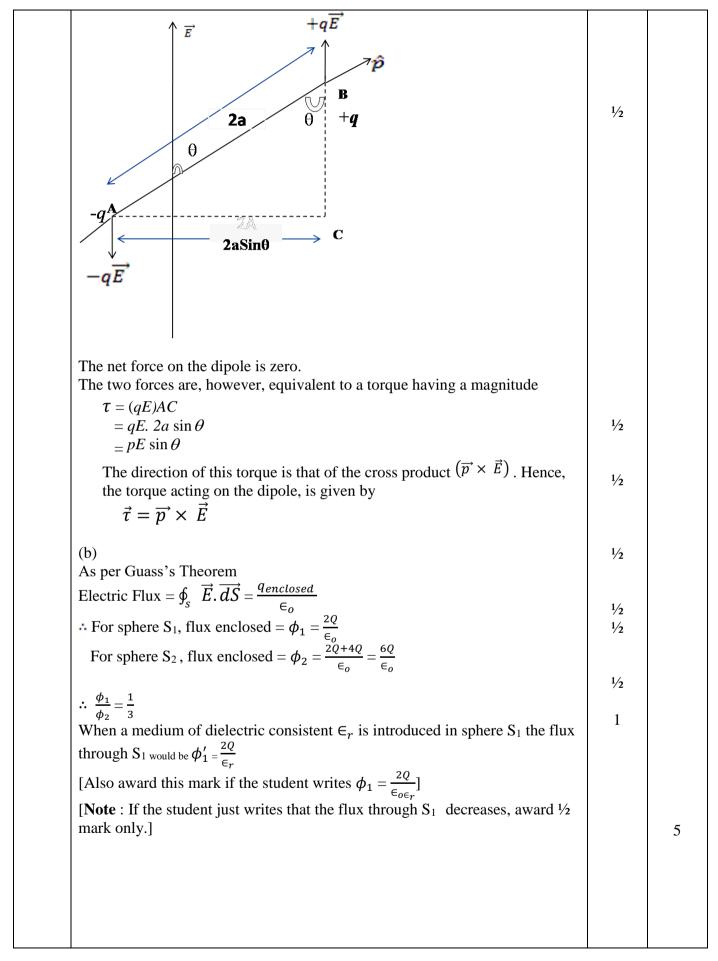
	$\frac{mv^2}{r} = \frac{1}{4\pi\epsilon_0} \frac{ze^2}{r^2}$		
	and $mvr = \frac{nh}{2\pi}$ $\therefore m^2 v^2 r^2 = \frac{n^2 h^2}{4\pi^2}$ and $mv^2 r = \frac{1}{4\pi\epsilon_0} ze^2$		
	$m^2 n^2 r^2 = \frac{n^2 h^2}{n^2}$	1⁄2	
	$-\pi v v - \frac{4\pi^2}{4\pi^2}$		
	and $mv^{-}r^{-} = \frac{1}{4\pi\epsilon_{o}}Ze^{-}$	1/2	
	$\epsilon_0 n^2 h^2$		
	$\therefore \mathbf{r} = \frac{\epsilon_o n^2 h^2}{\pi z e^2 m}$	17	2
	Bohr's radius (for $n = 1$) = $\epsilon_o h^2 / \pi z e^2 m$	1/2	2
10.			
	Formula for energy stored $\frac{1}{2}$ New value of capacitance $\frac{1}{2}$		
	Calculation of ratio 1		
	Energy stored in a capacitor $=\frac{1}{2}QV = \frac{1}{2}CV^2 = \frac{1}{2}\frac{Q^2}{c}$ (any one)	1/2	
	Capacitance of the (parallel) combination = $C+C=2C$ Here, total charge, Q, remains the same	1⁄2	
	\therefore initial energy $=\frac{1}{2}\frac{Q^2}{C}$		
	And final energy = $\frac{1}{2} \frac{Q^2}{2C}$	1⁄2	
	$\therefore \frac{final\ energy}{initial\ energy} = \frac{1}{2}$	1/2	
	[Note : If the student does the correct calculations by assuming the voltage	72	
	(i) Parallel or (ii) Series combination		
	to remain constant (=V) and obtain the answers		
	as (i) 2:1 or (ii) 1:2, award full marks]		2
11.	Statement of Ampere's circuital law ¹ / ₂		
	Showing inconsistency during the process of charging 1		
	Displacement Current ¹ / ₂		
	According to	1/2	
	Ampere's circuital Law $\oint \vec{B} d\vec{l} = \mu_0 I$	72	
	$\int But -\mu_0 I = \int S$		
	C C (a) (b) (c)	1/2	
	Applying ampere's circuital law to fig (a) we see that, during charging, the	-	
	right hand side in Ampere's circuital law equals $\mu_0 I$		
	However on applying it to the surfaces of the fig (b) or fig (c), the right hand		
	side is zero.	1⁄2	
-	utside Delhi SET I Page 3 of 17 Final Draft 3:00 p.m. 11/		


$\label{eq:working:} \begin{tabular}{ c c c c c } \hline Working: \\ \hline During one half of the input AC, the diode is forward biased and a current flows through R_L. \\ \hline During the other half of the input AC, the diode is reverse biased and no current flows through the load R_L. \\ \hline Hence, the given AC input is rectified \\ \hline [Note : If the student just draws the waveforms, for the input AC voltage and output voltage (without giving any explanation) (award 1/2 mark only for "working") \\ \hline \end{tabular}$	1/2 1/2	2
14. $\frac{1}{2}$ Substitution and calculation $\frac{1}{2} + 1$		
$I = neA V_d$	1⁄2	
$\mathbf{V_d} = \frac{I}{\mathbf{neA}} = \frac{1.5}{9 \times 10^{28} \times 1.6 \times 10^{-19} \times 1.0 \times 10^{-7}} \text{ m/s}$	1⁄2	
$= 1.048 \times 10^{-3} \text{m/s} (\approx 1 \text{mm/s})$	1	2
15. Tracing of Path of Ray 1 1 Tracing of Path of Ray 2 1 A (1' (1') (2') (2') (3') (45')	1	
[Note : If the student just writes (without drawing any diagram) that angle o incidence for both rays '1' and '2' on face AC equals 45°, and says that it i less than critical angle for ray '1' (which therefore gets refracted) and more than critical angle for ray '2' (which undergoes total internal reflection) award only $\frac{1}{2} + \frac{1}{2}$ marks.]	s e	2
16.Function of Transducer1Function of Repeater1		
Transducer : Any device that converts one form of energy to another. Repeater : A repeater accepts the signal from the transmitter, amplifies and	d 1	
retransmits it to the receiver.	1	2

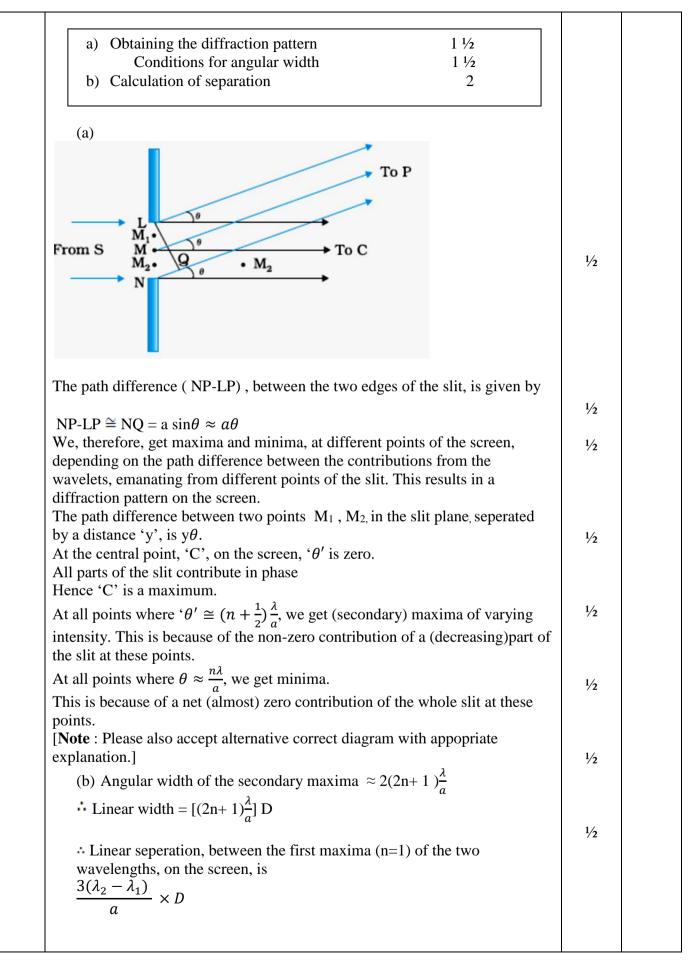
Outside Delhi SET I Page 5 of 17

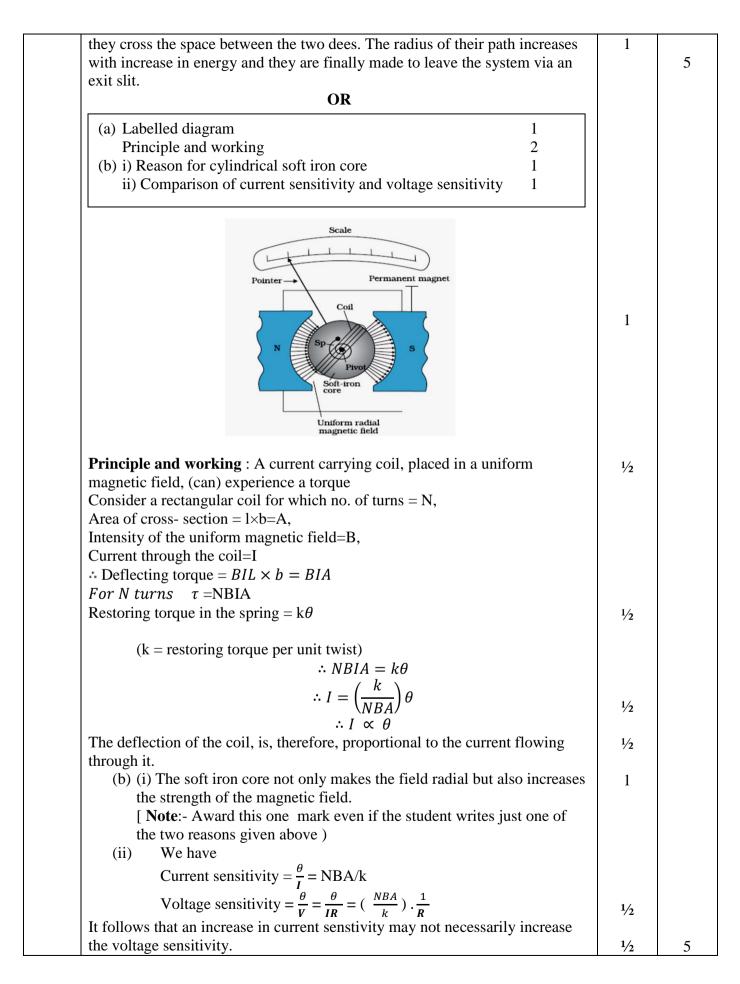
17.	Diagrams $\frac{1}{2} + \frac{1}{2}$ Explanations $\frac{1}{2} + \frac{1}{2}$		
		1⁄2	
		1⁄2	
	A <u>paramagnetic</u> material tends to move from weaker to stronger regions of the magnetic field and hence increases the number of lines of magnetic field passing through it. [<i>Alternatively:</i> A <u>paramagnetic</u> material, dipole moments are induced in the direction of the field.]	1⁄2	
	A <u>diamagnetic</u> material tends to move from stronger to weaker regions of the magnetic field and hence, decreases the number of lines of magnetic field passing through it. [<i>Alternatively:</i> A <u>diamagnetic</u> material, dipole moments are induced in the opposite direction of the field.] [Note: If the student just writes that a paramagnetic material has a small positive susceptibility ($0 < X < \varepsilon$) and a diamagnetic material has a negative susceptibility ($-1 \le X < 0$), award the $\frac{1}{2}$ mark for the second part of the question.]	1∕2	2
18.	Circuit diagram Condition $1 \frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{$	1 1⁄2	
	Condition : The transistor must be operated close to the centre of its active region. <i>Alternatively</i> The base- emitter junction of the transistor must be (suitably) forward biased and the collector – emitter junction must be (suitably) reverse biased.	1⁄2	2


	1]
Let a current I ₂ flow through the outer coil. The magnetic field due to this current $= \mu_o \frac{N_2}{l} \times I_2$ The resulting magnetic flux linked with the inner coil	1/2	
$= \emptyset_{12} = N_1 \cdot \left(\mu_o \frac{N_2}{l} \times I_2 \right) \times \pi r_1^2$ $= \left(\mu_o \frac{N_1 N_2}{l} \cdot \pi r_1^2 \right) I_2$	1⁄2	
$= \mathbf{M}_{12} I_{2} \\ \therefore \mathbf{M}_{12} = \mu_{o} \frac{N_{1} N_{2}}{l} \cdot \pi r_{1}^{2}$	1⁄2	3
21. Answers to each of the three parts $1+1+1=3$		
a) This is to ensure that the connections do not contribute any extra, unknown, resistances in the circuit.b) This is done to minimize the percentage error in the value of the unknow resistance.	vn 1	
 [Alternatively: This is done to have a better "balancing out" of the effect of any irregularity or non-uniformity in the metre bridge wire. Or This can help in increasing the senstivity of the metre bridge circuit.] c) Manganian / constantan /Nichrome 	1	
This material has a low temperature (any one) of coefficient of resistant high reisistivity. OR	$\frac{1}{2} + \frac{1}{2}$	3
Calculation of total resistance of the circuit1Calculation of total current drawn from the voltage Source1/2Calculation of current through R1Calculation of potential drop across1/2		
$R_{total} = \frac{R_o}{2} + \frac{\frac{R_o}{2} \cdot R}{\frac{R_o}{2} + R} = \frac{R(R_o + 4R)}{2(R_o + 2R)}$	1⁄2	
$I_{(total)} = \frac{V}{R_{total}}$	1/2	
Current through R = I ₂ = $I_{\text{total}} \times \frac{\frac{R_o}{2}}{\frac{R_o}{2} + R}$ = $I_{\text{total}} \times \frac{\frac{R_o}{2}}{\frac{R_o}{2}}$	1⁄2	
$= I_{\text{total}} \times \frac{R_o}{R_o + 2R}$ $= \frac{V.2(R_o + 2R)}{R(R_o + 4R)} \times \frac{R_o}{R_o + 2R}$	1/2	
$=\frac{2VR_o}{R(R_o+4R)}$	1⁄2	
Voltage across $R = I_2 R = (\frac{2VR_o}{R_o + 4R})$	1⁄2	3


