Senior Secondary School Certificate Examination

July 2017 (Compartment)
 Marking Scheme - Mathematics 65/1, 65/2, 65/3

General Instructions:

1. The Marking Scheme provides general guidelines to reduce subjectivity in the marking. The answers given in the Marking Scheme are suggested answers. The content is thus indicative. If a student has given any other answer which is different from the one given in the Marking Scheme, but conveys the meaning, such answers should be given full weightage
2. Evaluation is to be done as per instructions provided in the marking scheme. It should not be done according to one's own interpretation or any other consideration - Marking Scheme should be strictly adhered to and religiously followed.
3. Alternative methods are accepted. Proportional marks are to be awarded.
4. In question (s) on differential equations, constant of integration has to be written.
5. If a candidate has attempted an extra question, marks obtained in the question attempted first should be retained and the other answer should be scored out.
6. A full scale of marks - 0 to 100 has to be used. Please do not hesitate to award full marks if the answer deserves it.
7. Separate Marking Scheme for all the three sets has been given.
8. As per orders of the Hon'ble Supreme Court. The candidates would now be permitted to obtain photocopy of the Answer book on request on payment of the prescribed fee. All examiners/Head Examiners are once again reminded that they must ensure that evaluation is carried out strictly as per value points for each answer as given in the Marking Scheme.

QUESTION PAPER CODE 65/1 EXPECTED ANSWER/VALUE POINTS SECTION A

1. $\lim _{x \rightarrow 0} \frac{\sin \frac{3 x}{2}}{2}=\lim _{x \rightarrow 0} \frac{3}{2} \cdot \frac{\sin \frac{3 x}{2}}{\frac{3 x}{2}}=\frac{3}{2}$
$\Rightarrow \quad \mathrm{k}=\frac{3}{2}$
2. $\left|\mathrm{A}^{-1}\right|=\frac{1}{|\mathrm{~A}|}$

$$
=\frac{1}{4}
$$

3. $(\vec{a} \times \vec{b})^{2}+(\vec{a} \cdot \vec{b})^{2}=225 \Rightarrow|\vec{a}|^{2}|\vec{b}|^{2}\left(\sin ^{2} \theta+\cos ^{2} \theta\right)=225$
$\Rightarrow \quad(5)^{2}|\overrightarrow{\mathrm{~b}}|^{2}=225 \Rightarrow|\overrightarrow{\mathrm{~b}}|=3$
4. $\int \frac{3 \mathrm{x}}{3 \mathrm{x}-1} \mathrm{dx}=\int \frac{3 \mathrm{x}-1+1}{3 \mathrm{x}-1} \mathrm{dx}$

$$
=\mathrm{x}+\frac{1}{3} \log |3 \mathrm{x}-1|+\mathrm{C}
$$

SECTION B

5. Getting $\left(\begin{array}{cc}2 x+3 & 6 \\ 15 & 2 y-4\end{array}\right)=\left(\begin{array}{cc}7 & 6 \\ 15 & 14\end{array}\right)$

$$
\begin{aligned}
& 2 \mathrm{x}+3=7 \text { and } 2 \mathrm{y}-4=14 \\
\Rightarrow \quad & \mathrm{x}=2, \mathrm{y}=9
\end{aligned}
$$

6. $f(x)=\sin 2 x-\cos 2 x$

$$
\begin{align*}
& \Rightarrow \quad \mathrm{f}^{\prime}(\mathrm{x})=2 \cos 2 \mathrm{x}+2 \sin 2 \mathrm{x} \tag{1}\\
& \mathrm{f}^{\prime}\left(\frac{\pi}{6}\right)=2\left[\cos \frac{\pi}{3}+\sin \frac{\pi}{3}\right]=(1+\sqrt{3}) \tag{1}
\end{align*}
$$

7. $6 y=x^{3}+2 \Rightarrow 6 \frac{d y}{d t}=3 x^{2} \frac{d x}{d t}$

$$
\begin{equation*}
\frac{\mathrm{dy}}{\mathrm{dt}}=2 \frac{\mathrm{dx}}{\mathrm{dt}} \Rightarrow 12=3 \mathrm{x}^{2} \Rightarrow \mathrm{x}= \pm 2 \tag{1}
\end{equation*}
$$

$\therefore \quad$ The points are $(2,5 / 3),(-2,-1)$
8. $\int \frac{\mathrm{x}}{\sqrt{32-\mathrm{x}^{2}}} \mathrm{dx}=-\int 1 . \mathrm{dt}$ where $32-\mathrm{x}^{2}=\mathrm{t}^{2}$

$$
=-t+C=-\sqrt{32-x^{2}}+C
$$

9. $\log \left(\frac{d y}{d x}\right)=3 x+4 y \Rightarrow \frac{d y}{d x}=e^{3 x} \cdot e^{4 y}$

$$
\Rightarrow \quad \int e^{-4 y} d y=\int e^{3 x} d x
$$

$\Rightarrow \quad-\frac{1}{4} \mathrm{e}^{-4 \mathrm{y}}=\frac{1}{3} \mathrm{e}^{3 \mathrm{x}}+\mathrm{C}$
10. Given differential equation can be written as

$$
\begin{equation*}
\frac{\mathrm{dy}}{\mathrm{dx}}+\left(1-\frac{1}{\mathrm{x}}\right) \mathrm{y}=\frac{1}{\mathrm{x}} \tag{1}
\end{equation*}
$$

Getting integrating factor $=e^{x-\log x}$ or $\frac{e^{x}}{x}$
11. For coplanarity of vectors $\left|\begin{array}{ccc}1 & 3 & 1 \\ 2 & -1 & -1 \\ \lambda & 7 & 3\end{array}\right|=0$

Solving to get $\lambda=0$
12. Let, Number of executive class tickets be x and economy class tickets be y .
$\therefore \quad$ LPP is Maximise Profit $P=1500 x+1000 y$
Subject to: $x+y \leq 250, x \geq 25, y \geq 3 x$

SECTION C

13. Let the award for regularily be $₹ \mathrm{x}$ and for hard work be ₹ y .

$$
\begin{array}{ll}
\therefore & x+y=6000 \text { and } \\
& x+3 y=11000 \\
\Rightarrow & \left(\begin{array}{ll}
1 & 1 \\
1 & 3
\end{array}\right)\binom{x}{y}=\binom{6000}{11000} \text { or } A \cdot X=B \\
\therefore & X=A^{-1} B \text { as }|A|=2 \neq 0 . \\
\Rightarrow & \binom{x}{y}=\frac{1}{2}\left(\begin{array}{cc}
3 & -1 \\
-1 & 1
\end{array}\right)\binom{6000}{11000} \\
& \binom{x}{y}=\binom{3500}{2500} \quad \therefore \quad x=₹ 3500, y=₹ 2500
\end{array}
$$

14. Given equation can be written as $\tan ^{-1}(1)-\tan ^{-1} x=\frac{1}{2} \tan ^{-1} x$
$\Rightarrow \quad \frac{3}{2} \tan ^{-1} x=\frac{\pi}{4}$ or $\tan ^{-1} x=\frac{\pi}{6}$
$\Rightarrow \quad \mathrm{x}=\tan \frac{\pi}{6}=\frac{1}{\sqrt{3}}$
15. Let $u=(\cos x)^{x} \Rightarrow \log u=x \cdot \log \cos x$

$$
\Rightarrow \quad \frac{d u}{d x}=(\cos x)^{x} \cdot[-x \tan x+\log \cos x]
$$