Outside Delhi SET I Page 9 of 17

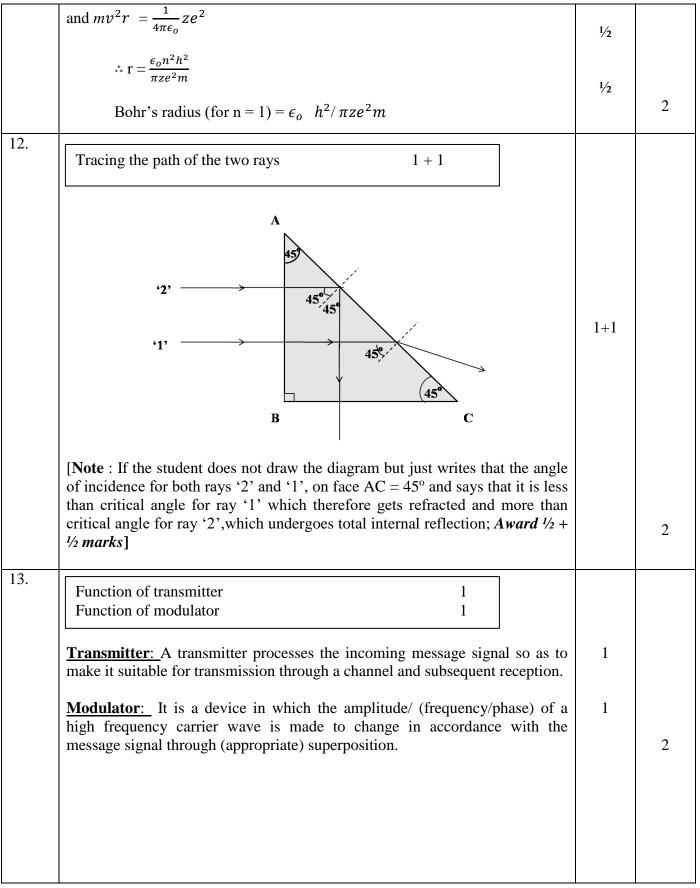
	(i) No power is dissipated when $R = 0$ (or $\phi = 90^{\circ}$) [Note: Also accepts if the student writes 'This condition cannot be satisfied	1⁄2	
	for a series LCR circuit".] (ii) Maximum power is dissipated when $X_L = X_C$ or $\omega L = \frac{1}{\omega C}$ (or $\phi = 0$)	1⁄2	3
24.	Energy band diagrams 1 ¹ / ₂ Two distinguishing features 1 ¹ / ₂		
	E_{v} E_{c} E_{c	1⁄2	
	ja band (ii)	72	
	$E_{c} \xrightarrow{E_{c}} E_{g} > 3 \text{ eV}$ $E_{v} \xrightarrow{E_{g}} S = V$ $E_{v} \xrightarrow{E_{v}} E_{v}$ $E_{v} \xrightarrow{E_{v}} E_{v}$ $E_{v} \xrightarrow{E_{v}} E_{v}$ $E_{v} \xrightarrow{E_{v}} E_{v}$	1/2 + 1/2	
	 Two distinguishing features: (i) In conductors, the valency band and conduction band tend to overlap (or nearly overlap) while in insulators they are seperated by a large energy gap and in semiconductors are separated by a small energy gap. 	1	
<u></u>	 (ii) The conduction band, of a conductor, has a large number of electrons available for electrical conduction. However the conduction band of insulators is almost empty while that of the semi- conductor has only a (very) small number of such electrons avilable for electrical conduction. 	1⁄2	3
5.	Values displayed2Diagnosis1		
	 (a) keen observer/ helpful/ concerned / responsible/ respectful towards elders. (Any two) 	1+1	
	(b) The doctor can trace and observe, the difference between the movement of an appropriate radio- isotope through a normal brain and a brain having tumor in it.	1	
	[Note : Also accept any other appropriate explanation.]	3/2014	3


Outside Delhi SET I Page 10 of 17

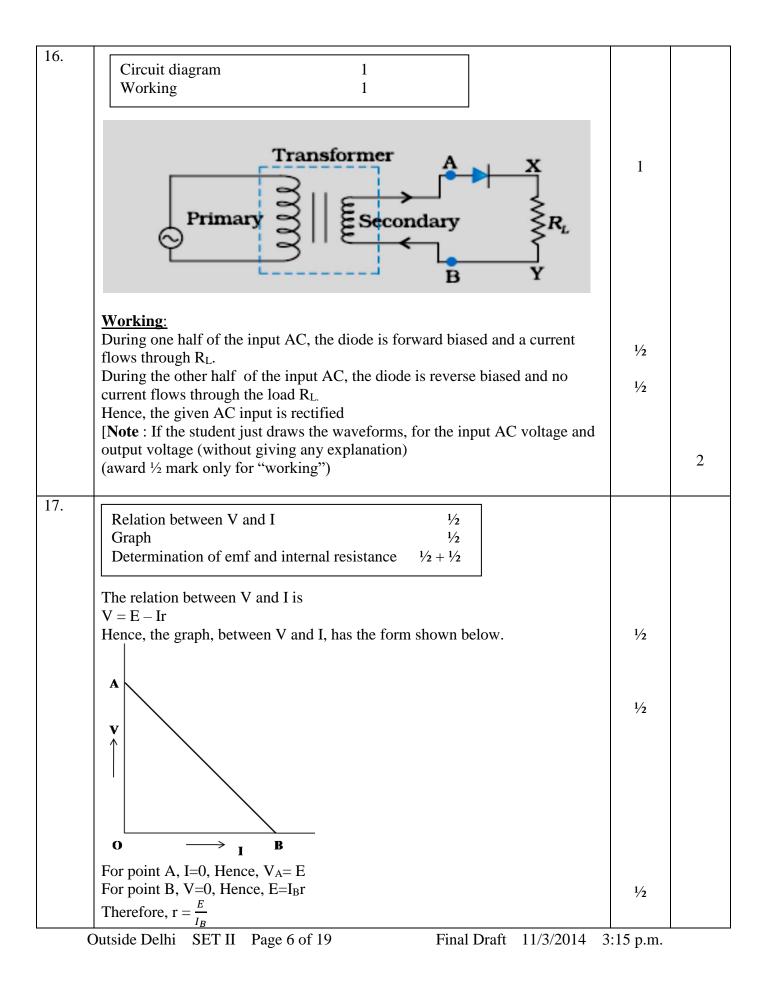

$\frac{1}{(a)} = \frac{1}{(a)} + \frac{1}$	Conside	er a set up of the type shown here	
i. Potential inside and on the surface, of the conducting sphere pf radius $R': \qquad \qquad$		Total charge Q	
'R': $V'_{R} = \frac{1}{4\pi\epsilon_{o}} \cdot \frac{Q}{R}$ ii. Potential due to small sphere of radius 'r' carrying a charge 'q': At the surface of the smaller sphere : $V'_{r} = \frac{1}{4\pi\epsilon_{o}} \cdot \frac{q}{r}$ At the surface of the larger sphere : $V''_{R} = \frac{1}{4\pi\epsilon_{o}} \cdot \frac{Q}{R}$ \therefore The difference of potential between the smaller and the larger sphere: $=\Delta V = \frac{1}{4\pi\epsilon_{o}} \cdot \left[\left(\frac{Q}{R} + \frac{q}{r} \right) - \left(\frac{Q}{R} + \frac{q}{r} \right) \right]$ $= \frac{q}{4\pi\epsilon_{o}} \left(\frac{1}{r} - \frac{1}{R} \right)$ When 'q' is positive, the inner sphere would always be at a higer potential with respect to outer sphere, irrespective of the amount of charges on the two. \therefore When both the spheres are connected, charge will flow from the smaller sphere to the larger sphere. Thus for a set up of the type shown, charge would keep on pilling up on the larger sphere. Use : This machine is used to accelerate charged particles (electron, protons, ions) to high energies. Limitation : It can build up potentials upto a few million volts only. (a) The forces, acting on the two charges of the dipole, are		+ + + + + + + + + + + + + + + + + + +	
$V_{R}' = \frac{1}{4\pi\epsilon_{0}} \cdot \frac{Q}{R}$ ii. Potential due to small sphere of radius 'r' carrying a charge 'q': At the surface of the smaller sphere : $V_{r}' = \frac{1}{4\pi\epsilon_{0}} \cdot \frac{q}{r}$ At the surface of the larger sphere : $V_{R}'' = \frac{1}{4\pi\epsilon_{0}} \cdot \frac{Q}{R}$ \therefore The difference of potential between the smaller and the larger sphere: $=\Delta V = \frac{1}{4\pi\epsilon_{0}} \cdot \left[\left(\frac{Q}{R} + \frac{q}{r} \right) - \left(\frac{Q}{R} + \frac{q}{r} \right) \right]$ $= \frac{q}{4\pi\epsilon_{0}} \left(\frac{1}{r} - \frac{1}{R} \right)$ When 'q' is positive, the inner sphere would always be at a higer potential with respect to outer sphere, irrespective of the amount of charges on the two. \therefore When both the spheres are connected, charge will flow from the smaller sphere to the larger sphere. Thus for a set up of the type shown, charge would keep on pilling up on the larger sphere. Use : This machine is used to accelerate charged particles (electron, protons, ions) to high energies. Limitation: It can build up potentials upto a few million volts only. (a) (a) The forces, acting on the two charges of the dipole, are			
At the surface of the smaller sphere : $V'_r = \frac{1}{4\pi\epsilon_0} \cdot \frac{q}{r}$ At the surface of the larger sphere : $V''_R = \frac{1}{4\pi\epsilon_0} \cdot \frac{Q}{R}$ \therefore The difference of potential between the smaller and the larger sphere: $=\Delta V = \frac{1}{4\pi\epsilon_0} \cdot \left[\left(\frac{Q}{R} + \frac{q}{r}\right) - \left(\frac{Q}{R} + \frac{q}{r}\right)\right]$ $= \frac{q}{4\pi\epsilon_0} \left(\frac{1}{r} - \frac{1}{R}\right)$ When 'q' is positive, the inner sphere would always be at a higer potential with respect to outer sphere, irrespective of the amount of charges on the two. \therefore When both the spheres are connected, charge will flow from the smaller sphere to the larger sphere. Thus for a set up of the type shown, charge would keep on pilling up on the larger sphere. Use : This machine is used to accelerate charged particles (electron, protons, ions) to high energies. Limitation: It can build up potentials upto a few million volts only. (a) Deducing the expression for torque 2 (b) Finding the ratio of the flux through the two spheres 2 (c) Finding the change in flux 1 (a) The forces, acting on the two charges of the dipole, are			
* The difference of potential between the smaller and the larger sphere: $=\Delta V = \frac{1}{4\pi\epsilon_o} \cdot \left[\left(\frac{Q}{R} + \frac{q}{r} \right) - \left(\frac{Q}{R} + \frac{q}{r} \right) \right] $ $= \frac{q}{4\pi\epsilon_o} \left(\frac{1}{r} - \frac{1}{R} \right) $ When 'q' is positive, the inner sphere would always be at a higer potential with respect to outer sphere, irrespective of the amount of charges on the two. * When both the spheres are connected, charge will flow from the smaller sphere to the larger sphere. Thus for a set up of the type shown, charge would keep on pilling up on the larger sphere. Use : This machine is used to accelerate charged particles (electron, protons, ions) to high energies. Limitation: It can build up potentials upto a few million volts only. (a) Deducing the expression for torque 2 (b) Finding the ratio of the flux through the two spheres 2 (c) Finding the change in flux 1 (a) The forces, acting on the two charges of the dipole, are	At the su	arface of the smaller sphere : $V'_r = \frac{1}{4\pi\epsilon_o} \cdot \frac{q}{r}$	1⁄2
$=\Delta V = \frac{1}{4\pi\epsilon_0} \cdot \left[\left(\frac{Q}{R} + \frac{q}{r} \right) - \left(\frac{Q}{R} + \frac{q}{r} \right) \right] $ $= \frac{q}{4\pi\epsilon_0} \left(\frac{1}{r} - \frac{1}{R} \right)$ When 'q' is positive, the inner sphere would always be at a higer potential with respect to outer sphere, irrespective of the amount of charges on the two. \therefore When both the spheres are connected, charge will flow from the smaller sphere to the larger sphere. Thus for a set up of the type shown, charge would keep on pilling up on the larger sphere. Use : This machine is used to accelerate charged particles (electron, protons, ions) to high energies. Limitation: It can build up potentials upto a few million volts only. $\frac{1}{2}$ (a) Deducing the expression for torque 2 (b) Finding the ratio of the flux through the two spheres 2 (c) Finding the change in flux 1 (a) The forces, acting on the two charges of the dipole, are			
When 'q' is positive, the inner sphere would always be at a higer potential with respect to outer sphere, irrespective of the amount of charges on the two. 1/2 ∴ When both the spheres are connected, charge will flow from the smaller sphere to the larger sphere. Thus for a set up of the type shown, charge would keep on pilling up on the larger sphere. 1/2 Use : This machine is used to accelerate charged particles (electron, protons, ions) to high energies. 1/2 Limitation: It can build up potentials upto a few million volts only. 1/2 (a) Corr (a) The forces, acting on the two charges of the dipole, are	$=\Delta V =$	$\frac{1}{4\pi\epsilon_o} \cdot \left[\left(\frac{Q}{R} + \frac{q}{r} \right) - \left(\frac{Q}{R} + \frac{q}{r} \right) \right]$	1⁄2
 When both the spheres are connected, charge will flow from the smaller sphere to the larger sphere. Thus for a set up of the type shown, charge would keep on pilling up on the larger sphere. Use : This machine is used to accelerate charged particles (electron, protons, ions) to high energies. Limitation: It can build up potentials upto a few million volts only. (a) Deducing the expression for torque 2 (b) Finding the ratio of the flux through the two spheres 2 (c) Finding the change in flux 1 (a) (a) (a) (b) The forces, acting on the two charges of the dipole, are 	When 'c with res	' is positive, the inner sphere would always be at a higer potential	1⁄2
sphere to the larger sphere. Thus for a set up of the type shown, charge would keep on pilling up on the larger sphere. Use : This machine is used to accelerate charged particles (electron, protons, ions) to high energies. Limitation: It can build up potentials upto a few million volts only. (a) Deducing the expression for torque 2 (b) Finding the ratio of the flux through the two spheres 2 (c) Finding the change in flux 1 (a) The forces, acting on the two charges of the dipole, are		both the spheres are connected charge will flow from the smaller	
keep on pilling up on the larger sphere. Use : This machine is used to accelerate charged particles (electron, protons, ions) to high energies. 1/2 Limitation: It can build up potentials upto a few million volts only. 1/2 (a) Deducing the expression for torque 2 (b) Finding the ratio of the flux through the two spheres 2 (c) Finding the change in flux 1			1/2
ions) to high energies. 72 Limitation: It can build up potentials upto a few million volts only. 1/2 OR 1/2 (a) Deducing the expression for torque 2 (b) Finding the ratio of the flux through the two spheres 2 (c) Finding the change in flux 1 (a) 1 (a) The forces, acting on the two charges of the dipole, are	-		12
Limitation: It can build up potentials upto a few million volts only. OR (a) Deducing the expression for torque 2 (b) Finding the ratio of the flux through the two spheres 2 (c) Finding the change in flux 1 (a) The forces, acting on the two charges of the dipole, are			1⁄2
OR (a) Deducing the expression for torque 2 (b) Finding the ratio of the flux through the two spheres 2 (c) Finding the change in flux 1 (a) The forces, acting on the two charges of the dipole, are	,		1/2
 (b) Finding the ratio of the flux through the two spheres 2 (c) Finding the change in flux 1 (a) (a) The forces, acting on the two charges of the dipole, are 		OR	, -
(c) Finding the change in flux 1 (a) The forces, acting on the two charges of the dipole, are	(a)		
(a) The forces, acting on the two charges of the dipole, are		6 6 1	
The forces, acting on the two charges of the dipole, are	(c)	Finding the change in Tlux I	
The forces, acting on the two charges of the dipole, are	(2)		
	• •	es, acting on the two charges of the dipole, are	
$+q\overline{E}$ and $-q\overline{E}$			1⁄2

(a) Formation of bright and dark fringes 1		
Obtaining the expression for fringe width3(b) Finding the ratio1		
(a) The light rays from the two (coherent) slits, reaching a point 'P' on the screen, have a path difference ($S_2P - S_1P$). The point 'P' would, therefore be a i. Point of maxima(bright fringe), if $S_2P - S_1P = n\lambda$.	1/2	
ii. Point of minima (dark fringe), if $S_2P - S_1P = (2n+1)\frac{\lambda}{2}$	1⁄2	
G = G = G	1⁄2	
(b)		
We have $(S_2P)^2 - (S_1P)^2 = \left\{ D^2 - \left(x + \frac{d}{2}\right)^2 \right\} - \left\{ D^2 + \left(x - \frac{d}{2}\right)^2 \right\}$		
$= 2xd$ $S_2P - S_1P = \frac{2xd}{S_2P + S_1P} \approx \frac{2xd}{2D} = \frac{xd}{D}$	1/2	
$\therefore \text{ We have maxima at points, where} \\ \frac{xd}{D} = n\lambda$	1⁄2	
and minima at points where	1 /	
$\frac{xd}{D} = \left(\frac{2n+1}{2}\right)\lambda$	1/2	
Now, fringe width β = separation between two successive maxima(or two successive minima) = $x_n - x_n - 1$	1⁄2	
$ \beta = \frac{\lambda D}{d}$	1⁄2	
(b) We have	1/2	
$\frac{I_{max}}{I_{min}} = \frac{(a_1 + a_2)^2}{(a_1 - a_2)^2} = \frac{25}{9}$ $\therefore = \frac{a_1}{a_2} = \frac{4}{1}$		
$\therefore \frac{W_1}{W_2} = \frac{I_1}{I_2} = \frac{(a_1)^2}{(a_2)^2} = \frac{16}{1}$	1⁄2	
[Note: Give $\frac{1}{2}$ mark if the student just writes Intensity \propto width		
OR		