$\therefore \quad y=(\cos x)^{x}+\sin ^{-1} \sqrt{3 x} \Rightarrow \frac{d y}{d x}=\frac{d u}{d x}+\frac{1}{\sqrt{1-3 x}} \cdot \frac{\sqrt{3}}{2 \sqrt{x}}$
$\therefore \quad \frac{d y}{d x}=(\cos x)^{x}[-x \tan x+\log \cos x]+\frac{\sqrt{3}}{2 \sqrt{x}} \cdot \frac{1}{\sqrt{1-3 x}}$

$$
\begin{aligned}
& y=\left(\sec ^{-1} x\right)^{2} \Rightarrow \frac{d y}{d x}=2 \sec ^{-1} x \cdot \frac{1}{x \sqrt{x^{2}-1}} \\
& \therefore \quad x \sqrt{x^{2}-1} \cdot \frac{d y}{d x}=2 \sec ^{-1} x \\
& \Rightarrow \quad x \sqrt{x^{2}-1} \cdot \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}\left(\frac{x^{2}}{\sqrt{x^{2}-1}}+\sqrt{x^{2}-1}\right)=\frac{2}{x \sqrt{x^{2}-1}} \\
& \Rightarrow \quad x^{2}\left(x^{2}-1\right) \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x} \cdot x\left(2 x^{2}-1\right)=2 \\
& \text { i.e., } \quad x^{2}\left(x^{2}-1\right) \frac{d^{2} y}{d x^{2}}+\left(2 x^{3}-x\right) \frac{d y}{d x}=2
\end{aligned}
$$

16. $\mathrm{f}^{\prime}(\mathrm{x})=6 \mathrm{x}^{2}-6 \mathrm{x}-36$
$\therefore \quad \mathrm{f}(\mathrm{x})$ is strictly increasing in $(-\infty,-2) \mathrm{U}(3, \infty)$, and strictly decreasing in $(-2,3)$
17. $\mathrm{I}=\int_{0}^{\pi} \frac{\mathrm{x} \sin \mathrm{x}}{1+\cos ^{2} \mathrm{x}} \mathrm{dx}=\int_{0}^{\pi} \frac{(\pi-\mathrm{x}) \sin (\pi-\mathrm{x})}{1+\cos ^{2}(\pi-\mathrm{x})} d \mathrm{~d}=\int_{0}^{\pi} \frac{(\pi-\mathrm{x}) \sin \mathrm{x}}{1+\cos ^{2} \mathrm{x}} \mathrm{dx}$

$$
\begin{align*}
\Rightarrow & \quad \mathrm{I}=\pi \int_{0}^{\pi} \frac{\sin \mathrm{x}}{1+\cos ^{2} \mathrm{x}} \mathrm{dx} \\
\Rightarrow \quad & \mathrm{I}=\frac{-\pi}{2} \int_{1}^{-1} \frac{\mathrm{dt}}{1+\mathrm{t}^{2}}=\frac{\pi}{2} \int_{-1}^{1} \frac{\mathrm{dt}}{1+\mathrm{t}^{2}}, \text { where } \cos \mathrm{x}=\mathrm{t} \tag{1}\\
& \mathrm{I}=\frac{\pi}{2}\left[\tan ^{-1} \mathrm{t}\right]_{-1}^{1}=\frac{\pi}{2}\left[\frac{\pi}{4}+\frac{\pi}{4}\right]=\frac{\pi^{2}}{4} \tag{1}
\end{align*}
$$

OR
$I=\int(x-3) \sqrt{3-2 x-x^{2}} d x=\int\left[-\frac{1}{2}(-2-2 x)-4\right] \sqrt{3-2 x-x^{2}} d x$

$$
=-\frac{1}{2} \int(-2-2 x) \sqrt{3-2 x-x^{2}} d x-4 \int \sqrt{4-(x+1)^{2}} d x
$$

$$
=-\frac{1}{3}\left(3-2 x-x^{2}\right)^{3 / 2}-4\left[\frac{(x+1)}{2} \sqrt{3-2 x-x^{2}}+2 \sin ^{-1}\left(\frac{x+1}{2}\right)\right]+C
$$

19. Given differential equation can be written as $\frac{d y}{d x}=\frac{x^{2}+y^{2}}{2 x y}$

$$
\begin{align*}
& \frac{y}{x}=v \Rightarrow y=v x \Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x} \tag{1}\\
\Rightarrow & v+x \frac{d v}{d x}=\frac{1+v^{2}}{2 v} \Rightarrow x \frac{d v}{d x}=\frac{1-v^{2}}{2 v} \\
\Rightarrow & \int \frac{2 v}{v^{2}-1} d v=-\int \frac{d x}{x} \\
\Rightarrow & \log \left|v^{2}-1\right|+\log |x|=\log C \\
\Rightarrow & x\left(v^{2}-1\right)=C \\
\Rightarrow & y^{2}-x^{2}=C x
\end{align*}
$$

20. Let the vector $\vec{p}=(2 \vec{a}+\vec{b}+2 \vec{c})$ makes angles α, β, γ respectively with the vector $\vec{a}, \vec{b}, \vec{c}$

Given that $|\vec{a}|=|\vec{b}|=|\vec{c}|$ and $\vec{a} \cdot \vec{b}=\vec{c} \cdot \vec{a}=0$

$$
\begin{aligned}
\cos \alpha & =\frac{(2 \overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}+2 \overrightarrow{\mathrm{c}}) \cdot \overrightarrow{\mathrm{a}}}{|2 \overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}+2 \overrightarrow{\mathrm{c}}||\overrightarrow{\mathrm{a}}|} \\
& =\frac{2|\mathrm{a}|^{2}}{3|\overrightarrow{\mathrm{a}}||\overrightarrow{\mathrm{a}}|}=\frac{2}{3} \Rightarrow \alpha=\cos ^{-1} \frac{2}{3}
\end{aligned}
$$

$$
\cos \beta=\frac{(2 \vec{a}+\vec{b}+2 \vec{c}) \cdot \vec{b}}{|2 \vec{a}+\vec{b}+2 \vec{c}||\vec{b}|}=\frac{|\vec{b}|^{2}}{3|\vec{b}||\vec{b}|}=\frac{1}{3} \Rightarrow \beta=\cos ^{-1} \frac{1}{3}
$$

$$
\cos \gamma=\frac{(2 \overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}+2 \overrightarrow{\mathrm{c}}) \cdot \overrightarrow{\mathrm{c}}}{|2 \overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}+2 \overrightarrow{\mathrm{c}}||\overrightarrow{\mathrm{c}}|}=\frac{2|\overrightarrow{\mathrm{c}}|^{2}}{3|\overrightarrow{\mathrm{c}}||\overrightarrow{\mathrm{c}}|}=\frac{2}{3} \Rightarrow \gamma=\cos ^{-1} \frac{2}{3}
$$

Equation of line passing through B and C is

$$
\begin{equation*}
\frac{x}{2}=\frac{y+1}{-2}=\frac{z-3}{-4} \text { or } \frac{x}{1}=\frac{y+1}{-1}=\frac{z-3}{-2} \tag{1}
\end{equation*}
$$

Any point D on BC can be
$[\lambda,-\lambda-1,-2 \lambda+3]$ for some value of λ.
$\therefore \quad$ Direction ratios of AD are $<\lambda-1,-\lambda-9,-2 \lambda-1>$
$\mathrm{AD} \perp \mathrm{BC} \Rightarrow 1(\lambda-1)-1(-\lambda-9)-2(-2 \lambda-1)=0$
$\Rightarrow \lambda=-\frac{5}{3}$
$\therefore \quad \mathrm{D}$ is $\left(-\frac{5}{3}, \frac{2}{3}, \frac{19}{3}\right)$

Correct graph of three lines
Correct shading
Vertices of feasible region are

$$
\mathrm{A}(0,20), \mathrm{B}(15,15), \mathrm{C}(5,5), \mathrm{D}(0,10)
$$

$$
\begin{aligned}
& Z(A)=180 \\
& Z(B)=180 \\
& Z(C)=60 \\
& Z(D)=90
\end{aligned}
$$

$\therefore \mathrm{Z}=60$ is minimum at $\mathrm{x}=5, \mathrm{y}=5$
23. Let the events be
E_{1} : tansferring a red ball from A to B
E_{2} : transferring a black ball from A to B
A: Getting a red ball from bag B

$$
\begin{aligned}
& \mathrm{P}\left(\mathrm{E}_{1}\right)=\frac{3}{5}, \mathrm{P}\left(\mathrm{E}_{2}\right)=\frac{2}{5} \\
& \mathrm{P}\left(\mathrm{~A} / \mathrm{E}_{1}\right)=\frac{1}{2}, \mathrm{P}\left(\mathrm{~A} / \mathrm{E}_{2}\right)=\frac{1}{3} \\
& \mathrm{P}\left(\mathrm{E}_{1} / \mathrm{A}\right)=\frac{\mathrm{P}\left(\mathrm{E}_{1}\right) \cdot \mathrm{P}\left(\mathrm{~A} / \mathrm{E}_{1}\right)}{\mathrm{P}\left(\mathrm{E}_{1}\right) \mathrm{P}\left(\mathrm{~A} / \mathrm{E}_{1}\right)+\mathrm{P}\left(\mathrm{E}_{2}\right) \mathrm{P}\left(\mathrm{~A} / \mathrm{E}_{2}\right)} \\
&=\frac{\frac{3}{5} \cdot \frac{1}{2}}{\frac{3}{5} \cdot \frac{1}{2}+\frac{2}{5} \cdot \frac{1}{3}}=\frac{9}{13}
\end{aligned}
$$

OR

Required probability $=P(A \cup B)$	1
$=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B})$	$\frac{1}{2}$
$=\mathrm{P}(\mathrm{A})[1-\mathrm{P}(\mathrm{B})]+1-\mathrm{P}\left(\mathrm{B}^{\prime}\right)$	$\frac{1}{2}$
$=\mathrm{P}(\mathrm{A}) \mathrm{P}\left(\mathrm{B}^{\prime}\right)-\mathrm{P}\left(\mathrm{B}^{\prime}\right)+1$	1
$=\left(1-\mathrm{P}\left(\mathrm{B}^{\prime}\right)(1-\mathrm{P}(\mathrm{A}))^{\prime}=1-\mathrm{P}\left(\mathrm{A}^{\prime}\right) \mathrm{P}\left(\mathrm{B}^{\prime}\right)\right.$	1

SECTION D

24. $\mathrm{C}_{1} \rightarrow \mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}$

$$
\begin{aligned}
& \left|\begin{array}{lll}
a & b & c \\
b & c & a \\
c & a & b
\end{array}\right|=0 \Rightarrow(a+b+c)\left|\begin{array}{lll}
1 & b & c \\
1 & c & a \\
1 & a & b
\end{array}\right|=0 \\
& R_{2} \rightarrow R_{2}-R_{1}, R_{3} \rightarrow R_{3}-R_{1} \\
& \Rightarrow \quad(a+b+c)\left|\begin{array}{ccc}
1 & b & c \\
0 & c-b & a-c \\
0 & a-b & b-c
\end{array}\right|=0 \\
& \Rightarrow \quad-(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)=0 \\
& \Rightarrow \quad \frac{-1}{2}(a+b+c)\left[(a-b)^{2}+(b-c)^{2}+(c-a)^{2}\right]=0 \\
& \Rightarrow \quad a-b=0=b-c=c-a \text { as } a+b+c \neq 0 \\
& \Rightarrow \quad a=b=c
\end{aligned}
$$

25. (i) for any $A, B \in P(X), A^{*} B=A \cap B$ and $B^{*} A=B \cap A$

$$
\text { as } \mathrm{A} \cap \mathrm{~B}=\mathrm{B} \cap \mathrm{~A} \therefore \mathrm{~A}^{*} \mathrm{~B}=\mathrm{B}^{*} \mathrm{~A}
$$

$\Rightarrow \quad *$ is commutative
(ii) for any $\mathrm{A}, \mathrm{B}, \mathrm{C} \in \mathrm{P}(\mathrm{X})$

$$
(\mathrm{A} * \mathrm{~B}) * \mathrm{C}=(\mathrm{A} \cap \mathrm{~B}) * \mathrm{C}=(\mathrm{A} \cap \mathrm{~B}) \cap \mathrm{C}
$$

$$
\text { and } \mathrm{A}^{*}\left(\mathrm{~B}^{*} \mathrm{C}\right)=\mathrm{A}^{*}(\mathrm{~B} \cap \mathrm{C})=\mathrm{A} \cap(\mathrm{~B} \cap \mathrm{C})
$$

$$
\begin{equation*}
\text { Since }(\mathrm{A} \cap \mathrm{~B}) \cap \mathrm{C}=\mathrm{A} \cap(\mathrm{~B} \cap \mathrm{C}) \Rightarrow^{*} \text { is associative } \tag{2}
\end{equation*}
$$

(iii) for every $\mathrm{A} \in \mathrm{P}(\mathrm{X}), \mathrm{A} * \mathrm{X}=\mathrm{A} \cap \mathrm{X}=\mathrm{A}$

$$
\mathrm{X} * \mathrm{~A}=\mathrm{X} \cap \mathrm{~A}=\mathrm{A}
$$

$\Rightarrow \mathrm{X}$ is the identity element
(iv) $\mathrm{X} * \mathrm{X}=\mathrm{X} \cap \mathrm{X}=\mathrm{X} \Rightarrow \mathrm{X}$ is the only invertible element. \because it is true only for X .

$$
f(x)=\frac{4 x}{3 x+4}
$$

for $x_{1}, x_{2} \in R-\left\{-\frac{4}{3}\right\}, f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow \frac{4 x_{1}}{3 x_{1}+4}=\frac{4 x_{2}}{3 x_{2}+4}$
$\therefore \quad 12 \mathrm{x}_{1} \mathrm{x}_{2}+16 \mathrm{x}_{1}=12 \mathrm{x}_{1} \mathrm{x}_{2}+16 \mathrm{x}_{2}$
$\Rightarrow \quad \mathrm{x}_{1}=\mathrm{x}_{2}$
$\therefore \quad$ fis a $1-1$ function.
for $\mathrm{y}=\frac{4}{3}$, there is no x such that $\mathrm{f}(\mathrm{x})=\frac{4}{3}$
$\therefore \quad \mathrm{f}$ is not invertible
But $f: R-\left\{-\frac{4}{3}\right\} \rightarrow$ Range of f is ONTO so invertible.
and $f^{-1}(y)=\frac{4 y}{4-3 y}$
26. Let given volume of cone be, $\mathrm{V}=\frac{1}{3} \pi \mathrm{r}^{2} \mathrm{~h}$
$\therefore \quad$ Surface area (curved) $\mathrm{S}=\pi \mathrm{rl}=\pi \mathrm{r} \sqrt{\mathrm{r}^{2}+\mathrm{h}^{2}}$
or $\quad \mathrm{A}=\mathrm{S}^{2}=\pi \mathrm{r}^{2}\left(\mathrm{r}^{2}+\mathrm{h}^{2}\right)$

$$
\begin{aligned}
\mathrm{A} & =\mathrm{S}^{2}=\pi^{2} \mathrm{r}^{2}\left[\mathrm{r}^{2}+\left(\frac{3 \mathrm{~V}}{\pi \mathrm{r}^{2}}\right)^{2}\right] \quad[\text { using (i) }] \\
& =\pi^{2}\left[\mathrm{r}^{4}+\frac{9 \mathrm{~V}^{2}}{\pi^{2} \mathrm{r}^{2}}\right] \\
\frac{\mathrm{dA}}{\mathrm{dr}} & =\pi^{2}\left[4 \mathrm{r}^{3}-\frac{18 \mathrm{~V}^{2}}{\pi^{2} \mathrm{r}^{3}}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\mathrm{dA}}{\mathrm{dr}}=0 \Rightarrow 4 \pi^{2} \mathrm{r}^{6}=18 \cdot \frac{1}{9} \pi^{2} \mathrm{r}^{4} \mathrm{~h}^{2} \\
\Rightarrow \quad & 2 \mathrm{r}^{2}=\mathrm{h}^{2} \text { or } \mathrm{h}=\sqrt{2} \mathrm{r}
\end{aligned}
$$

$$
\frac{\mathrm{d}^{2} \mathrm{~A}}{\mathrm{dr}^{2}}=\pi^{2}\left[12 \mathrm{r}^{2}+\frac{54 \mathrm{~V}^{2}}{\pi^{2} \mathrm{r}^{4}}\right]>0
$$