	: Separation = $\frac{3(596-590)\times10^{-9}}{2\times10^{-6}} \times 1.5m$	1	5
	$= 13.5 \text{ x} \times 10^{-3} \text{m} (= 13.5 \text{ mm})$		
30.	(a) Expression for frequency1 ½Frequency Independent of 'v' or energy½(b) Sketch of cyclotron1Construction1Working1		
	 (a) When a particle of mass 'm' and charge 'q', moves with a velocity V, in a uniform magnetic field B, it experiences a force F where 		
	$\vec{F} = q \; (\vec{v} \times \vec{B})$	1/2	
	$\therefore \text{ Centripetal force } \frac{mv^2}{r} = 2 v B_{\perp}$ $\therefore r = \frac{mv}{r}$	1/2	
	$\therefore r = \frac{mv}{qB_{\perp}}$ $\therefore \text{ frequency} = \frac{v}{2\pi r} = \frac{qB_{\perp}}{2\pi m}$	1⁄2	
	\therefore It is independent of the velocity or the energy of the particle.	1⁄2	
	Magnetic field out of the paper Exit Port Charged particle D ₁ OSCILLATOR	1	
	<u>Construction</u> : The cyclotron is made up of two hollow semi-circular disc like metal containers, D_1 and D_2 , called dees. It uses crossed electric and magnetic fields. The electric field is provided by an oscillator of adjustable frequency.		
	[Note: Award this mark even if the student labels the diagram properly without writing the details of the construction.]	1	
	Working : In a cyclotron, the frequency of the applied alternating field is adjusted to be equal to the frequency of revolution of the charged particles in the magnetic field. This ensures that the particles get accelerated every time	I	

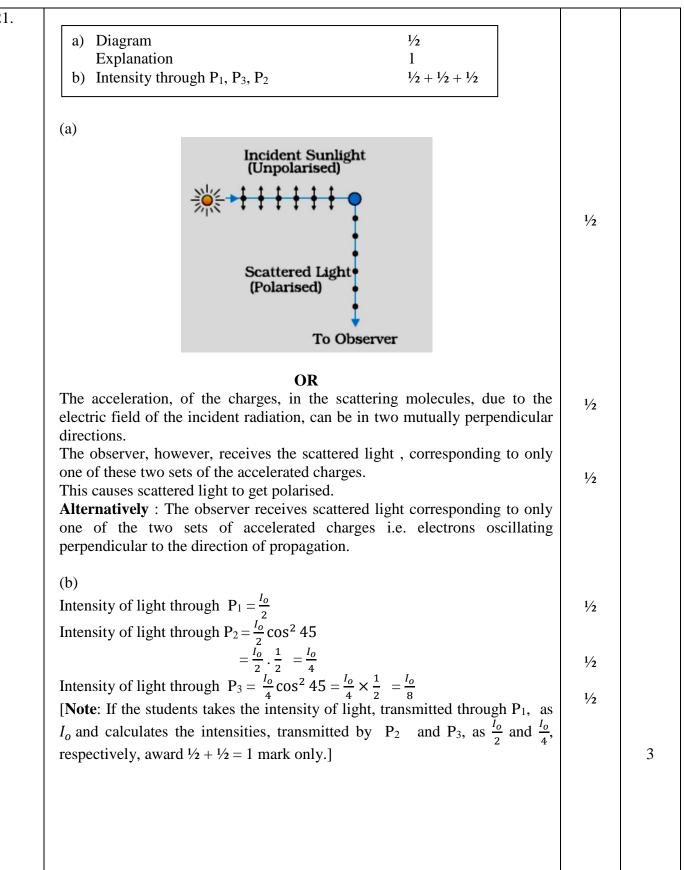


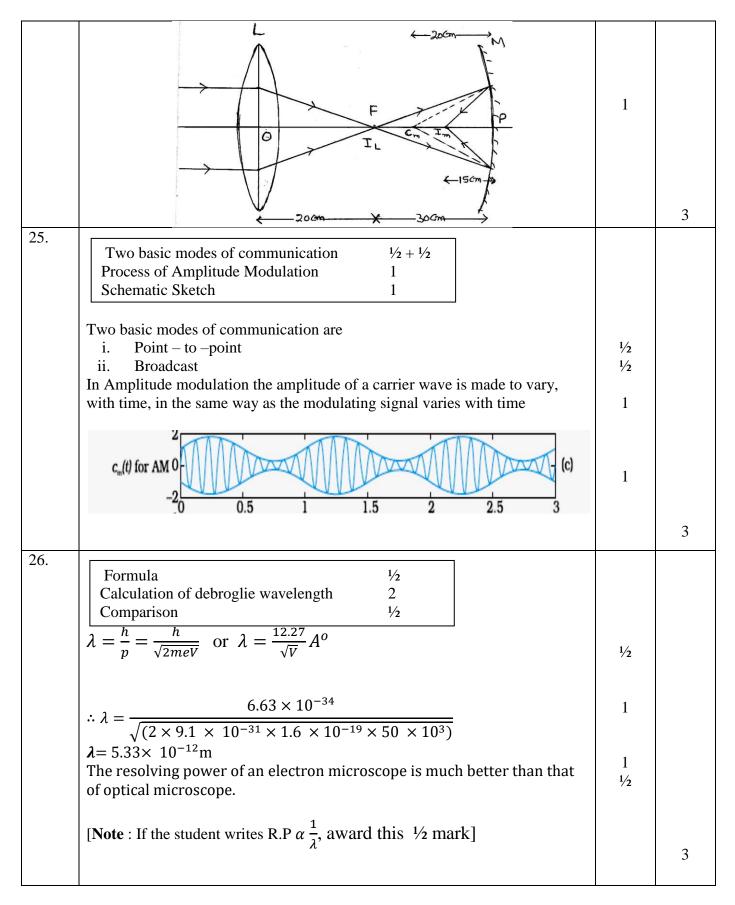
MARKING SCHEME SET 55/2

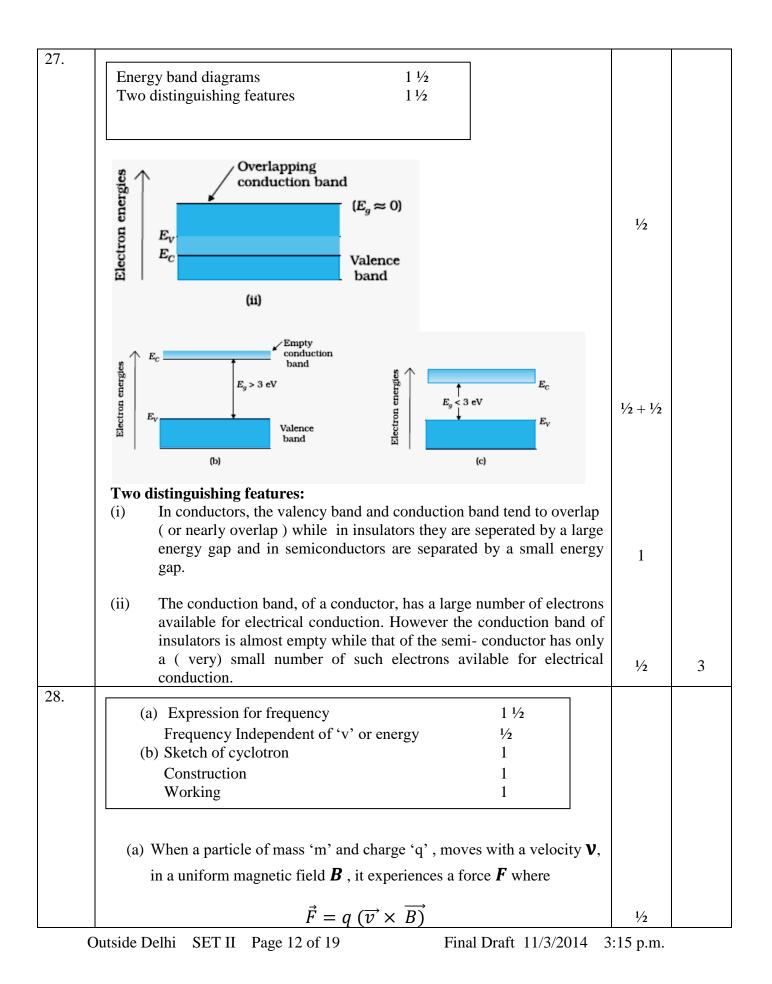

	SET 55/2	1	1
Q. No.	Expected Answer / Value Points	Marks	Total Marks
1.	Clockwise		
	\diamond	1	
	$P \longrightarrow Q$		1
2.	Definition : One ampere is the value of steady current which when maintained in each of the two very long, straight, parallel conductors of negligible cross section and placed one metre apart in vaccum, would produce on each of these conductors a force equal of 2 x 10 ⁻⁷ N/m of its length.AlternativelyIf the student writes $F = \frac{\mu_0}{2\pi} \frac{l_1 l_2}{R} L$ and says that when $I_1 = I_2 = 1$ ampere $R=1$ meter and $L = 1$ meter, then 	1	
	1 ampere 1 ampere 1 ampere 1 Award full 1 mark		1
3.	Any two of the following (or any other correct) reasons :		1
	 i. AC can be transmitted with much lower energy losses as compared to DC ii. AC voltage can be adjusted (stepped up or stepped down) as per requirement. iii. AC current in a circuit can be controlled using (almost) wattless devices like the choke coil. 	1/2 + 1/2	
	iv. AC is easier to generate.		1

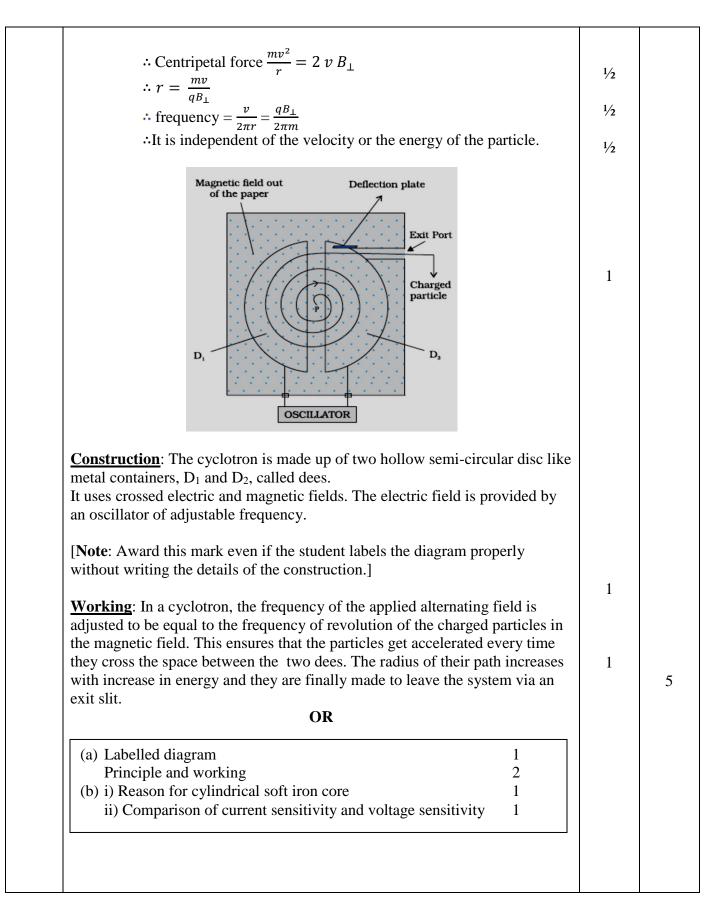
4.	They start from positive charges and end on negative charges	1	
	[Alternatively: Electric field is conservative in nature.]		1
5.	Converging lens	1/2	1
	Light rays converge, on moving from denser to rarer medium.		
	Alternatively:	1⁄2	
	Note: If explained on the basis of lens makers formulae, award 1 mark.		1
6.	Metal A	1/2	1
0.	\therefore work functions $W = hv$ and $v'_o > v_o$	1/2	1
7.	Infrared radiation	1	1
8.	Neutrinos are neutral (chargeless), (almost) massless particles that hardly	1	
	interact with matter.		
	<i>Alternatively</i> The neutrinos can penetrate large quantity of matter without any interaction		
	OR		
	Neutrinos are chargeless and (almost) massless particles.		1
9.	Formula ¹ / ₂		
	Calculation of drift velocity $1\frac{1}{2}$		
	$I = AneV_d$	1/2	
	$\therefore V_d = \frac{1.8}{2.5 \times 10^{-7} \times 9 \times 10^{28} \times 1.6 \times 10^{-19}}$	1⁄2	
	2.5 × 10 × 29×10=0×1.6×10 + 2	1	2
	$= 5 \text{ X } 10^{-4} \text{m/s}$	1	2
10.			
	Statement of Ampere's circuital law $1/2$ Sharping inconsistence during the approximation1		
	Showing inconsistency during the process of charging1Displacement Current1/2		
	Displacement Current 72		
	According to		
	Ampere's circuital Law	1/2	
	$\oint \vec{B} d\vec{l} = \mu_0 I$		
	P + M - P +		
	с с с	1/2	
	(a) (b) (c)	72	
	Applying ampere's circuital law to fig (a) we see that, during charging, the		
	right hand side in Ampere's circuital law equals $\mu_0 I$ Outside DelhiSET IIPage 2 of 19Final Draft11/3/201433	15 p.m.	

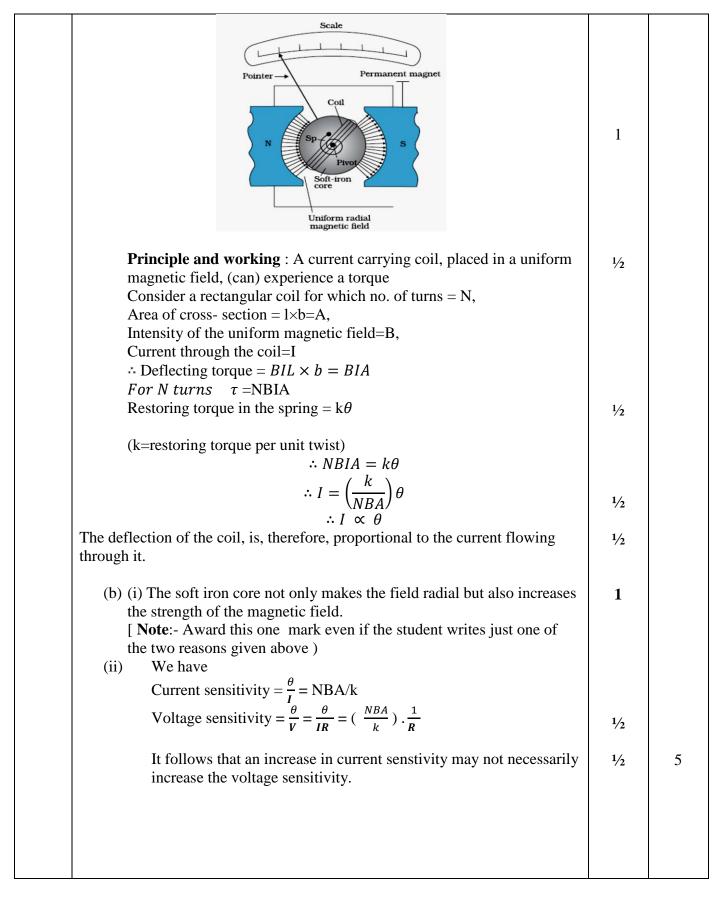
However on applying it to the surfaces of the fig (b) or fig (c), the right hand side is zero.Hence, there is a contradiction.We can remove the contradiction by assuming that there exists a current (associated with the changing electric field during charging), known as the displacement current.When this current ($= \frac{d\phi_E}{dt}$) is added on the right hand side, Ampere's circuital law, the inconsistency disappears. It was, therefore necessary, to generalize the Ampere's circuital law, as	1⁄2 1⁄2	
$\oint \vec{B} d\vec{l} = \mu_0 I_c + \mu_0 \in_o \frac{d\phi_E}{dt}$ [Note : If the student does the reasoning by using the (detailed) mathematics, relevant to displacement current, award full 2 marks]		2
11. Derivation of energy expression 1 ½ Significance of negative sign ½ As per Rutherford's model		
$\frac{mv^2}{r} = \frac{1}{4\pi\epsilon_o} \frac{ze^2}{r^2}$ $\Rightarrow mv^2 = \frac{1}{4\pi\epsilon_o} \frac{ze^2}{r}$	1⁄2	
Total energy = P.E +K.E. = $-\frac{1}{4\pi\epsilon_o}\frac{ze^2}{r} + \frac{1}{2}mv^2$	1⁄2	
$= -\frac{1}{2} \cdot \frac{1}{4\pi\epsilon_o} \frac{ze^2}{r} = -\frac{1}{8\pi\epsilon_o} \frac{ze^2}{r}$ <u>Negative Sign</u> implies that Electron – nucleus form a bound system. <i>Alternatively</i>	³ /2 1/2	
Electron – nucleus form an attractive system)		2
OR Bohr's Postulate 1/2 Derivation of radius of nth orbit 1 Bohr's radius 1/2		
For the electron, we have Bohr's Postulate $(mvr = \frac{nh}{2\pi})$ $\frac{mv^2}{r} = \frac{1}{4\pi\epsilon_0} \frac{ze^2}{r^2}$ and $mvr = \frac{nh}{m}$	1⁄2	
and $mvr = \frac{nh}{2\pi}$ $\therefore m^2 v^2 r^2 = \frac{n^2 h^2}{4\pi^2}$	1⁄2	