$\Rightarrow \quad$ for least curved surface area, height $=\sqrt{2}$ (radius)
OR

$$
\begin{aligned}
x & =a \cos \theta+a \theta \sin \theta \Rightarrow \frac{d x}{d \theta}=-a \sin \theta+a \sin \theta+a \theta \cos \theta \\
& =a \theta \cos \theta
\end{aligned}
$$

$$
y=a \sin \theta-a \theta \cos \theta \Rightarrow \frac{d y}{d \theta}=a \cos \theta-a \cos \theta+a \theta \sin \theta
$$

$$
=\mathrm{a} \theta \sin \theta
$$

$$
\frac{d y}{d x}=\frac{a \theta \sin \theta}{a \theta \cos \theta}=\tan \theta
$$

Equation of tangent is

$$
\begin{equation*}
y-(a \sin \theta-a \theta \cos \theta)=\tan \theta(x-a \cos \theta-a \theta \sin \theta) \tag{1}
\end{equation*}
$$

Equation of normal is

$$
\begin{align*}
& y-(a \sin \theta-a \theta \cos \theta)=-\frac{\cos \theta}{\sin \theta}(x-a \cos \theta-a \theta \sin \theta) \tag{1}\\
\Rightarrow & y \sin \theta+x \cos \theta=a \\
& \text { distance of normal from origin }=\frac{|-a|}{\sqrt{\sin ^{2} \theta+\cos ^{2} \theta}}=|a|=\text { constant }
\end{align*}
$$

27. Equation of plane through $\mathrm{A}(2,-2,1), \mathrm{B}(4,1,3)$ and $\mathrm{C}(-2,-2,5)$ is

$$
\left|\begin{array}{ccc}
x-2 & y+2 & z-1 \\
2 & 3 & 2 \\
-4 & 0 & 4
\end{array}\right|=0 \Rightarrow 3 x-4 y+3 z-17=0
$$

For the given line $3(3)-4(3)+3(1)=0$
$\Rightarrow \quad$ line is parallel to the plane
$\therefore \quad$ Distance, $\mathrm{d}=\frac{|3(5)-4(4)+3(8)-17|}{\sqrt{9+16+9}}=\frac{6}{\sqrt{34}}$
28. $\mathrm{P}($ Head $)=4 \mathrm{P}($ Tail $) \Rightarrow \mathrm{P}(\mathrm{H})=\frac{4}{5}, \mathrm{P}(\mathrm{T})=\frac{1}{5}$

X	0	1	2	3	$\frac{1}{2}$

(Number of tails)

$$
\begin{array}{ccccc}
\mathrm{P}(\mathrm{X}) & \left(\frac{4}{5}\right)^{3} & 3\left(\frac{4}{5}\right)^{2}\left(\frac{1}{5}\right) & 3\left(\frac{4}{5}\right)\left(\frac{1}{5}\right)^{2} & \left(\frac{1}{5}\right)^{3} \\
& =\frac{64}{125} & =\frac{48}{125} & =\frac{12}{125} & =\frac{1}{125} \\
\mathrm{XP}(\mathrm{X}): & 0 & \frac{48}{125} & \frac{24}{125} & \frac{3}{125} \\
\mathrm{X}^{2} \mathrm{P}(\mathrm{X}): & 0 & \frac{48}{125} & \frac{48}{125} & \frac{1}{2} \\
& 0 & \frac{9}{125} & \frac{1}{2}
\end{array}
$$

Mean $=\Sigma X P(X)=\frac{75}{125}=\frac{3}{5}$
Variance: $\Sigma X^{2} \mathrm{P}(\mathrm{X})-[\Sigma \mathrm{XP}(\mathrm{X})]^{2}=\frac{105}{125}-\frac{9}{25}=\frac{60}{125}=\frac{12}{25}$
29.

For Correct Figure
Equation of $A B: x=\frac{1}{7}(2 y+11)$
Equation of $B C: x=\frac{1}{3}(19-2 y)$
Equation ofAC: $x=y+3$

$$
\begin{gathered}
\text { Required area }=\int_{-2}^{2}(y+3) d y+\frac{1}{3} \int_{2}^{5}(19-2 y) d y-\frac{1}{7} \int_{-2}^{5}(2 y+11) d y \\
\left.\left.\left.\Rightarrow \mathrm{~A}=\frac{(\mathrm{y}+3)^{2}}{2}\right]_{-2}^{2}+\frac{1}{2} \frac{(19-2 \mathrm{y})^{2}}{-4}\right]_{2}^{5}-\frac{1}{7} \frac{(2 \mathrm{y}+11)^{2}}{4}\right]_{-2}^{5} \\
=\frac{1}{2}(25-1)-\frac{1}{12}(81-225)-\frac{1}{28}(441-49)=10 \text { sq.units } \\
\text { OR }
\end{gathered}
$$

$$
\text { Here } \begin{align*}
h & =\frac{4}{n} \text { or } n h=4, f(x)=3 x^{2}+2 x+1 \\
& \begin{aligned}
& \int_{0}^{4}\left(3 x^{2}+2 x+1\right) d x=\lim _{h \rightarrow 0} h[f(0)+f(0+h)+f(0+2 h)+\ldots+f(0+\overline{n-1} h)] \\
&=\lim _{h \rightarrow 0} h\left[(1)+\left(3 h^{2}+2 h+1\right)+\left(3 \cdot 2^{2} h^{2}+2.2 h+1\right)+\ldots+\left(3(n-1)^{2} h^{2}+2(n-1) h+1\right)\right] \\
&=\lim _{h \rightarrow 0} h\left[n+3 h^{2} \frac{n(n-1)(2 n-1)}{6}+2 h \frac{n(n-1)}{2}\right] \\
&=\lim _{h \rightarrow 0}\left[n h+\frac{(n h)(n h-h)(2 n h-h)}{2}+(n h)(n h-h)\right] \\
&=4+64+16=84
\end{aligned} \tag{1}
\end{align*}
$$

QUESTION PAPER CODE 65/2

EXPECTED ANSWER/VALUE POINTS
 SECTION A

1. $(\vec{a} \times \vec{b})^{2}+(\vec{a} \cdot \vec{b})^{2}=225 \Rightarrow|\vec{a}|^{2}|\vec{b}|^{2}\left(\sin ^{2} \theta+\cos ^{2} \theta\right)=225$

$$
\begin{equation*}
\Rightarrow \quad(5)^{2}|\vec{b}|^{2}=225 \Rightarrow|\vec{b}|=3 \tag{1}
\end{equation*}
$$

2. $\int \frac{3 x}{3 x-1} d x=\int \frac{3 x-1+1}{3 x-1} d x$
$=\mathrm{x}+\frac{1}{3} \log |3 \mathrm{x}-1|+\mathrm{C}$
3. $\lim _{x \rightarrow 0} \frac{\sin \frac{3 x}{2}}{2}=\lim _{x \rightarrow 0} \frac{3}{2} \cdot \frac{\sin \frac{3 x}{2}}{\frac{3 x}{2}}=\frac{3}{2}$
$\Rightarrow \quad \mathrm{k}=\frac{3}{2}$
4. $\left|\mathrm{A}^{-1}\right|=\frac{1}{|\mathrm{~A}|}$

$$
=\frac{1}{4}
$$

SECTION B

5. Given differential equation can be written as

$$
\begin{equation*}
\frac{\mathrm{dy}}{\mathrm{dx}}+\left(1-\frac{1}{\mathrm{x}}\right) \mathrm{y}=\frac{1}{\mathrm{x}} \tag{1}
\end{equation*}
$$

Getting integrating factor $=e^{x-\log x}$ or $\frac{e^{x}}{x}$
6. For coplanarity of vectors $\left|\begin{array}{ccc}1 & 3 & 1 \\ 2 & -1 & -1 \\ \lambda & 7 & 3\end{array}\right|=0$

Solving to get $\lambda=0$
7. Let, Number of executive class tickets be x and economy class tickets be y.

$$
\therefore \quad \text { LPP is Maximise Profit } P=1500 x+1000 y
$$

Subject to: $x+y \leq 250, x \geq 25, y \geq 3 x$
8. Getting $\left(\begin{array}{cc}2 x+3 & 6 \\ 15 & 2 y-4\end{array}\right)=\left(\begin{array}{cc}7 & 6 \\ 15 & 14\end{array}\right)$

$$
\begin{aligned}
& 2 \mathrm{x}+3=7 \text { and } 2 \mathrm{y}-4=14 \\
\Rightarrow \quad & \mathrm{x}=2, \mathrm{y}=9
\end{aligned}
$$

9. $f(x)=\sin 2 x-\cos 2 x$
$\Rightarrow \quad \mathrm{f}^{\prime}(\mathrm{x})=2 \cos 2 \mathrm{x}+2 \sin 2 \mathrm{x}$
$f^{\prime}\left(\frac{\pi}{6}\right)=2\left[\cos \frac{\pi}{3}+\sin \frac{\pi}{3}\right]=(1+\sqrt{3})$

$$
y-2 \log |y+2|=x+2 \log |x|+C
$$

12. $\frac{\mathrm{dr}}{\mathrm{dt}}=5 \mathrm{~cm} / \mathrm{min}, \frac{\mathrm{dh}}{\mathrm{dt}}=-4 \mathrm{~cm} / \mathrm{min}$

$$
\begin{array}{ll}
\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h} & \frac{1}{2} \\
\frac{\mathrm{dV}}{\mathrm{dt}}=\pi\left(\mathrm{r}^{2} \frac{\mathrm{dh}}{\mathrm{dt}}+2 \mathrm{hr} \frac{\mathrm{dr}}{\mathrm{dt}}\right) & 1 \\
\left.\frac{\mathrm{dV}}{\mathrm{dt}}\right)_{\mathrm{r}=8, \mathrm{~h}=6}=224 \pi \mathrm{~cm}^{3} / \mathrm{min} & \frac{1}{2}
\end{array}
$$

$\therefore \quad$ Volume is increasing at the rate of $224 \pi \mathrm{~cm}^{3} / \mathrm{min}$.

SECTION C

13. Let the award for regularily be $₹ \mathrm{x}$ and for hard work be ₹ y .

$$
\begin{array}{ll}
\therefore & x+y=6000 \text { and } \\
& x+3 y=11000 \\
\Rightarrow & \left(\begin{array}{ll}
1 & 1 \\
1 & 3
\end{array}\right)\binom{x}{y}=\binom{6000}{11000} \text { or } A \cdot X=B \\
\therefore & X=A^{-1} B \text { as }|A|=2 \neq 0 . \\
\Rightarrow & \binom{x}{y}=\frac{1}{2}\left(\begin{array}{cc}
3 & -1 \\
-1 & 1
\end{array}\right)\binom{6000}{11000} \\
& \binom{x}{y}=\binom{3500}{2500} \quad \therefore \quad x=₹ 3500, y=₹ 2500
\end{array}
$$

15. For $\int \frac{x^{2}+x+1}{(x+1)^{2}(x+2)} d x=\int\left[\frac{3}{x+2}-\frac{2}{x+1}+\frac{1}{(x+1)^{2}}\right] d x$

$$
=3 \log |x+2|-2 \log |x+1|-\frac{1}{x+1}+C
$$

OR

$$
I=\int(x-3) \sqrt{3-2 x-x^{2}} d x=\int\left[-\frac{1}{2}(-2-2 x)-4\right] \sqrt{3-2 x-x^{2}} d x
$$

$$
=-\frac{1}{2} \int(-2-2 x) \sqrt{3-2 x-x^{2}} d x-4 \int \sqrt{4-(x+1)^{2}} d x
$$

$$
=-\frac{1}{3}\left(3-2 x-x^{2}\right)^{3 / 2}-4\left[\frac{(x+1)}{2} \sqrt{3-2 x-x^{2}}+2 \sin ^{-1}\left(\frac{x+1}{2}\right)\right]+C
$$

16. Let the vector $\vec{p}=(2 \vec{a}+\vec{b}+2 \vec{c})$ makes angles α, β, γ respectively with the vector $\vec{a}, \vec{b}, \vec{c}$ Given that $|\vec{a}|=|\overrightarrow{\mathrm{b}}|=|\overrightarrow{\mathrm{c}}|$ and $\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=\overrightarrow{\mathrm{c}} \cdot \overrightarrow{\mathrm{a}}=0$

$$
\cos \alpha=\frac{(2 \vec{a}+\vec{b}+2 \vec{c}) \cdot \vec{a}}{|2 \vec{a}+\vec{b}+2 \vec{c}||\vec{a}|}
$$

$$
=\frac{2|\mathrm{a}|^{2}}{3|\overrightarrow{\mathrm{a}}||\overrightarrow{\mathrm{a}}|}=\frac{2}{3} \Rightarrow \alpha=\cos ^{-1} \frac{2}{3}
$$

$$
\cos \beta=\frac{(2 \vec{a}+\vec{b}+2 \overrightarrow{\mathrm{c}}) \cdot \overrightarrow{\mathrm{b}}}{|2 \overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}+2 \overrightarrow{\mathrm{c}}||\overrightarrow{\mathrm{b}}|}=\frac{|\overrightarrow{\mathrm{b}}|^{2}}{3|\overrightarrow{\mathrm{~b}}||\overrightarrow{\mathrm{b}}|}=\frac{1}{3} \Rightarrow \beta=\cos ^{-1} \frac{1}{3}
$$

$$
\cos \gamma=\frac{(2 \overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}+2 \overrightarrow{\mathrm{c}}) \cdot \overrightarrow{\mathrm{c}}}{|2 \overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}+2 \overrightarrow{\mathrm{c}}||\overrightarrow{\mathrm{c}}|}=\frac{2|\overrightarrow{\mathrm{c}}|^{2}}{3|\overrightarrow{\mathrm{c}}||\overrightarrow{\mathrm{c}}|}=\frac{2}{3} \Rightarrow \gamma=\cos ^{-1} \frac{2}{3}
$$

17.

Correct graph of three lines
Correct shading
Vertices of feasible region are

$$
\begin{aligned}
& A(0,20), B(15,15), C(5,5), D(0,10) \\
& Z(A)=180 \\
& Z(B)=180 \\
& Z(C)=60 \\
& Z(D)=90 \\
& \therefore \quad Z=60 \text { is minimum at } x=5, y=5
\end{aligned}
$$

18. Let the events be
E_{1} : tansferring a red ball fromA to B
E_{2} : transferring a black ball fromA to B
A: Getting a red ball from bag B

$$
\begin{aligned}
& \mathrm{P}\left(\mathrm{E}_{1}\right)=\frac{3}{5}, \mathrm{P}\left(\mathrm{E}_{2}\right)=\frac{2}{5} \\
& \mathrm{P}\left(\mathrm{~A} / \mathrm{E}_{1}\right)=\frac{1}{2}, \mathrm{P}\left(\mathrm{~A} / \mathrm{E}_{2}\right)=\frac{1}{3} \\
& \mathrm{P}\left(\mathrm{E}_{1} / \mathrm{A}\right)=\frac{\mathrm{P}\left(\mathrm{E}_{1}\right) \cdot \mathrm{P}\left(\mathrm{~A} / \mathrm{E}_{1}\right)}{\mathrm{P}\left(\mathrm{E}_{1}\right) \mathrm{P}\left(\mathrm{~A} / \mathrm{E}_{1}\right)+\mathrm{P}\left(\mathrm{E}_{2}\right) \mathrm{P}\left(\mathrm{~A} / \mathrm{E}_{2}\right)} \\
&=\frac{\frac{3}{5} \cdot \frac{1}{2}}{\frac{3}{5} \cdot \frac{1}{2}+\frac{2}{5} \cdot \frac{1}{3}}=\frac{9}{13}
\end{aligned}
$$

OR
Required probability $=P(A \cup B)$

$$
=\mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B})-\mathrm{P}(\mathrm{~A}) \cdot \mathrm{P}(\mathrm{~B})
$$

$$
=\mathrm{P}(\mathrm{~A})[1-\mathrm{P}(\mathrm{~B})]+1-\mathrm{P}\left(\mathrm{~B}^{\prime}\right)
$$

$$
=\mathrm{P}(\mathrm{~A}) \mathrm{P}\left(\mathrm{~B}^{\prime}\right)-\mathrm{P}\left(\mathrm{~B}^{\prime}\right)+1
$$