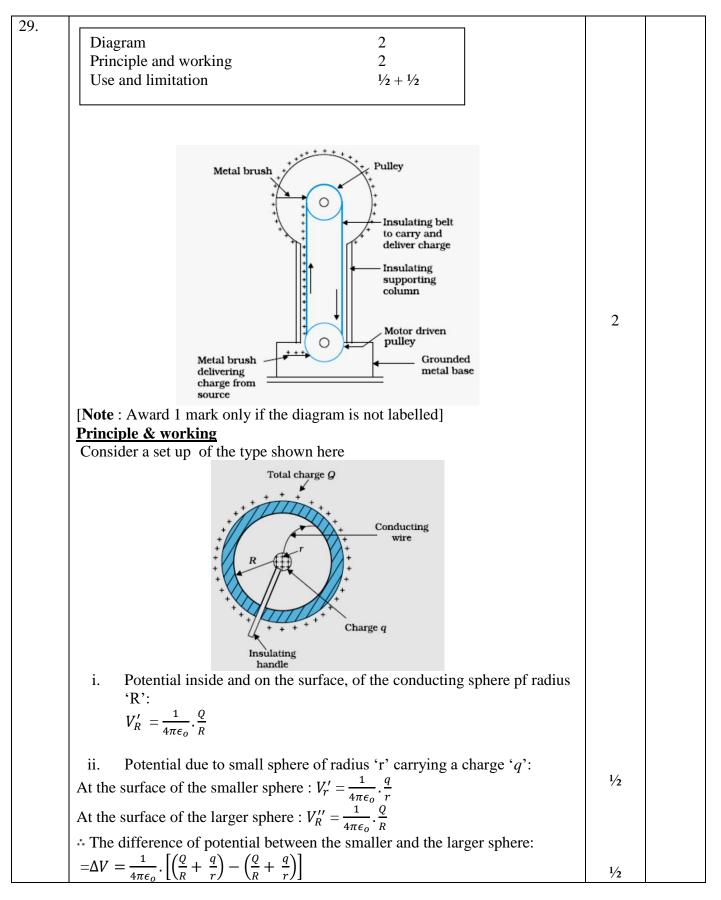

14.	Diagrams $\frac{1}{2} + \frac{1}{2}$ Explanations $\frac{1}{2} + \frac{1}{2}$		
		1/2	
		1⁄2	
	A <u>paramagnetic</u> material tends to move from weaker to stronger regions of the magnetic field and hence increases the number of lines of magnetic field passing through it. [<i>Alternatively:</i> A <u>paramagnetic</u> material, dipole moments are induced in the direction of the field.]	1⁄2	
	A <u>diamagnetic</u> material tends to move from stronger to weaker regions of the magnetic field and hence, decreases the number of lines of magnetic field passing through it. [<i>Alternatively:</i> A <u>diamagnetic</u> material, dipole moments are induced in the opposite direction of the field.] [Note: If the student just writes that a paramagnetic material has a small positive susceptibility ($0 < X < \varepsilon$) and a diamagnetic material has a negative susceptibility ($-1 \le X < 0$), award the $\frac{1}{2}$ mark for the second part of the question.]	1⁄2	2
15.	Circuit diagram $1 \frac{1}{2}$ Condition $\frac{1}{2}$	1 1⁄2	2
	Condition : The transistor must be operated close to the centre of its active region. <i>Alternatively</i> The base- emitter junction of the transistor must be (suitably) forward biased and the collector – emitter junction must be (suitably) reverse biased.	1/2	2

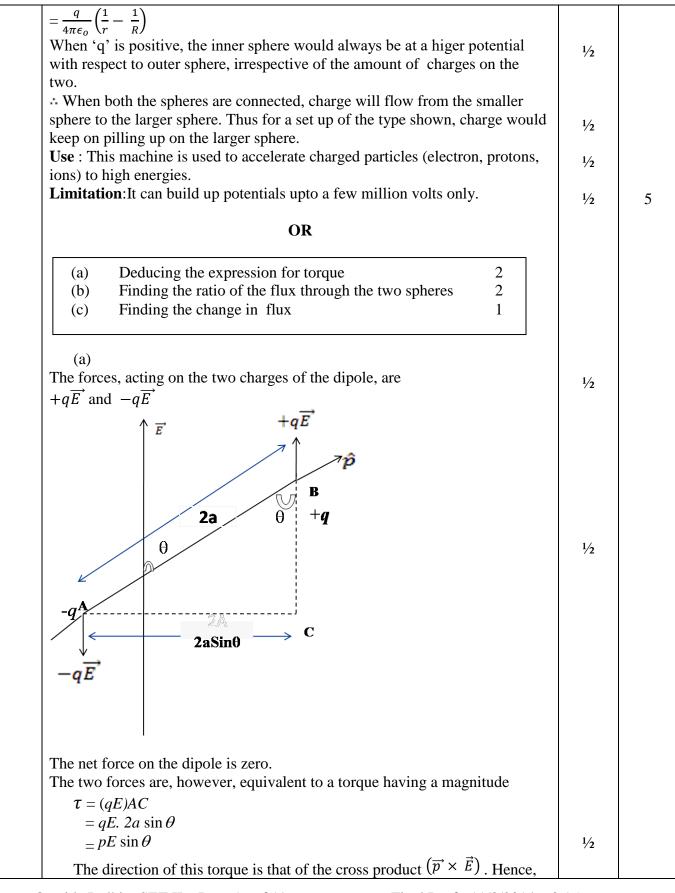

	<u>Alternatively:</u> emf (E) equals the intercept on the vertical axis. Internal resistance (r) equals the negative of the slope of the graph.	1⁄2	2
18.	Formula for energy stored1/2New value of capacitance1/2Calculation of ratio1		
	Energy stored in a capacitor $=\frac{1}{2}QV = \frac{1}{2}CV^2 = \frac{1}{2}\frac{Q^2}{C}$ (any one)	1/2	
	Capacitance of the (parallel) combination = $C+C=2C$ Here, total charge, Q, remains the same	1⁄2	
	$\therefore \text{ initial energy} = \frac{1}{2} \frac{Q^2}{C}$		
	And final energy $=\frac{1}{2}\frac{Q^2}{2C}$. final energy 1	1⁄2	
	$\therefore \frac{final energy}{initial energy} = \frac{1}{2}$ [Note : If the student does the correct calculations by assuming the voltage	1⁄2	
	across the (i) Parallel or (ii) Series combination to remain constant (=V) and obtain the answers as (i) 2:1 or (ii) 1:2, award full marks]		2
19.	Deriving the expression for average power2Condition for no power dissipation $\frac{1}{2}$ Condition for maximum power dissipation $\frac{1}{2}$ Applied voltage = $V_0 \sin \omega t$	1/2	
	Current in the circuit =I _o sin ($\omega t - \phi$) where ϕ is the phase lag of the current with respect to the voltage applied, Hence instantaneous power dissipation = $V_0 \sin \omega t \times I_0 \sin (\omega t - \phi)$ = $\frac{V_0 I_0}{2} [2 \sin \omega t . \sin (\omega t - \phi)]$		
	$=\frac{V_0 \bar{I}_0}{2} [\cos \phi - \cos(2\omega t - \phi)]$ Therefore, average power for one complete cycle	1/2	
	= average of $\left[\frac{V_0 I_0}{2} \left[\cos \phi - \cos(2\omega t - \phi)\right]\right]$ The average of the second term over a complete cycle is zero.	1/2	
	Hence, average power dissipated over one complete cycle is zero? Hence, average power dissipated over one complete cycle = $\frac{V_0 I_0}{2} \cos \phi$	1⁄2	
	[Note : Please also accept alternative correct approach.] Conditions		
	(i) No power is dissipated when $R = 0$ (or $\phi = 90^{\circ}$) [Note: Also accepts if the student writes 'This condition cannot be satisfied for a series LCR circuit''.]	1/2	
	(ii) Maximum power is dissipated when $X_L = X_C$	1⁄2	3
	or $\omega L = \frac{1}{\omega c}$ (or $\phi = 0$)		

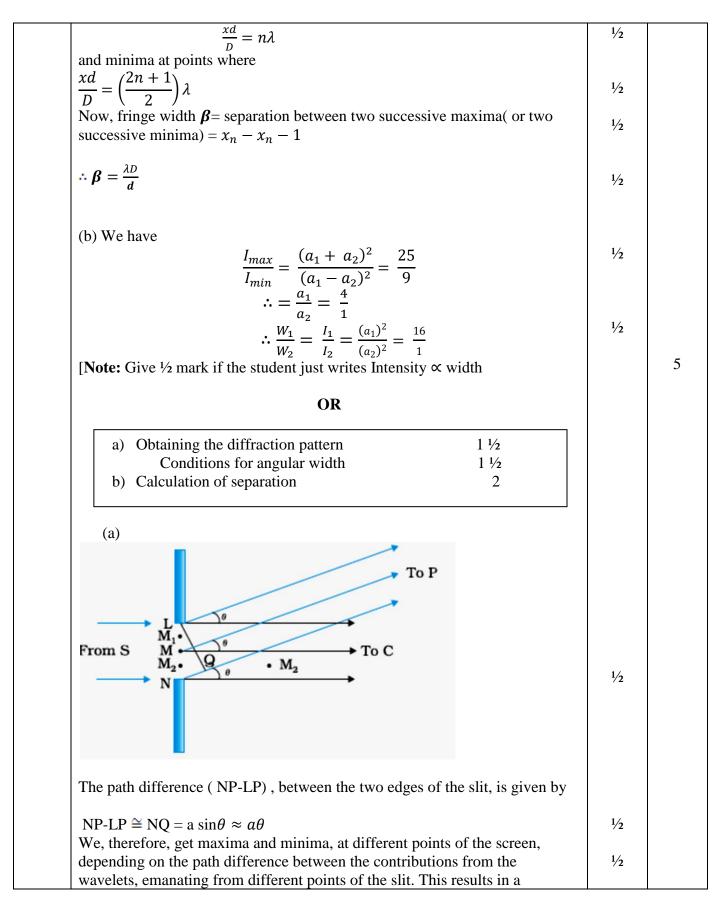

a) This is to ensure that the connections do not contribute any extra,	
unknown, resistances in the circuit.	1
b) This is done to minimize the percentage error in the value of the unknown resistance.	
[<i>Alternatively:</i> This is done to have a better " balancing out" of the effects	
of any irregularity or non-uniformity in the metre bridge wire.	
Or This can help in increasing the senstivity of the metre bridge circuit.]	1
c) Manganian / constantan /Nichrome	
This material has a low temperature (any one) of coefficient of resistance/ high reisistivity.	$\frac{1}{2} + \frac{1}{2}$
OR	
Calculation of total resistance of the circuit 1	
Calculation of total current drawn from the voltage Source ¹ / ₂	
Calculation of current through R1Calculation of potential drop acrossR½	
Calculation of potential drop across K 72	
$P = -\frac{R_o}{2} + \frac{R_o}{2} \cdot R$	1/
$R_{total} = \frac{R_o}{2} + \frac{\frac{R_o}{2} \cdot R}{\frac{R_o}{2} + R}$	1/2
$=\frac{R(R_0+4R)}{2(R_0+2R)}$	
$= \frac{R(R_o + \frac{2}{4}R)}{2(R_o + 2R)}$ $I_{(total)} = \frac{V}{R_{total}}$	1/2
R_{total} R_o	
Current through R = I ₂ = I _{total} x $\frac{\frac{R_o}{2}}{\frac{R_o}{2} + R}$ = I ₁ x $\frac{\frac{R_o}{2}}{\frac{R_o}{2}}$	1⁄2
$=$ L \rightarrow x $\frac{\frac{2}{R_o}}{\frac{2}{R_o}}$	
$- r_{total} \wedge R_o + 2R$	1/2
$= \frac{V.2(R_o+2R)}{R(R_o+4R)} \ge \frac{R_o}{R_o+2R}$	
$=\frac{2VR_o}{R(R_o+4R)}$	1/2
	72
Voltage across $R = I_2 R = (\frac{2VR_o}{R_o + 4R})$	1⁄2
$\kappa_0 + 4\kappa$	


21.