19. Given equation can be written as $\tan ^{-1}(1)-\tan ^{-1} x=\frac{1}{2} \tan ^{-1} x$

$$
=\left(1-\mathrm{P}\left(\mathrm{~B}^{\prime}\right)(1-\mathrm{P}(\mathrm{~A}))=1-\mathrm{P}\left(\mathrm{~A}^{\prime}\right) \mathrm{P}\left(\mathrm{~B}^{\prime}\right)\right.
$$

$$
\begin{aligned}
& \Rightarrow \quad \frac{3}{2} \tan ^{-1} x=\frac{\pi}{4} \text { or } \tan ^{-1} x=\frac{\pi}{6} \\
& \Rightarrow \quad x=\tan \frac{\pi}{6}=\frac{1}{\sqrt{3}}
\end{aligned}
$$

20. Let $u=(\cos x)^{x} \Rightarrow \log u=x \cdot \log \cos x$

$$
\begin{aligned}
& \Rightarrow \quad \frac{d u}{d x}=(\cos x)^{x} \cdot[-x \tan x+\log \cos x] \\
& \therefore \quad y=(\cos x)^{x}+\sin ^{-1} \sqrt{3 x} \Rightarrow \frac{d y}{d x}=\frac{d u}{d x}+\frac{1}{\sqrt{1-3 x}} \cdot \frac{\sqrt{3}}{2 \sqrt{x}} \\
& \therefore \quad \frac{d y}{d x}=(\cos x)^{x}[-x \tan x+\log \cos x]+\frac{\sqrt{3}}{2 \sqrt{x}} \cdot \frac{1}{\sqrt{1-3 x}}
\end{aligned}
$$

OR
$y=\left(\sec ^{-1} x\right)^{2} \Rightarrow \frac{d y}{d x}=2 \sec ^{-1} x \cdot \frac{1}{x \sqrt{x^{2}-1}}$
$\therefore \quad \mathrm{x} \sqrt{\mathrm{x}^{2}-1} \cdot \frac{\mathrm{dy}}{\mathrm{dx}}=2 \sec ^{-1} \mathrm{x}$
$\Rightarrow \quad x \sqrt{x^{2}-1} \cdot \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}\left(\frac{x^{2}}{\sqrt{x^{2}-1}}+\sqrt{x^{2}-1}\right)=\frac{2}{x \sqrt{x^{2}-1}}$
$\Rightarrow \quad x^{2}\left(x^{2}-1\right) \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x} \cdot x\left(2 x^{2}-1\right)=2$
i.e., $\quad x^{2}\left(x^{2}-1\right) \frac{d^{2} y}{d x^{2}}+\left(2 x^{3}-x\right) \frac{d y}{d x}=2$
21. Let $I=\int_{0}^{\pi} \frac{x \tan x d x}{\tan x+\sec x}=\int_{0}^{\pi} \frac{(\pi-x) \tan (\pi-x)}{\tan (\pi-x)+\sec (\pi-x)} d x$

So, $\quad I=\int_{0}^{\pi} \frac{(\pi-x)(-\tan x)}{-\tan x-\sec x} d x \Rightarrow I=\pi \int_{0}^{\pi} \frac{\tan x}{\sec x+\tan x} d x-I$
$\Rightarrow \quad 2 \mathrm{I}=\pi \int_{0}^{\pi} \frac{\tan \mathrm{x}}{\sec \mathrm{x}+\tan \mathrm{x}} \mathrm{dx}=\pi \int_{0}^{\pi}\left(\sec \mathrm{x} \tan \mathrm{x}-\tan ^{2} \mathrm{x}\right) \mathrm{dx}$

$$
=\pi \int_{0}^{\pi} \sec x \tan x d x-\pi \int_{0}^{\pi} \sec ^{2} x d x+\pi \int_{0}^{\pi} d x
$$

$$
=\pi|\sec x|_{0}^{\pi}-\pi|\tan x|_{0}^{\pi}+\pi^{2}
$$

$$
=\pi^{2}-2 \pi
$$

$$
\Rightarrow \quad \mathrm{I}=\left(\frac{\pi^{2}}{2}-\pi\right)
$$

22. Writing the given differential equation in the form

$$
\begin{aligned}
& \begin{array}{l}
\frac{d x}{d y}=\frac{x e^{x / y}+y^{2}}{y e^{x / y}} \\
\\
=\frac{x}{y}+\frac{y}{e^{x / y}} \\
\text { Put } \quad \frac{x}{y}=v \operatorname{so}, x= \\
\text { and } \quad \frac{d x}{d y}=v+y \frac{1}{d} \\
\therefore \quad v+y \frac{d v}{d y}=v \\
\Rightarrow \quad \int e^{v} d v=\int d y
\end{array} \\
& \text { hence, } y=e^{\frac{x}{y}}+C
\end{aligned}
$$

23. \quad A $(2,3,-8)$

Writing line in symmetric form $\frac{\mathrm{x}-4}{-2}=\frac{\mathrm{y}}{6}=\frac{\mathrm{z}-1}{-3} \quad \frac{1}{2}$
$\Rightarrow \frac{x-4}{-2}=\frac{y}{6}=\frac{z-1}{-3}=\lambda$ gives co-ordinates of B as
$\mathrm{x}=-2 \lambda+4, \mathrm{y}=6 \lambda, \mathrm{z}=-3 \lambda+1$ for some λ.

So, direction ratios of AB are $-2 \lambda+2,6 \lambda-3,-3 \lambda+9$

Since $A B$ is perpendicular to the given line

$$
\begin{aligned}
& -2(-2 \lambda+2)+6(6 \lambda-3)+-3(-3 \lambda+9)=0 \\
\Rightarrow & \lambda=1
\end{aligned}
$$

So, foot of perpendicular is $\mathrm{B}(2,6,-2)$

SECTION D

24.

For Correct Figure
Equation of $A B: x=\frac{1}{7}(2 y+11)$
Equation of $B C: x=\frac{1}{3}(19-2 y)$
Equation of $A C: x=y+3$
Required area $=\int_{-2}^{2}(y+3) d y+\frac{1}{3} \int_{2}^{5}(19-2 y) d y-\frac{1}{7} \int_{-2}^{5}(2 y+11) d y \quad 1 \frac{1}{2}$

$$
\begin{aligned}
\Rightarrow \quad & \mathrm{A}
\end{aligned} \begin{aligned}
&(\mathrm{y}+3)^{2} \\
& 2]_{-2}^{2}+\frac{1}{3} \frac{(19-2 \mathrm{y})^{2}}{-4}\right]_{2}^{5}-\frac{1}{7} \frac{(2 \mathrm{y}+11)^{2}}{4}\right]_{-2}^{5} \\
&=\frac{1}{2}(25-1)-\frac{1}{12}(81-225)-\frac{1}{28}(441-49)=10 \text { sq.units }
\end{aligned}
$$

OR

Here $\mathrm{h}=\frac{4}{\mathrm{n}}$ or $\mathrm{nh}=4, \mathrm{f}(\mathrm{x})=3 \mathrm{x}^{2}+2 \mathrm{x}+1$

$$
\begin{align*}
& \int_{0}^{4}\left(3 x^{2}+2 x+1\right) d x=\lim _{h \rightarrow 0} h[f(0)+f(0+h)+f(0+2 h)+\ldots+f(0+\overline{n-1} h)] \tag{1}\\
& =\lim _{h \rightarrow 0} h\left[(1)+\left(3 h^{2}+2 h+1\right)+\left(3.2^{2} h^{2}+2.2 h+1\right)+\ldots+\left(3(n-1)^{2} h^{2}+2(n-1) h+1\right)\right] \\
& =\lim _{h \rightarrow 0} h\left[n+3 h^{2} \frac{n(n-1)(2 n-1)}{6}+2 h \frac{n(n-1)}{2}\right] \\
& =\lim _{h \rightarrow 0}\left[n h+\frac{(n h)(n h-h)(2 n h-h)}{2}+(n h)(n h-h)\right] \\
& =4+64+16=84
\end{align*}
$$

25. $\mathrm{C}_{1} \rightarrow \mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}$

$$
\begin{aligned}
& \left|\begin{array}{lll}
a & b & c \\
b & c & a \\
c & a & b
\end{array}\right|=0 \Rightarrow(a+b+c)\left|\begin{array}{lll}
1 & b & c \\
1 & c & a \\
1 & a & b
\end{array}\right|=0 \\
& R_{2} \rightarrow R_{2}-R_{1}, R_{3} \rightarrow R_{3}-R_{1} \\
& \Rightarrow \quad(a+b+c)\left|\begin{array}{ccc}
1 & b & c \\
0 & c-b & a-c \\
0 & a-b & b-c
\end{array}\right|=0 \\
& \Rightarrow \quad-(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)=0 \\
& \Rightarrow \quad \frac{-1}{2}(a+b+c)\left[(a-b)^{2}+(b-c)^{2}+(c-a)^{2}\right]=0 \\
& \Rightarrow \quad a-b=0=b-c=c-a \text { as } a+b+c \neq 0 \\
& \Rightarrow \quad a=b=c
\end{aligned}
$$

26. (i) for any $\mathrm{A}, \mathrm{B} \in \mathrm{P}(\mathrm{X}), \mathrm{A}^{*} \mathrm{~B}=\mathrm{A} \cap \mathrm{B}$ and $\mathrm{B}^{*} \mathrm{~A}=\mathrm{B} \cap \mathrm{A}$

$$
\text { as } \mathrm{A} \cap \mathrm{~B}=\mathrm{B} \cap \mathrm{~A} \therefore \mathrm{~A} * \mathrm{~B}=\mathrm{B}^{*} \mathrm{~A}
$$

$\Rightarrow \quad *$ is commutative
(ii) for any $\mathrm{A}, \mathrm{B}, \mathrm{C} \in \mathrm{P}(\mathrm{X})$

$$
(\mathrm{A} * \mathrm{~B}) * \mathrm{C}=(\mathrm{A} \cap \mathrm{~B}) * \mathrm{C}=(\mathrm{A} \cap \mathrm{~B}) \cap \mathrm{C}
$$

$$
\text { and } \mathrm{A}^{*}\left(\mathrm{~B}^{*} \mathrm{C}\right)=\mathrm{A}^{*}(\mathrm{~B} \cap \mathrm{C})=\mathrm{A} \cap(\mathrm{~B} \cap \mathrm{C})
$$

Since $(A \cap B) \cap C=A \cap(B \cap C) \Rightarrow *$ is associative
(iii) for every $\mathrm{A} \in \mathrm{P}(\mathrm{X}), \mathrm{A}^{*} \mathrm{X}=\mathrm{A} \cap \mathrm{X}=\mathrm{A}$

$$
\begin{equation*}
\mathrm{X} * \mathrm{~A}=\mathrm{X} \cap \mathrm{~A}=\mathrm{A} \tag{1}
\end{equation*}
$$

$\Rightarrow \quad \mathrm{X}$ is the identity element
(iv) $\mathrm{X}^{*} \mathrm{X}=\mathrm{X} \cap \mathrm{X}=\mathrm{X} \Rightarrow \mathrm{X}$ is the only invertible element. \because it is true only for X .

$$
f(x)=\frac{4 x}{3 x+4}
$$

for $x_{1}, x_{2} \in R-\left\{-\frac{4}{3}\right\}, f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow \frac{4 x_{1}}{3 x_{1}+4}=\frac{4 x_{2}}{3 x_{2}+4}$
$\therefore \quad 12 \mathrm{x}_{1} \mathrm{x}_{2}+16 \mathrm{x}_{1}=12 \mathrm{x}_{1} \mathrm{x}_{2}+16 \mathrm{x}_{2}$
$\Rightarrow \quad \mathrm{x}_{1}=\mathrm{x}_{2}$
$\therefore \quad \mathrm{f}$ is a $1-1$ function.
for $\mathrm{y}=\frac{4}{3}$, there is no x such that $\mathrm{f}(\mathrm{x})=\frac{4}{3}$
$\therefore \quad \mathrm{f}$ is not invertible

But $f: R-\left\{-\frac{4}{3}\right\} \rightarrow$ Range of f is ONTO so invertible.
and $f^{-1}(y)=\frac{4 y}{4-3 y}$
27. Let given volume of cone be, $V=\frac{1}{3} \pi r^{2} h$
$\therefore \quad$ Surface area (curved) $\mathrm{S}=\pi \mathrm{rl}=\pi \mathrm{r} \sqrt{\mathrm{r}^{2}+\mathrm{h}^{2}}$
or $\quad \mathrm{A}=\mathrm{S}^{2}=\pi \mathrm{r}^{2}\left(\mathrm{r}^{2}+\mathrm{h}^{2}\right)$

$$
\begin{aligned}
\mathrm{A} & =\mathrm{S}^{2}=\pi^{2} \mathrm{r}^{2}\left[\mathrm{r}^{2}+\left(\frac{3 \mathrm{~V}}{\pi \mathrm{r}^{2}}\right)^{2}\right] \quad[\operatorname{using}(\mathrm{i})] \\
& =\pi^{2}\left[\mathrm{r}^{4}+\frac{9 \mathrm{~V}^{2}}{\pi^{2} \mathrm{r}^{2}}\right] \\
\frac{\mathrm{dA}}{\mathrm{dr}} & =\pi^{2}\left[4 \mathrm{r}^{3}-\frac{18 \mathrm{~V}^{2}}{\pi^{2} \mathrm{r}^{3}}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\mathrm{dA}}{\mathrm{dr}}=0 \Rightarrow 4 \pi^{2} \mathrm{r}^{6}=18 \cdot \frac{1}{9} \pi^{2} \mathrm{r}^{4} \mathrm{~h}^{2} \\
\Rightarrow \quad & 2 \mathrm{r}^{2}=\mathrm{h}^{2} \text { or } \mathrm{h}=\sqrt{2} \mathrm{r}
\end{aligned}
$$

$$
\frac{\mathrm{d}^{2} \mathrm{~A}}{\mathrm{dr}^{2}}=\pi^{2}\left[12 \mathrm{r}^{2}+\frac{54 \mathrm{~V}^{2}}{\pi^{2} \mathrm{r}^{4}}\right]>0
$$

$\Rightarrow \quad$ for least curved surface area, height $=\sqrt{2}$ (radius)
OR

$$
\begin{aligned}
x & =a \cos \theta+a \theta \sin \theta \Rightarrow \frac{d x}{d \theta}=-a \sin \theta+a \sin \theta+a \theta \cos \theta \\
& =a \theta \cos \theta
\end{aligned}
$$

$$
y=a \sin \theta-a \theta \cos \theta \Rightarrow \frac{d y}{d \theta}=a \cos \theta-a \cos \theta+a \theta \sin \theta
$$

$$
=\mathrm{a} \theta \sin \theta
$$

$$
\frac{d y}{d x}=\frac{a \theta \sin \theta}{a \theta \cos \theta}=\tan \theta
$$

Equation of tangent is

$$
\begin{equation*}
y-(a \sin \theta-a \theta \cos \theta)=\tan \theta(x-a \cos \theta-a \theta \sin \theta) \tag{1}
\end{equation*}
$$

Equation of normal is

$$
\begin{aligned}
& y-(a \sin \theta-a \theta \cos \theta)=-\frac{\cos \theta}{\sin \theta}(x-a \cos \theta-a \theta \sin \theta) \\
\Rightarrow & y \sin \theta+x \cos \theta=a \\
& \text { distance of normal from origin }=\frac{|-a|}{\sqrt{\sin ^{2} \theta+\cos ^{2} \theta}}=|a|=\text { constant }
\end{aligned}
$$

28. Let X denote the number of defective bulbs drawn

$$
\begin{aligned}
\Rightarrow \quad \mathrm{p} & =\frac{1}{5}, \mathrm{q}=\frac{4}{5} \\
\mathrm{X} & =0,1,2,3 .
\end{aligned}
$$

$$
\begin{array}{ll}
P(X=0)=\frac{4}{5} \times \frac{4}{5} \times \frac{4}{5}=\frac{64}{125} & \frac{1}{2} \\
P(X=1)=3 \times \frac{4}{5} \times \frac{4}{5} \times \frac{1}{5}=\frac{48}{125} & \frac{1}{2}
\end{array}
$$

$$
\mathrm{P}(\mathrm{X}=2)=3 \times \frac{4}{5} \times \frac{1}{5} \times \frac{1}{5}=\frac{12}{125}
$$

$$
\mathrm{P}(\mathrm{X}=3)=\frac{1}{5} \times \frac{1}{5} \times \frac{1}{5}=\frac{1}{125}
$$