Definition1 2Self inductance : It is equal to the magnetic flux, linked with the solenoid, when a unit current passes through it.1Alternatively T is equal to the induced emf in the solenoid when the current, through the solenoid itself, changes at a unit rate.1Energy stored U = $\int_0^1 L \frac{di}{dt}$, changes at a unit rate.1U = $\int_0^1 L \frac{di}{dt}$ 1U = $\int_0^1 L \frac{di}{dt}$ × $idt = \int_0^1 Lidi$ 1 $: U = :U = \int_0^1 L \frac{di}{dt} \times idt = \int_0^1 Lidi$ 1/2323.Values displayed2 Diagnosis(a) keen observer/helpful/ concerned / responsible/ respectful towards elders. (Any two) (b) The doctor can trace and observe, the difference between the movement of an appropriate radio- isotope through a normal brain and a brain having tumor in it. [Note : Also accept any other appropriate explanation.]324.Position of final image formed by the lens mirror combination $\frac{2}{f} = \frac{1}{v} + \frac{1}{u}$ 1/2 $= \frac{1}{f} = \frac{1}{v} + \frac{1}{u}$ 1/2 $= \frac{1}{10} = \frac{1}{v} - \frac{1}{30}$ $\therefore v = -15 \text{ cm}$ 1/2Values Delhi SET II Page 10 of 19Final Draft 11/3/20143:15 p.m.	22.			
Self inductance : It is equal to the magnetic flux, linked with the solenoid, when a unit current passes through it. Alternatively It is equal to the induced emf in the solenoid when the current, through the solenoid itself', changes at a unit rate. Energy stored $U = \int_0^1 E i dt$ Here $ E = L \frac{dt}{dt}$ $U = \frac{1}{y} L \frac{dt}{dt} \times i dt = \int_0^1 L i dt$ $\therefore U = \frac{1}{z} L I^2$ 23. Values displayed (a) keen observer/ helpful/ concerned / responsible/ respectful towards elders. (Any two) (b) The doctor can trace and observe, the difference between the movement of an appropriate radio- isotope through a normal brain and a brain having tumor in it. [Note : Also accept any other appropriate explanation.] 24. Position of final image formed by the lens mirror combination $\frac{1}{f} = \frac{1}{v} \cdot \frac{1}{u}$ As u is infinity, v = 20cm For the concave mirror, the image, formed by the lens, acts as the object. Hence, $u = (50-20) \text{ cm} = -30\text{ cm}$ Also, f = -10 cm $\frac{1}{f} = \frac{1}{v} + \frac{1}{u}$ $-\frac{1}{10} = \frac{1}{v} - \frac{1}{30}$ $\therefore v = -15\text{ cm}$ The final image is, therefore, at a distance of 15 cm to the left of the concave mirror(or at a distance of 35 cm to the right of the convex lens)		Definition 1		
when a unit current passes through it. Alternatively It is equal to the induced emf in the solenoid when the current, through the solenoid itself , changes at a unit rate. Energy stored $U = \int_0^1 Eidt$ Here $ E = L \frac{di}{dt}$ $U = \int_0^1 L \frac{di}{dt} \times idt = \int_0^1 Lidi$ $\therefore U = \frac{1}{2}L^2$ 23. (a) keen observer/ helpful/ concerned / responsible/ respectful towards elders. (Any two) (b) The doctor can trace and observe, the difference between the movement of an appropriate radio- isotope through a normal brain and a brain having tumor in it. [Note : Also accept any other appropriate explanation.] 24. Position of final image formed by the lens mirror combination 2 Ray diagram 1 Sort the concave mirror, the image, formed by the lens, acts as the object. Hence, $u = -(50 - 20) \text{ cm} = -30 \text{ cm}$ Als u is infinity, $v = 20 cmAls o, f = -10 cm\frac{1}{f} = \frac{1}{v} + \frac{1}{u}-\frac{1}{10} = \frac{1}{v} - \frac{1}{30}\therefore v = -15 \text{ cm}The final image is, therefore, at a distance of 15 cm to the left of the concavemirror(or at a distance of 35 cm to the right of the convex lens)$		Derivation 2		
when a unit current passes through it. Alternatively It is equal to the induced emf in the solenoid when the current, through the solenoid itself , changes at a unit rate. Energy stored $U = \int_0^1 Eidt$ Here $ E = L \frac{di}{dt}$ $U = \int_0^1 L \frac{di}{dt} \times idt = \int_0^1 Lidi$ $\therefore U = \frac{1}{2}L^2$ 23. (a) keen observer/ helpful/ concerned / responsible/ respectful towards elders. (Any two) (b) The doctor can trace and observe, the difference between the movement of an appropriate radio- isotope through a normal brain and a brain having tumor in it. [Note : Also accept any other appropriate explanation.] 24. Position of final image formed by the lens mirror combination 2 Ray diagram 1 Sort the concave mirror, the image, formed by the lens, acts as the object. Hence, $u = -(50 - 20) \text{ cm} = -30 \text{ cm}$ Als u is infinity, $v = 20 cmAls o, f = -10 cm\frac{1}{f} = \frac{1}{v} + \frac{1}{u}-\frac{1}{10} = \frac{1}{v} - \frac{1}{30}\therefore v = -15 \text{ cm}The final image is, therefore, at a distance of 15 cm to the left of the concavemirror(or at a distance of 35 cm to the right of the convex lens)$		Self inductance : It is equal to the magnetic flux linked with the solenoid		
Alternatively It is equal to the induced emf in the solenoid when the current, through the solenoid itself, changes at a unit rate. 1 Energy stored $U = \int_0^1 Eidt$ 1 U = $\int_0^1 Eidt$ 1 U = $\int_0^1 Lidt$ 1 U = $\int_0^1 Lidt$ 1 U = $\int_0^1 Lidt$ 1 U = $\frac{1}{2}L^2$ 3 23. Values displayed 2 (a) keen observer/ helpful/ concerned / responsible/ respectful towards elders. 1+1 (Any two) (b) The doctor can trace and observe, the difference between the movement of an appropriate radio- isotope through a normal brain and a brain having tumor in it. 1 (Note : Also accept any other appropriate explanation.] 3 24. Position of final image formed by the lens mirror combination 2 Ray diagram 1 1/2 As u is infinity, v = 20cm 1/2 For the lens 1/2 As u is infinity, v = 20cm 1/2 For the concave mirror, the image, formed by the lens, acts as the object. 1/2 Hence, u = $(50 - 20)$ cm = $-30cm$ 1/2 $\frac{1}{f} = \frac{1}{v} + \frac{1}{u}$ $-\frac{1}{10} = \frac{1}{v} - \frac{1}{30}$ 1/2 $v = -15cm$ <td< td=""><td></td><td></td><td></td><td></td></td<>				
solenoid itself , changes at a unit rate. Energy stored $U = \int_{0}^{1} Eidt$ Here $ E = L \frac{di}{dt}$ $U = \cdot U = \int_{0}^{1} L \frac{di}{dt} \times idt = \int_{0}^{1} Lidi$ $\therefore U = \frac{1}{4} L^{2}$ 23. Values displayed 2 Diagnosis 1 (a) keen observer/ helpful/ concerned / responsible/ respectful towards elders. (Any two) (b) The doctor can trace and observe, the difference between the movement of an appropriate radio- isotope through a normal brain and a brain having tumor in it. [Note : Also accept any other appropriate explanation.] 24. Position of final image formed by the lens mirror combination 2 Ray diagram 1 Strot the lens $\frac{1}{f} = \frac{1}{v} \cdot \frac{1}{u}$ As u is infinity, v = 20cm For the concave mirror, the image, formed by the lens, acts as the object. Hence, u = $(50 - 20) \text{ cm} = -30\text{ cm}$ $\frac{1}{f} = \frac{1}{v} + \frac{1}{u}$ $-\frac{1}{10} = \frac{1}{v} - \frac{1}{30}$ $\therefore v = -15\text{ cm}$ The final image is, therefore, at a distance of 35cm to the left of the concave mirror(or at a distance of 35cm to the right of the convex lens)				
$\frac{\text{Energy stored}}{U = \int_{0}^{1} bidt}$ Here $ E = L \frac{di}{dt}$ $U = \cdot U = \int_{0}^{1} L \frac{di}{dt} \times idt = \int_{0}^{1} Lidi$ $\therefore U = \frac{1}{2}LI^{2}$ 23. $\frac{\text{Values displayed}}{(a) \text{ keen observer/helpful/ concerned / responsible/ respectful towards elders.}$ (Any two) (b) The doctor can trace and observe, the difference between the movement of an appropriate radio- isotope through a normal brain and a brain having tumor in it. [Note : Also accept any other appropriate explanation.] 24. Position of final image formed by the lens mirror combination 2 Ray diagram As u is infinity, v = 20cm For the concave mirror, the image, formed by the lens, acts as the object. Hence, u = $(50 - 20) \text{ cm} = -30\text{ cm}$ $\frac{1}{f} = \frac{1}{v} - \frac{1}{30}$ $\therefore v = -15\text{ cm}$ The final image is, therefore, at a distance of 35cm to the left of the concave mirror(or at a distance of 35cm to the right of the convex lens) $\frac{1}{V_{2}}$ $\frac{1}{V_{3}}$ $\frac{1}{V_{4}}$ $\frac{1}{V_{5}}$ $\frac{1}{$		-		
$U = \int_{0}^{1} bidt$ Here $ E = L \frac{di}{dt}$ $U = \cdot U = \int_{0}^{1} L \frac{di}{dt} \times idt = \int_{0}^{1} Lidi$ $\therefore U = \frac{1}{2}Lt^{2}$ 23. $Values displayed 2 Diagnosis 1 (a) keen observer/ helpful/ concerned / responsible/ respectful towards elders. (Any two) (b) The doctor can trace and observe, the difference between the movement of an appropriate radio- isotope through a normal brain and a brain having tumor in it. [Note : Also accept any other appropriate explanation.] 3 24. Position of final image formed by the lens mirror combination 2 Ray diagram 1 424. Position of final image formed by the lens, acts as the object. Hence, u = \cdot (50 - 20) \text{ cm} = \cdot 30\text{ cm} As u is infinity, v = 20\text{ cm} For the concave mirror, the image, formed by the lens, acts as the object. Hence, u = \cdot (50 - 20) \text{ cm} = \cdot 30\text{ cm} Also, f = -10\text{ cm} \frac{1}{f} = \frac{1}{v} + \frac{1}{u} -\frac{1}{10} = \frac{1}{v} - \frac{1}{30} \therefore v = -15\text{ cm} The final image is, therefore, at a distance of 15cm to the left of the concave mirror(or at a distance of 35cm to the right of the convex lens)$		•	1	
Here $ \mathbf{E} = L \frac{di}{dt}$ $U = \therefore U = \int_0^1 L \frac{di}{dt} \times idt = \int_0^1 Lidi$ $\therefore U = \frac{1}{2}LI^2$ 23. 23. 23. 23. 23. 23. 23. 23.			1/2	
Here $ \mathbf{E} = L \frac{\mathbf{a}}{dt}$ $U = \land U = \int_0^1 L \frac{d}{dt} \times idt = \int_0^1 Lidi$ $\land U = \frac{1}{2} Ll^2$ 23. 23. 23. 23. 23. 23. 23. 23.				
$\therefore U = \frac{1}{2}Lf^2$ 323.Values displayed Diagnosis2 1(a) keen observer/ helpful/ concerned / responsible/ respectful towards elders. (Any two) (b) The doctor can trace and observe, the difference between the movement of an appropriate radio- isotope through a normal brain and a brain having tumor in it. [Note : Also accept any other appropriate explanation.]1+124.Position of final image formed by the lens mirror combination $\frac{1}{f} = \frac{1}{v} - \frac{1}{u}$ As u is infinity, v = 20cm Also, $f = -10cm$ 1/224.For the lens $\frac{1}{f} = \frac{1}{v} - \frac{1}{u}$ As u is infinity, v = 20cm Also, $f = -10cm$ 1/2 $\frac{1}{f} = \frac{1}{v} + \frac{1}{u}$ $\frac{-\frac{1}{10} = \frac{1}{v} - \frac{1}{30}}{\therefore v = -15cm}$ 1/2The final image is, therefore, at a distance of 15cm to the left of the concave mirror(or at a distance of 35cm to the right of the convex lens)1/2		Here $ \mathbf{E} = L \frac{dt}{dt}$	-	
$\therefore U = \frac{1}{2}Lf^2$ 323.Values displayed Diagnosis2 1(a) keen observer/ helpful/ concerned / responsible/ respectful towards elders. (Any two) (b) The doctor can trace and observe, the difference between the movement of an appropriate radio- isotope through a normal brain and a brain having tumor in it. [Note : Also accept any other appropriate explanation.]1+124.Position of final image formed by the lens mirror combination $\frac{1}{f} = \frac{1}{v} - \frac{1}{u}$ As u is infinity, v = 20cm Also, $f = -10cm$ 1/224.For the lens $\frac{1}{f} = \frac{1}{v} - \frac{1}{u}$ As u is infinity, v = 20cm Also, $f = -10cm$ 1/2 $\frac{1}{f} = \frac{1}{v} + \frac{1}{u}$ $\frac{-\frac{1}{10} = \frac{1}{v} - \frac{1}{30}}{\therefore v = -15cm}$ 1/2The final image is, therefore, at a distance of 15cm to the left of the concave mirror(or at a distance of 35cm to the right of the convex lens)1/2		$U = : U = \int_{0}^{1} L \frac{di}{dt} \times i dt = \int_{0}^{1} L i dt$	1⁄2	
23. $ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$				3
Values displayed Diagnosis2 1(a) keen observer/ helpful/ concerned / responsible/ respectful towards elders. (Any two) (b) The doctor can trace and observe, the difference between the movement of an appropriate radio- isotope through a normal brain and a brain having tumor in it. [Note : Also accept any other appropriate explanation.]1+124.Position of final image formed by the lens mirror combination $\frac{2}{f} = \frac{1}{v} - \frac{1}{u}$ As u is infinity, v = 20cm As u is infinity, v = 20cm For the concave mirror, the image, formed by the lens, acts as the object. Hence, u = - (50 - 20) cm = -30cm Also, f = -10cm1/2 $\frac{1}{f} = \frac{1}{v} - \frac{1}{30}$ $\therefore v = -15cm$ 1/2The final image is, therefore, at a distance of 15cm to the left of the concave mirror(or at a distance of 35cm to the right of the convex lens)1/2	23			
Diagnosis1(a) keen observer/ helpful/ concerned / responsible/ respectful towards elders. (Any two) (b) The doctor can trace and observe, the difference between the movement of an appropriate radio- isotope through a normal brain and a brain having tumor in it. [Note : Also accept any other appropriate explanation.]1+124.Position of final image formed by the lens mirror combination $\frac{1}{f} = \frac{1}{v} - \frac{1}{u}$ As u is infinity, v = 20cm324.Position of final image formed by the lens mirror combination $\frac{1}{f} = \frac{1}{v} - \frac{1}{u}$ As u is infinity, v = 20cm $\frac{1}{2}$ $\frac{1}{f} = \frac{1}{v} - \frac{1}{u}$ As u is infinity, v = 20cm24.For the concave mirror, the image, formed by the lens, acts as the object. Hence, u = - (50 - 20) cm = -30cm Also, $f = -10cm$ $\frac{1}{2}$ $\frac{1}{f} = \frac{1}{v} + \frac{1}{u}$ $-\frac{1}{10} = \frac{1}{v} - \frac{1}{30}$ $\therefore v = -15cm$ $\frac{1}{2}$	23.	Values displayed 2		
(Any two) (b) The doctor can trace and observe, the difference between the movement of an appropriate radio- isotope through a normal brain and a brain having tumor in it. [Note : Also accept any other appropriate explanation.] 3 24. Position of final image formed by the lens mirror combination 2 Ray diagram 1 For the lens $\frac{1}{f} = \frac{1}{v} - \frac{1}{u}$ As u is infinity, v = 20cm 1/2 For the concave mirror, the image, formed by the lens, acts as the object. Hence, u = - (50 - 20) cm = -30cm Also, f = -10cm 1/2 $\frac{1}{f} = \frac{1}{v} + \frac{1}{u}$ $-\frac{1}{10} = \frac{1}{v} - \frac{1}{30}$ $\therefore v = -15cm$ 1/2 The final image is, therefore, at a distance of 15cm to the left of the concave mirror(or at a distance of 35cm to the right of the convex lens) 1/2				
(Any two) (b) The doctor can trace and observe, the difference between the movement of an appropriate radio- isotope through a normal brain and a brain having tumor in it. [Note : Also accept any other appropriate explanation.] 3 24. Position of final image formed by the lens mirror combination 2 Ray diagram 1 For the lens $\frac{1}{f} = \frac{1}{v} - \frac{1}{u}$ As u is infinity, v = 20cm 1/2 For the concave mirror, the image, formed by the lens, acts as the object. Hence, u = - (50 - 20) cm = -30cm Also, f = -10cm 1/2 $\frac{1}{f} = \frac{1}{v} + \frac{1}{u}$ $-\frac{1}{10} = \frac{1}{v} - \frac{1}{30}$ $\therefore v = -15cm$ 1/2 The final image is, therefore, at a distance of 15cm to the left of the concave mirror(or at a distance of 35cm to the right of the convex lens) 1/2				
(Any two) (b) The doctor can trace and observe, the difference between the movement of an appropriate radio- isotope through a normal brain and a brain having tumor in it. [Note : Also accept any other appropriate explanation.] 3 24. Position of final image formed by the lens mirror combination 2 Ray diagram 1 For the lens $\frac{1}{f} = \frac{1}{v} - \frac{1}{u}$ As u is infinity, v = 20cm 1/2 For the concave mirror, the image, formed by the lens, acts as the object. Hence, u = - (50 - 20) cm = -30cm Also, f = -10cm 1/2 $\frac{1}{f} = \frac{1}{v} + \frac{1}{u}$ $-\frac{1}{10} = \frac{1}{v} - \frac{1}{30}$ $\therefore v = -15cm$ 1/2 The final image is, therefore, at a distance of 15cm to the left of the concave mirror(or at a distance of 35cm to the right of the convex lens) 1/2		(a) keen ahaamaan halmful oon aamad / raan angihla / raan aatful tawanda aldara	1 - 1	
(b) The doctor can trace and observe, the difference between the movement of an appropriate radio- isotope through a normal brain and a brain having tumor in it. [Note : Also accept any other appropriate explanation.] 1 24. Position of final image formed by the lens mirror combination 2 Ray diagram 1 For the lens $\frac{1}{f} = \frac{1}{v} - \frac{1}{u}$ As u is infinity, v = 20cm 1/2 For the concave mirror, the image, formed by the lens, acts as the object. Hence, u = -(50 - 20) cm = -30cm Also, f = -10cm 1/2 $\frac{1}{f} = \frac{1}{v} + \frac{1}{u}$ $-\frac{1}{10} = \frac{1}{v} - \frac{1}{30}$ $\therefore v = -15cm$ The final image is, therefore, at a distance of 15cm to the left of the concave mirror(or at a distance of 35cm to the right of the convex lens) 1 $\frac{1}{10} = \frac{1}{v} + \frac{1}{v}$			1+1	
of an appropriate radio- isotope through a normal brain and a brain having tumor in it. [Note : Also accept any other appropriate explanation.] 3 24. Position of final image formed by the lens mirror combination 2 Ray diagram 1 For the lens $\frac{1}{f} = \frac{1}{v} - \frac{1}{u}$ As u is infinity, v = 20cm For the concave mirror, the image, formed by the lens, acts as the object. Hence, u = - (50 - 20) cm = -30cm Also, f = -10cm $\frac{1}{f} = \frac{1}{v} + \frac{1}{u}$ $-\frac{1}{10} = \frac{1}{v} - \frac{1}{30}$ $\therefore v = -15cm$ The final image is, therefore, at a distance of 15cm to the left of the concave mirror(or at a distance of 35cm to the right of the convex lens) $\frac{1}{v}$				
[Note : Also accept any other appropriate explanation.] 3 24. Position of final image formed by the lens mirror combination 2 Ray diagram 1 For the lens $\frac{1}{f} = \frac{1}{v} - \frac{1}{u}$ As u is infinity, $v = 20$ cm For the concave mirror, the image, formed by the lens, acts as the object. Hence, $u = -(50 - 20)$ cm = -30 cm Also, $f = -10$ cm $\frac{1}{f} = \frac{1}{v} + \frac{1}{u}$ $-\frac{1}{10} = \frac{1}{v} - \frac{1}{30}$ $\therefore v = -15$ cm The final image is, therefore, at a distance of 15 cm to the left of the concave mirror(or at a distance of 35 cm to the right of the convex lens)			1	
24. Position of final image formed by the lens mirror combination 2 Ray diagram 1 For the lens $\frac{1}{f} = \frac{1}{v} - \frac{1}{u}$ As u is infinity, v = 20cm For the concave mirror, the image, formed by the lens, acts as the object. Hence, u = - (50 - 20) cm = -30cm Also, f = -10cm $\frac{1}{f} = \frac{1}{v} + \frac{1}{u}$ $-\frac{1}{10} = \frac{1}{v} - \frac{1}{30}$ $\therefore v = -15cm$ The final image is, therefore, at a distance of 15cm to the left of the concave mirror(or at a distance of 35cm to the right of the convex lens)				
Position of final image formed by the lens mirror combination 2 Ray diagram 1 For the lens $\frac{1}{f} = \frac{1}{v} - \frac{1}{u}$ As u is infinity, $v = 20$ cm 1/2 For the concave mirror, the image, formed by the lens, acts as the object. Hence, $u = -(50 - 20)$ cm $= -30$ cm Also, $f = -10$ cm 1/2 $\frac{1}{f} = \frac{1}{v} + \frac{1}{u}$ $-\frac{1}{10} = \frac{1}{v} - \frac{1}{30}$ $\therefore v = -15$ cm 1/2 The final image is, therefore, at a distance of 15cm to the left of the concave mirror(or at a distance of 35cm to the right of the convex lens) 1/2		[Note : Also accept any other appropriate explanation.]		3
Position of final image formed by the lens mirror combination 2 Ray diagram 1 For the lens $\frac{1}{f} = \frac{1}{v} - \frac{1}{u}$ As u is infinity, $v = 20$ cm 1/2 For the concave mirror, the image, formed by the lens, acts as the object. Hence, $u = -(50 - 20)$ cm $= -30$ cm Also, $f = -10$ cm 1/2 $\frac{1}{f} = \frac{1}{v} + \frac{1}{u}$ $-\frac{1}{10} = \frac{1}{v} - \frac{1}{30}$ $\therefore v = -15$ cm 1/2 The final image is, therefore, at a distance of 15cm to the left of the concave mirror(or at a distance of 35cm to the right of the convex lens) 1/2	24.			
For the lens $\frac{1}{f} = \frac{1}{v} - \frac{1}{u}$ As u is infinity, v = 20cm For the concave mirror, the image, formed by the lens, acts as the object. Hence, u = - (50 - 20) cm = -30cm Also, f = -10cm $\frac{1}{f} = \frac{1}{v} + \frac{1}{u}$ $-\frac{1}{10} = \frac{1}{v} - \frac{1}{30}$ $\therefore v = -15cm$ The final image is, therefore, at a distance of 15cm to the left of the concave mirror(or at a distance of 35cm to the right of the convex lens)				
$\frac{1}{f} = \frac{1}{v} - \frac{1}{u}$ As u is infinity, $v = 20$ cm For the concave mirror, the image, formed by the lens, acts as the object. Hence, $u = -(50 - 20)$ cm $= -30$ cm Also, $f = -10$ cm $\frac{1}{f} = \frac{1}{v} + \frac{1}{u}$ $-\frac{1}{10} = \frac{1}{v} - \frac{1}{30}$ $\therefore v = -15$ cm The final image is, therefore, at a distance of 15cm to the left of the concave mirror(or at a distance of 35cm to the right of the convex lens) $\frac{1}{2}$		Ray diagram 1		
$\frac{1}{f} = \frac{1}{v} - \frac{1}{u}$ As u is infinity, $v = 20$ cm For the concave mirror, the image, formed by the lens, acts as the object. Hence, $u = -(50 - 20)$ cm $= -30$ cm Also, $f = -10$ cm $\frac{1}{f} = \frac{1}{v} + \frac{1}{u}$ $-\frac{1}{10} = \frac{1}{v} - \frac{1}{30}$ $\therefore v = -15$ cm The final image is, therefore, at a distance of 15cm to the left of the concave mirror(or at a distance of 35cm to the right of the convex lens) $\frac{1}{2}$				
$\frac{f}{f} = \frac{v}{v} - \frac{u}{u}$ As u is infinity, $v = 20$ cm For the concave mirror, the image, formed by the lens, acts as the object. Hence, $u = -(50 - 20)$ cm = -30 cm Also, $f = -10$ cm $\frac{1}{f} = \frac{1}{v} + \frac{1}{u}$ $-\frac{1}{10} = \frac{1}{v} - \frac{1}{30}$ $\therefore v = -15$ cm The final image is, therefore, at a distance of 15 cm to the left of the concave mirror(or at a distance of 35 cm to the right of the convex lens) $\frac{1}{2}$			1/2	
As u is infinity, $v = 20 \text{ cm}$ For the concave mirror, the image, formed by the lens, acts as the object. Hence, $u = -(50 - 20) \text{ cm} = -30 \text{ cm}$ Also, $f = -10 \text{ cm}$ $\frac{1}{f} = \frac{1}{v} + \frac{1}{u}$ $-\frac{1}{10} = \frac{1}{v} - \frac{1}{30}$ $\therefore v = -15 \text{ cm}$ The final image is, therefore, at a distance of 15cm to the left of the concave mirror(or at a distance of 35cm to the right of the convex lens)		$\frac{1}{f} = \frac{1}{n} - \frac{1}{n}$	72	
For the concave mirror, the image, formed by the lens, acts as the object. Hence, $u = -(50 - 20) \text{ cm} = -30 \text{ cm}$ Also, $f = -10 \text{ cm}$ $\frac{1}{f} = \frac{1}{v} + \frac{1}{u}$ $-\frac{1}{10} = \frac{1}{v} - \frac{1}{30}$ $\therefore v = -15 \text{ cm}$ The final image is, therefore, at a distance of 15cm to the left of the concave mirror(or at a distance of 35cm to the right of the convex lens)			1⁄2	
Also, $f = -10$ cm $\frac{1}{f} = \frac{1}{v} + \frac{1}{u}$ $-\frac{1}{10} = \frac{1}{v} - \frac{1}{30}$ $\therefore v = -15$ cm The final image is, therefore, at a distance of 15cm to the left of the concave mirror(or at a distance of 35cm to the right of the convex lens)				
$\frac{1}{f} = \frac{1}{v} + \frac{1}{u}$ $-\frac{1}{10} = \frac{1}{v} - \frac{1}{30}$ $\therefore v = -15 \text{ cm}$ The final image is, therefore, at a distance of 15 cm to the left of the concave mirror(or at a distance of 35 cm to the right of the convex lens) $\frac{1}{2}$				
$-\frac{1}{10} = \frac{1}{v} - \frac{1}{30}$ $\therefore v = -15 \text{ cm}$ The final image is, therefore, at a distance of 15 cm to the left of the concave mirror(or at a distance of 35 cm to the right of the convex lens)			14	
$-\frac{1}{10} = \frac{1}{v} - \frac{1}{30}$ $\therefore v = -15 \text{ cm}$ The final image is, therefore, at a distance of 15 cm to the left of the concave mirror(or at a distance of 35 cm to the right of the convex lens)		$\frac{1}{-1} = \frac{1}{-1} + \frac{1}{-1}$	72	
$\therefore v = -15 \text{cm}$ The final image is, therefore, at a distance of 15cm to the left of the concave mirror(or at a distance of 35cm to the right of the convex lens)				
$\therefore v = -15 \text{cm}$ The final image is, therefore, at a distance of 15cm to the left of the concave mirror(or at a distance of 35cm to the right of the convex lens)		$-\frac{1}{10} = \frac{1}{n} - \frac{1}{20}$		
mirror(or at a distance of 35cm to the right of the convex lens)				
mirror(or at a distance of 35cm to the right of the convex lens)			1⁄2	
Outside Delhi SET II Page 10 of 19 Final Draft 11/3/2014 3:15 p.m.				
Outside Delhi SET II Page 10 of 19 Final Draft 11/3/2014 3:15 p.m.				
		Outside Delhi SET II Page 10 of 19 Final Draft 11/3/2014 3	3:15 p.m.	





Outside Delhi SET II Page 15 of 19

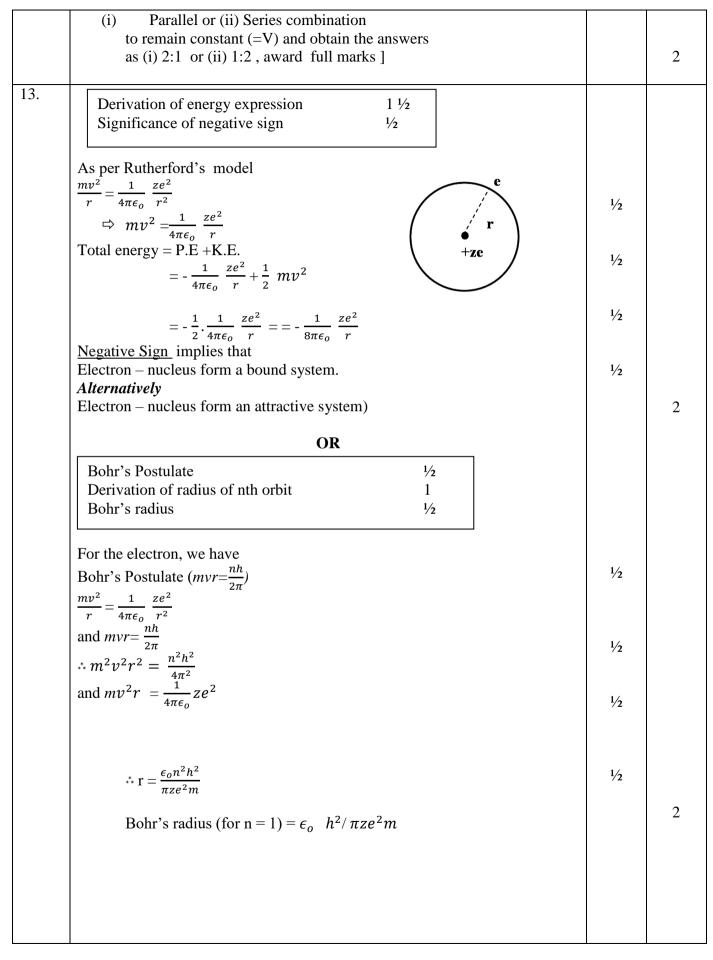
Outside Delhi SET II Page 16 of 19

the torque acting on the dipole, is given by $\vec{\tau} = \vec{p} \times \vec{E}$	1⁄2	
(b) As per Guass's Theorem Electric Flux = $\oint_{S} \vec{E} \cdot \vec{dS} = \frac{q_{enclosed}}{\epsilon_{o}}$ \therefore For sphere S ₁ , flux enclosed = $\phi_{1} = \frac{2Q}{\epsilon_{o}}$	1/2	
For sphere S ₂ , flux enclosed = $\phi_2 = \frac{\sum_{i=0}^{2Q} + 4Q}{\epsilon_o} = \frac{6Q}{\epsilon_o}$	1/2	
$\therefore \frac{\phi_1}{\phi_2} = \frac{1}{3}$ When a medium of dielectric consistent \in_r is introduced in sphere S ₁ the flux	1/2	
through S ₁ would be $\phi'_1 = \frac{2Q}{\epsilon_r}$	1	
[Also award this mark if the student writes $\phi_1 = \frac{2Q}{\epsilon_{o \in r}}$]		
[Note : If the student just writes that the flux through S_1 decreases, award $\frac{1}{2}$ mark only.]		5
30.(a) Formation of bright and dark fringes1Obtaining the expression for fringe width3(b) Finding the ratio1		
(a) The light rays from the two (coherent) slits, reaching a point 'P' on the screen, have a path difference ($S_2P - S_1P$). The point 'P' would, therefore be a i. Point of maxima(bright fringe), if $S_2P - S_1P = n\lambda$.	ı 1⁄2	
ii. Point of minima (dark fringe), if S ₂ P –S ₁ P= $(2n+1)\frac{\lambda}{2}$	1/2	
G = G = G $G = G$	1/2	
G'		
(b)		
We have		
$(S_2P)^2 - (S_1P)^2 = \left\{ D^2 - \left(x + \frac{d}{2}\right)^2 \right\} - \left\{ D^2 + \left(x - \frac{d}{2}\right)^2 \right\}$ = 2xd		
$= 2xd$ $S_2P - S_1P = \frac{2xd}{S_2P + S_1P} \approx \frac{2xd}{2D} = \frac{xd}{D}$ $\therefore We have maxima at points, where$	1⁄2	
Outside DelhiSET IIPage 17 of 19Final Draft 11/3/2014	3:15 p.m.	

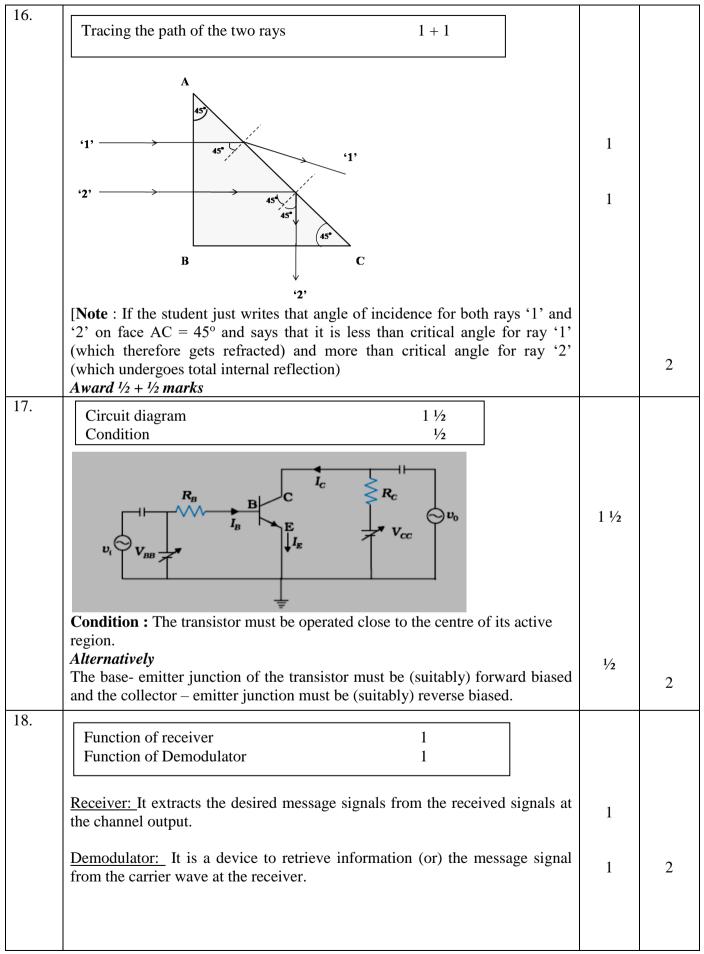
Outside Delhi SET II Page 18 of 19

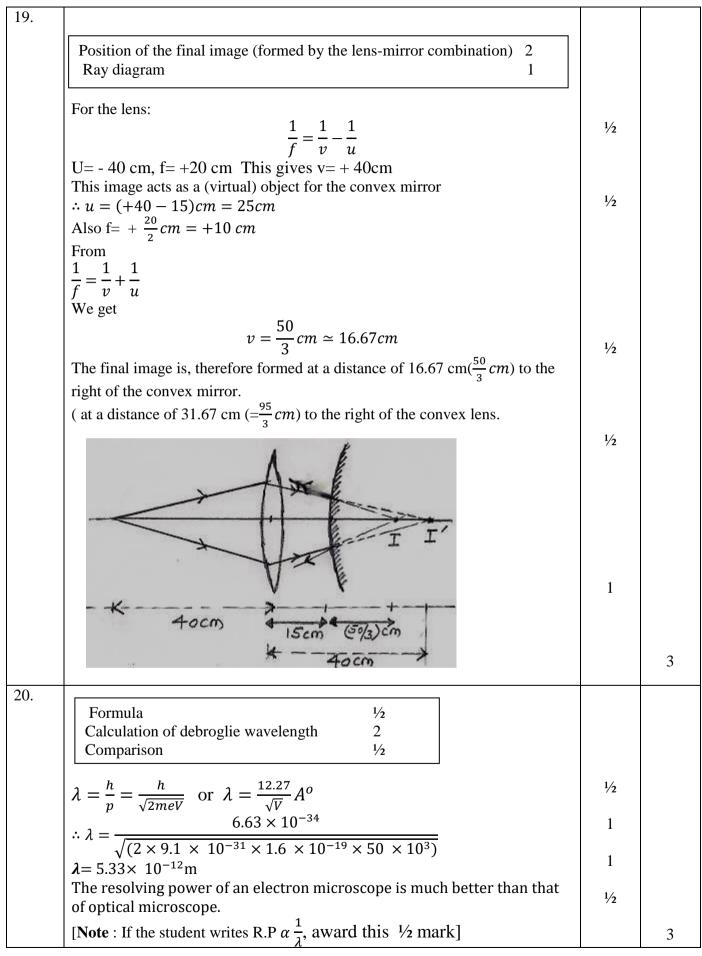
 diffraction pattern on the screen.		
The path difference between two points M_1 , M_2 in the slit plane, seperated		
by a distance 'y', is $y\theta$.		
At the central point, 'C', on the screen, ' θ' is zero.	1/2	
All parts of the slit contribute in phase	/2	
Hence 'C' is a maximum.		
At all points where ' $\theta' \cong (n + \frac{1}{2})\frac{\lambda}{a}$, we get (secondary) maxima of varying	1/2	
intensity. This is because of the non-zero contribution of a (decreasing)part of	/2	
the slit at these points.		
At all points where $\theta \approx \frac{n\lambda}{a}$, we get minima.		
This is because of a net (almost) zero contribution of the whole slit at these	1⁄2	
points.		
Note : Please also accept alternative correct diagram with appopriate		
explanation.]		
(b) Angular width of the secondary maxima $\approx 2(2n+1)\frac{\lambda}{a}$	1⁄2	
$\therefore \text{ Linear width} = [(2n+1)\frac{\lambda}{a}] \text{ D}$		
a		
\therefore Linear seperation, between the first maxima (n=1) of the two	1/2	
wavelengths, on the screen, is		
$\frac{3(\lambda_2 - \lambda_1)}{\alpha} \times D$		
u		
: Separation = $\frac{3(596-590)\times10^{-9}}{2\times10^{-6}} \times 1.5m$		
$\therefore \text{ Seperation} = \frac{2 \times 10^{-6}}{2 \times 10^{-6}} \times 1.5 \text{ m}$		
	1	5
$= 13.5 \text{ x} \times 10^{-3} \text{m} (= 13.5 \text{ mm})$		

MARKING SCHEME SET 55/3

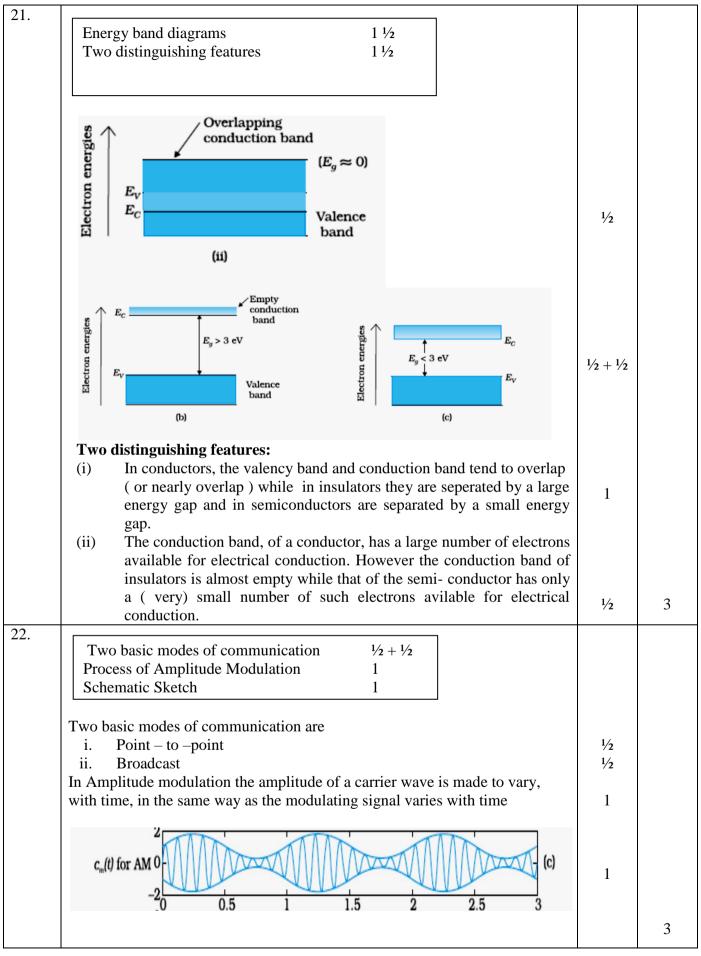

SET 55/3 Q. Expected Answer / Value Points Marks Total			
Q. No.	Expected Answer / Value Points		Total Marks
1.	Anticlockwise	1	1
2.	Metal A The minimum frequency, at which photoemission starts, is more for metal A Alternatively: Work function of A is more.	1/2 1/2	1
3.	Alternatively: Work function of A is more. Definition : One ampere is the value of steady current which when maintained in each of the two very long, straight, parallel conductors of negligible cross section and placed one metre apart in vaccum, would produce on each of these conductors a force equal of 2×10^{-7} N/m of its length. Alternatively If the student writes $F = \frac{\mu_0}{2\pi} \frac{l_1 l_2}{R} L$ and says that when $I_1 = I_2 = 1$ ampere R= 1 meter and L = 1 meter, then F= 2×10^{-7} N Award full 1 mark Alternatively If the student draws any one of the two diagram, as shown, $F = 2 \times 10^{-7}$ N 1 ampere 1 ampere 1 ampere 1 ampere	1	
	Award full 1 mark		1
4.	As a diverging lens Light rays diverge on going from a rarer to a denser medium. [<i>Alternatively</i> Also accept the reason given on the basis of lens marker's formula.]		1
5.	At the point of intersection of the two field lines, there will be two directions for the electric field. This is not acceptable.		1
6.	Short radio waves (or) microwaves	1	1

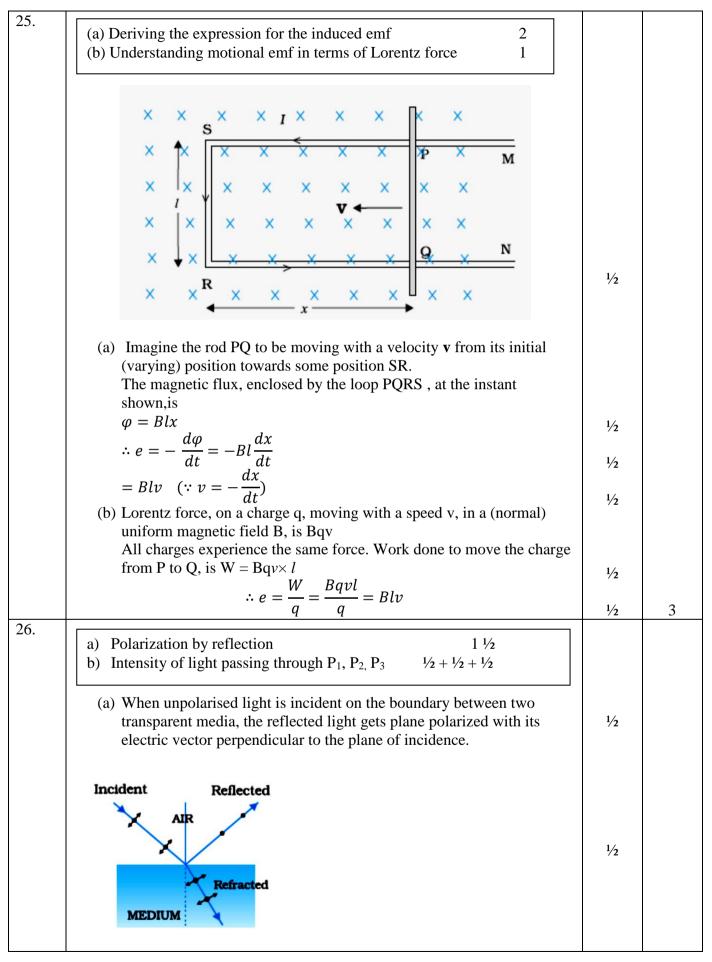
Final Draft 11/3/2014 3:30 p.m.


7.	Neutrinos are neutral (chargeless), (almost) massless particles that hardly	1	
	interact with matter.		
	<i>Alternatively</i> The neutrinos can penetrate large quantity of matter without any interaction		
	OR		
	Neutrinos are chargeless and (almost) massless particles.		1
8.	Any two of the following (or any other correct) reasons :		1
	i. AC can be transmitted with much lower energy losses as compared to		
	DC		
	ii. AC voltage can be adjusted (stepped up or stepped down) as per		
	requirement.		
	iii. AC current in a circuit can be controlled using (almost) wattless	$\frac{1}{2} + \frac{1}{2}$	
	devices like the choke coil.		
	iv. AC is easier to generate.		1
9.	Statement of Ampere's circuital law ¹ / ₂		
	Showing inconsistency during the process of charging 1		
	Displacement Current ¹ /2		
	According to		
	Ampere's circuital Law	1/2	
	$\oint \vec{B} d\vec{l} = \mu_0 I$, 2	
	$\varphi Dut = \mu_0 T$		
	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $		
	c c c	1/	
	(a) (b) (c)	1⁄2	
	Applying ampere's circuital law to fig (a) we see that, during charging, the		
	right hand side in Ampere's circuital law equals $\mu_0 I$		
	However on applying it to the surfaces of the fig (b) or fig (c), the right hand		
	side is zero.	1/2	
	Hence, there is a contradiction.		
	We can remove the contradiction by assuming that there exists a current		
	(associated with the changing electric field during charging), known as the		
	displacement current.	1⁄2	
	When this current $\left(=\frac{d\phi_E}{dt}\right)$ is added on the right hand side, Ampere's circuital		
	law, the inconsisitency disappears.		
	It was, therefore necessary, to generalize the Ampere's circuital law, as		
	$\oint \vec{B} d\vec{l} = \mu_0 I_c + \mu_0 \in_o \frac{d\phi_E}{dt}$		
	[Note : If the student does the reasoning by using the (detailed) mathematics,		2
	relevant to displacement current, award full 2 marks]		2


10.			
10.	Formula1/2Calculation of drift velocity1 1/2		
	$I = AneV_d$	1⁄2	
	$V_d = \frac{2.7}{2.5 \times 10^{-7} \times 1.6 \times 10^{-19} \times 9 \times 10^{28}}$	1/2	
	$= 7.5 \text{ X } 10^{-4} \text{m/s}$	1	2
11.	Relation between V and I $\frac{1}{2}$ Graph $\frac{1}{2}$ Determination of emf and internal resistance $\frac{1}{2} + \frac{1}{2}$		
	The relation between V and I is V = E - Ir Hence, the graph, between V and I, has the form shown below.	1/2	
		72	
	\mathbf{v}	1⁄2	
	$\begin{array}{ccc} \mathbf{O} & \longrightarrow & \mathbf{B} \\ \text{For point A, I=0, Hence, V}_{A} = \mathbf{E} \end{array}$		
	For point B, V=0, Hence, E=I _B r Therefore, $r = \frac{E}{I_B}$	1/2	
	<u>Alternatively:</u> emf (E) equals the intercept on the vertical axis. Internal resistance (r) equals the negative of the slope of the graph.	1⁄2	2
12.	Formula for energy stored1/2New value of capacitance1/2Calculation of ratio1		
	Energy stored in a capacitor $=\frac{1}{2}QV = \frac{1}{2}CV^2 = \frac{1}{2}\frac{Q^2}{C}$ (any one)	1⁄2	
	Capacitance of the (parallel) combination = $C+C=2C$ Here, total charge, Q, remains the same	1⁄2	
	$\therefore \text{ initial energy} = \frac{1}{2} \frac{Q^2}{c}$ And final energy = $\frac{1}{2} \frac{Q^2}{2c}$	1⁄2	
	$\therefore \frac{final energy}{initial energy} = \frac{1}{2}$	1⁄2	
	[Note : If the student does the correct calculations by assuming the voltage across the		
	utside Delhi SET III Page 3 of 18 Final Draft 11/3/2014 3:3	0	

Outside Delhi SET III Page 3 of 18 Final Draft 11/3/2014 3:30 p.m.

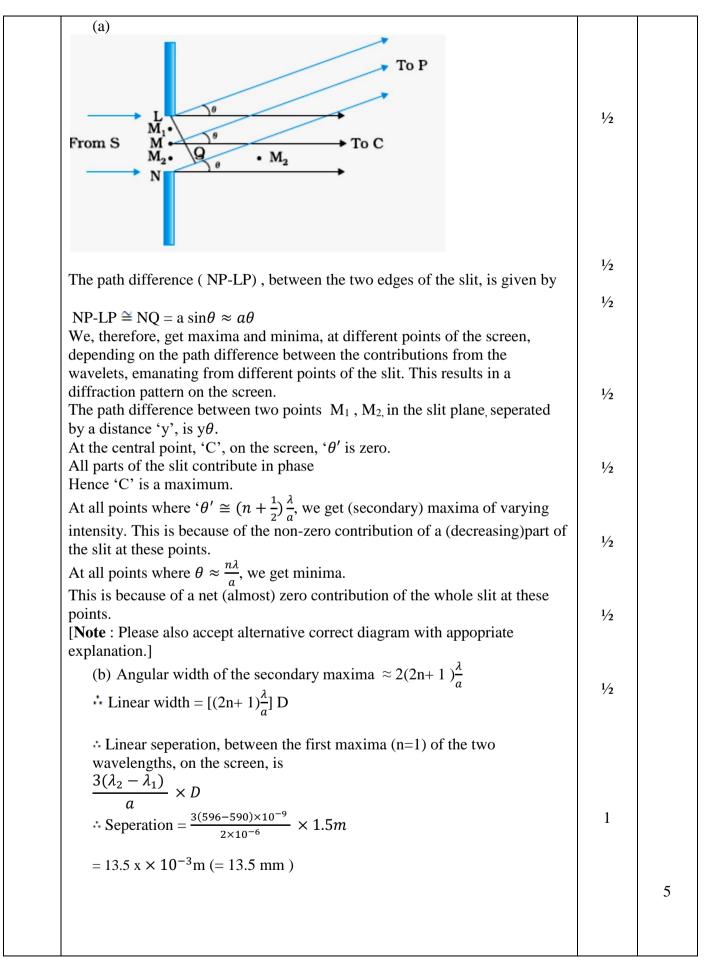

Diagrams Explanations	$\frac{1/2}{1/2} + \frac{1/2}{1/2}$			
<i>++</i> + <i>+</i> + + <i>+</i> + + <i>+</i> + + + +	\\ † <i>1</i> [1⁄2	
			1⁄2	
	tends to move from weake ence increases the number of			
[<i>Alternatively:</i> A parama direction of the field.]	a <u>gnetic</u> material, dipole mon	ents are induced in t	the	
magnetic field and hence passing through it.	ends to move from stronger to e, decreases the number of <u>netic</u> material, dipole momen	lines of magnetic field		
_	st writes that a paramagnet			
	< X < ε) and a diamagnetic 0), award the $\frac{1}{2}$ mark for			
susceptibility (-1 \leq X <				
susceptibility (-1≤ X < question.]	0), award the ½ mark for 1 1 Transformer	the second part of t		
susceptibility (-1≤ X < question.] Circuit diagram Working Primary	0), award the ½ mark for 1 1 Transformer	the second part of the second p	the 1	
susceptibility $(-1 \le X < question.]$ Circuit diagram Working Primary Working: During one half of the initial flows through R _L .	0), award the ¹ / ₂ mark for 1 1 Transformer Secondar put AC, the diode is forward	the second part of the second p	the1	
susceptibility $(-1 \le X < question.]$ Circuit diagram Working Primary Primary Morking: During one half of the information of the informatio	0), award the ¹ / ₂ mark for 1 1 Transformer Secondar Secondar put AC, the diode is forward the input AC, the diode is rev load R _L .	the second part of the second p	the 1	

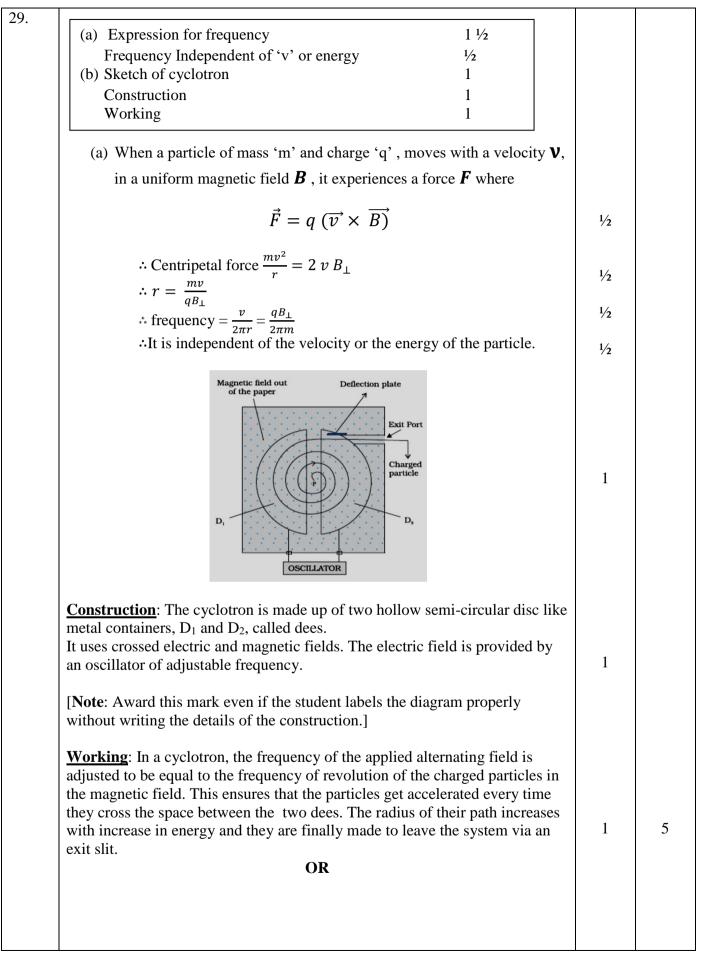

Outside Delhi SET III Page 7 of 18

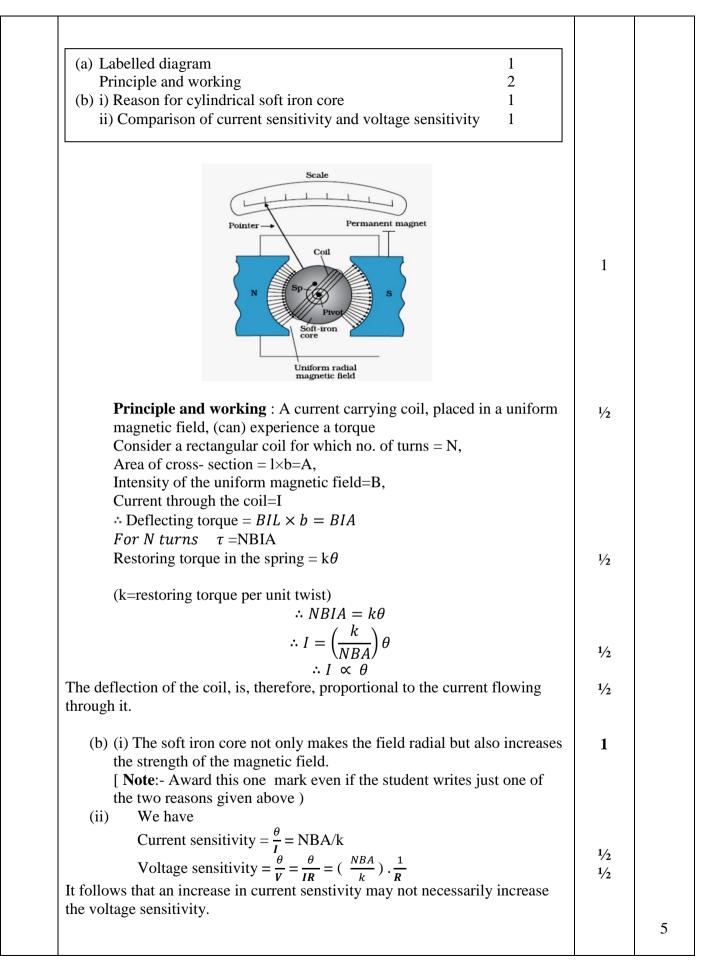
Final Draft 11/3/2014 3:30 p.m.

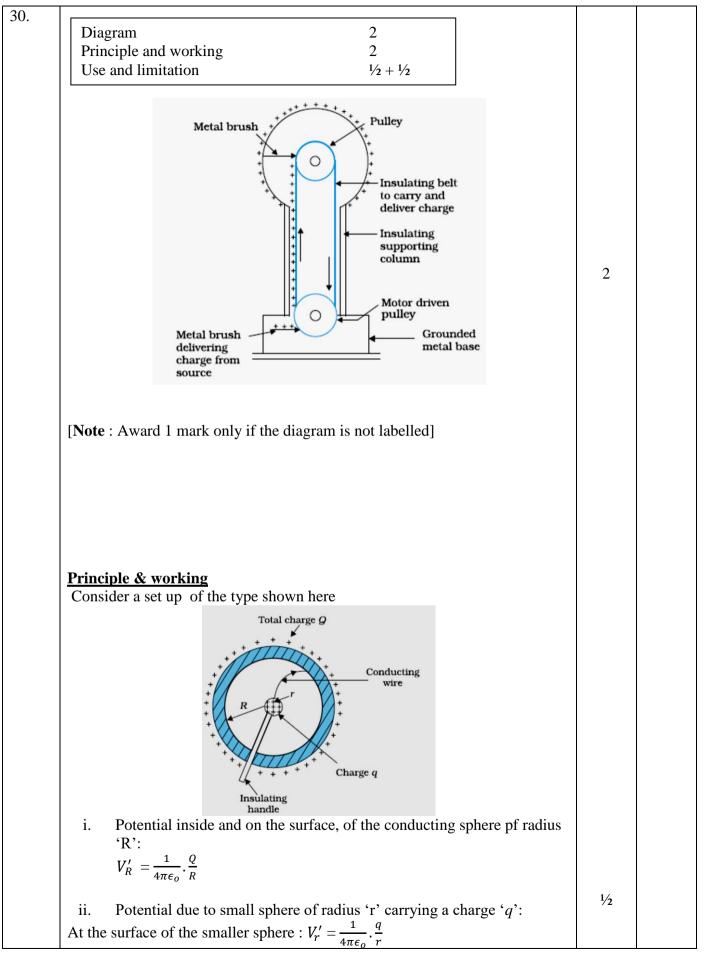
23.	1 1	
Answers to each of the three parts $1+1+1=3$		
 a) This is to ensure that the connections do not contribute any extra, unknown, resistances in the circuit. b) This is done to minimize the percentage error in the value of the unknown resistance. [<i>Alternatively:</i> This is done to have a better " balancing out" of the effects of any irregularity or non-uniformity in the metre bridge wire. 	1	
Or This can help in increasing the sensitivity of the metre bridge circuit.]	1	
 c) Manganian / constantan /Nichrome This material has a low temperature (any one) of coefficient of resistance/ high reisistivity. 	1/2 + 1/2	3
OR		
Calculation of total resistance of the circuit1Calculation of total current drawn from the voltage Source1/2Calculation of current through R1Calculation of potential drop acrossR1/2		
$R_{total} = \frac{R_o}{2} + \frac{\frac{R_o}{2} \cdot R}{\frac{R_o}{2} + R}$ $= \frac{R(R_o + 4R)}{2(R_o + 2R)}$	1⁄2	
$I_{(total)} = \frac{1}{R_{total}}$	1⁄2	
Current through $R = I_2 = I_{\text{total}} \times \frac{\frac{R_0}{2}}{\frac{R_0}{2} + R}$	1⁄2	
Current through R = I ₂ = I _{total} x $\frac{\frac{R_o}{2}}{\frac{R_o}{2} + R}$ = I _{total} x $\frac{R_o}{\frac{R_o}{2} + R}$ = $\frac{V.2(R_o + 2R)}{R(R_o + 4R)}$ x $\frac{R_o}{R_o + 2R}$	1⁄2	
$=\frac{2VR_o}{R(R_o+4R)}$	1⁄2	
Voltage across $R = I_2 R = (\frac{2VR_o}{R_o + 4R})$	1⁄2	3
Values displayed2Diagnosis1		
 (a) keen observer/ helpful/ concerned / responsible/ respectful towards elders. (Any two) 	1+1	
(b) The doctor can trace and observe, the difference between the movement of an appropriate radio- isotope through a normal brain and a brain having tumor in it.	1	
[Note : Also accept any other appropriate explanation.]		3

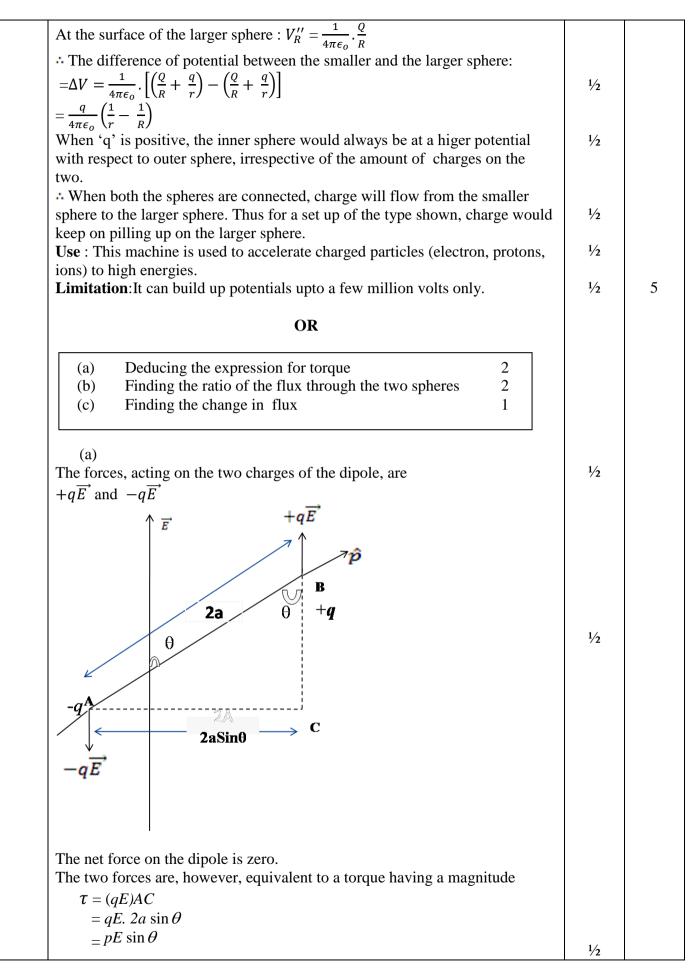
Outside Delhi SET III Page 9 of 18




Final Draft 11/3/2014 3:30 p.m.


	The polarization is complete when the reflected and refracted rays are at right angles to each other. This condition occurs for an angle of incidence, i_p , where tan $i_p = \mu$	1/2	
	[Note : Award this 1 mark even if the student writes about Brewster's law		
	and says that the reflected light is totally polarised when the angle of incidence, i_p equals $\tan^{-1} \mu$		
	(b) Intensity of light through $P_1 = \frac{I_0}{2}$ Intensity of light through $P_2 = \frac{I_0}{2} \cos^2 60$	1⁄2	
	$= \frac{I_0}{2} \cdot \left(\frac{1}{2}\right)^2 = \frac{I_0}{8}$	1/2	
	Intensity of light through $P_3 = \frac{I_o}{8}\cos^2 30 = \frac{I_o}{8} \times \left(\frac{\sqrt{3}}{2}\right)^2 = \frac{3I_o}{32}$ [Note: If the students takes the intensity of light, transmitted through P ₁ ,	1⁄2	
	as I_o , and calculates the intensity of light, transmitted by P ₂ and P ₃ , as $\frac{I_o}{4}$ and		
	$\frac{3I_0}{16}$, award $\frac{1}{2} + \frac{1}{2} = 1$ mark only.]		3
27.	Deriving the expression for average power 2		
	Condition for no power dissipation1/2Condition for maximum power dissipation1/2		
	Applied voltage = $V_0 \sin \omega t$ Current in the circuit = $I_0 \sin (\omega t - \phi)$	1/2	
	where ϕ is the phase lag of the current with respect to the voltage applied, Hence instantaneous power dissipation		
	$= V_0 \sin \omega t \times I_0 \sin (\omega t - \phi)$		
	$=\frac{V_0 I_0}{V_0^2} [2\sin \omega t \cdot \sin (\omega t - \phi)]$		
	$=\frac{V_0 I_0}{2} [\cos \phi - \cos(2\omega t - \phi)]$	1⁄2	
	Therefore, average power for one complete cycle = average of $\left[\frac{V_0 I_0}{2} \left[\cos \phi - \cos(2\omega t - \phi)\right]\right]$		
	The average of the second term over a complete cycle is zero .	1⁄2	
	Hence, average power dissipated over one complete cycle is zero. Hence, average power dissipated over one complete cycle is zero.	1/2	
	[Note : Please also accept alternative correct approach.] Conditions		
	(i) No power is dissipated when $R = 0$ (or $\phi = 90^{\circ}$) [Note: Also accepts if the student writes 'This condition cannot be satisfied	1/2	
	for a series LCR circuit".] (ii) Maximum power is dissipated when X _L = X _C	1/2	
	or $\omega L = \frac{1}{\omega C}$ (or $\phi = 0$)	, <u>-</u>	3
28.			
	(a) Formation of bright and dark fringes1Obtaining the expression for fringe width3(b) Finding the ratio1		
	(a) The light rays from the two (coherent) slits, reaching a point 'P' on the screen, have a path difference ($S_2P - S_1P$). The point 'P' would, therefore be a		
	$(11/2)^{-1}$		


Outside Delhi SET III Page 11 of 18


i. Point of maxima(bright fringe), if S2P S1P= n**λ**.
ii. Point of minima (dark fringe), if S2P - S1P=
$$(2n+1)\frac{1}{2}$$

iii. Point of minima (dark fringe), if S2P - S1P= $(2n+1)\frac{1}{2}$
iver the set of the standard set of the student just writes Intensity of width 1 $\frac{1}{2}$
(b) We have
(S2P)². (S1P)²= $\{D^2 - (x + \frac{d}{2})^2\} - \{D^2 + (x - \frac{d}{2})^2\}$
 $= 2xd$
S2P - S1P $= \frac{2xd}{2p} = \frac{xd}{2p} = \frac{d}{p}$
 \therefore We have maxim at points, where
 $\frac{zd}{p} = n\lambda$
and minima at points where
 $\frac{zd}{q} = n\lambda$
and minima to points where
 $\frac{zd}{p} = (\frac{2n+1}{2})\lambda$
Now, fringe width β = separation between two successive maxima(or two
successive minima) = $x_n - x_n - 1$
 $\therefore \beta = \frac{zn}{d}$
(b) We have
 $\frac{I_{max}}{I_{min}} = \frac{(a_1 + a_2)^2}{(a_1 - a_2)^2} = \frac{25}{9}$
 $\therefore = \frac{a_1}{a_2} = \frac{a_1}{1}$
 $\therefore \frac{W}{W_2} = \frac{I_2}{I_2} = \frac{(a_1)^2}{a_2} = \frac{16}{1}$
 $\therefore \frac{W}{W_2} = \frac{I_2}{I_2} = \frac{(a_1)^2}{a_2} = \frac{16}{1}$
(b) Calculation of separation 2

Outside Delhi SET III Page 17 of 18

The direction of this torque is that of the cross product $(\vec{p} \times \vec{E})$. Hence, the torque acting on the dipole, is given by $\vec{\tau} = \vec{p} \times \vec{E}$	1⁄2	
(b) As per Guass's Theorem Electric Flux = $\oint_{S} \vec{E} \cdot \vec{dS} = \frac{q_{enclosed}}{\epsilon_{o}}$	1⁄2	
$ \begin{array}{l} $	1/2 1/2	
$\therefore \frac{\phi_1}{\phi_2} = \frac{1}{3}$	1⁄2	
When a medium of dielectric consistent \in_r is introduced in sphere S ₁ the flux through S _{1 would be} $\phi'_1 = \frac{2Q}{\epsilon_r}$	1	
[Also award this mark if the student writes $\phi_1 = \frac{2Q}{\epsilon_0 \epsilon_r}$]		~
[Note : If the student just writes that the flux through S_1 decreases, award $\frac{1}{2}$ mark only.]		5