Mean $=\frac{48}{125}+\frac{24}{125}+\frac{3}{125}=\frac{75}{125}=\frac{3}{5}$

Variance $=\left(\frac{48}{125}+\frac{48}{125}+\frac{9}{125}\right)-\left(\frac{3}{5}\right)^{2}=\frac{60}{125}=\frac{12}{25}$
29. Equation of the plane passing through three points is.

$$
\begin{aligned}
& \quad\left|\begin{array}{ccc}
x-1 & y-1 & z \\
0 & 1 & 1 \\
-3 & 1 & -1
\end{array}\right|=0 \\
& \text { or } \quad 2 x+3 y-3 z-5=0 \\
& \text { Since } 2(3)+3(1)-3(3)=0 \Rightarrow \text { lines is parallel to the plane } \\
& \therefore \quad \text { Distance }=\left|\frac{2(3)+3(5)+(-3)(-2)-5}{\sqrt{(2)^{2}+(3)^{2}+(-3)^{2}}}\right|=\sqrt{22}
\end{aligned}
$$

QUESTION PAPER CODE 65/3

EXPECTED ANSWER/VALUE POINTS
 SECTION A

1. $\int \frac{3 x}{3 x-1} d x=\int \frac{3 x-1+1}{3 x-1} d x$

$$
=\mathrm{x}+\frac{1}{3} \log |3 \mathrm{x}-1|+\mathrm{C}
$$

2. $(\vec{a} \times \vec{b})^{2}+(\vec{a} \cdot \vec{b})^{2}=225 \Rightarrow|\vec{a}|^{2}|\vec{b}|^{2}\left(\sin ^{2} \theta+\cos ^{2} \theta\right)=225$
$\Rightarrow \quad(5)^{2}|\overrightarrow{\mathrm{~b}}|^{2}=225 \Rightarrow|\overrightarrow{\mathrm{~b}}|=3$
3. $\left|\mathrm{A}^{-1}\right|=\frac{1}{|\mathrm{~A}|}$

$$
=\frac{1}{4}
$$

4. $\lim _{x \rightarrow 0} \frac{\sin \frac{3 x}{2}}{2}=\lim _{x \rightarrow 0} \frac{3}{2} \cdot \frac{\sin \frac{3 x}{2}}{\frac{3 x}{2}}=\frac{3}{2}$
$\Rightarrow \quad \mathrm{k}=\frac{3}{2}$

SECTION B

5. Let, Number of executive class tickets be x and economy class tickets be y.
$\therefore \quad$ LPP is Maximise Profit $P=1500 x+1000 y$
Subject to: $x+y \leq 250, x \geq 25, y \geq 3 x$
6. Given differential equation can be written as

$$
\begin{equation*}
\frac{d y}{d x}+\left(1-\frac{1}{x}\right) y=\frac{1}{x} \tag{1}
\end{equation*}
$$

Getting integrating factor $=e^{x-\log x}$ or $\frac{e^{x}}{x}$
7. $\int \frac{\mathrm{x}}{\sqrt{32-\mathrm{x}^{2}}} \mathrm{dx}=-\int 1 . \mathrm{dt}$ where $32-\mathrm{x}^{2}=\mathrm{t}^{2}$

$$
=-t+C=-\sqrt{32-x^{2}}+C
$$

8. $f(x)=\sin 2 x-\cos 2 x$

$$
\Rightarrow \quad \mathrm{f}^{\prime}(\mathrm{x})=2 \cos 2 \mathrm{x}+2 \sin 2 \mathrm{x}
$$

$$
\mathrm{f}^{\prime}\left(\frac{\pi}{6}\right)=2\left[\cos \frac{\pi}{3}+\sin \frac{\pi}{3}\right]=(1+\sqrt{3})
$$

9. \quad Getting $\left(\begin{array}{cc}2 x+3 & 6 \\ 15 & 2 y-4\end{array}\right)=\left(\begin{array}{cc}7 & 6 \\ 15 & 14\end{array}\right)$

$$
\begin{aligned}
& 2 \mathrm{x}+3=7 \text { and } 2 \mathrm{y}-4=14 \\
\Rightarrow \quad & \mathrm{x}=2, \mathrm{y}=9
\end{aligned}
$$

10. For three vectors to be coplanar

$$
\begin{aligned}
& \left|\begin{array}{ccc}
1 & -1 & 1 \\
3 & 1 & 2 \\
1 & \lambda & -3
\end{array}\right|=0 \\
& \Rightarrow \lambda=15
\end{aligned}
$$

11. For $\frac{\mathrm{dy}}{1+\mathrm{y}^{2}}=\frac{\mathrm{dx}}{1+\mathrm{x}^{2}}$

Integrating, we get
$\tan ^{-1} y=\tan ^{-1} x+C$.

As $x=0, y=\sqrt{3}$ so $\tan ^{-1} \sqrt{3}=C \Rightarrow C=\frac{\pi}{3}$

Solution is $\tan ^{-1} y=\tan ^{-1} x+\frac{\pi}{3}$
12. Radius $=\frac{1}{3}(3 x+1)$

$$
\begin{aligned}
& \mathrm{V}=\frac{4}{3} \pi \frac{(3 \mathrm{x}+1)^{3}}{27} \\
& \frac{\mathrm{dV}}{\mathrm{dx}}=\frac{12 \pi \times 3}{81}(3 \mathrm{x}+1)^{2}=\frac{4 \pi}{9}(3 \mathrm{x}+1)^{2}
\end{aligned}
$$

SECTION C

13. Let the award for regularily be $₹ \mathrm{x}$ and for hard work be $₹ \mathrm{y}$.

$$
\begin{array}{ll}
\therefore & x+y=6000 \text { and } \\
& x+3 y=11000 \\
\Rightarrow & \left(\begin{array}{ll}
1 & 1 \\
1 & 3
\end{array}\right)\binom{x}{y}=\binom{6000}{11000} \text { or } A \cdot X=B \\
\therefore & X=A^{-1} B \text { as }|A|=2 \neq 0 . \\
\Rightarrow & \binom{x}{y}=\frac{1}{2}\left(\begin{array}{cc}
3 & -1 \\
-1 & 1
\end{array}\right)\binom{6000}{11000} \\
& \binom{x}{y}=\binom{3500}{2500} \quad \therefore \quad x=₹ 3500, y=₹ 2500
\end{array}
$$

14. Let the events be
E_{1} : tansferring a red ball fromA to B
E_{2} : transferring a black ball from A to B
A: Getting a red ball from bag B

$$
\begin{aligned}
& \mathrm{P}\left(\mathrm{E}_{1}\right)=\frac{3}{5}, \mathrm{P}\left(\mathrm{E}_{2}\right)=\frac{2}{5} \\
& \mathrm{P}\left(\mathrm{~A} / \mathrm{E}_{1}\right)=\frac{1}{2}, \mathrm{P}\left(\mathrm{~A} / \mathrm{E}_{2}\right)=\frac{1}{3} \\
& \mathrm{P}\left(\mathrm{E}_{1} / \mathrm{A}\right)=\frac{\mathrm{P}\left(\mathrm{E}_{1}\right) \cdot \mathrm{P}\left(\mathrm{~A} / \mathrm{E}_{1}\right)}{\mathrm{P}\left(\mathrm{E}_{1}\right) \mathrm{P}\left(\mathrm{~A} / \mathrm{E}_{1}\right)+\mathrm{P}\left(\mathrm{E}_{2}\right) \mathrm{P}\left(\mathrm{~A} / \mathrm{E}_{2}\right)}
\end{aligned}
$$

$$
=\frac{\frac{3}{5} \cdot \frac{1}{2}}{\frac{3}{5} \cdot \frac{1}{2}+\frac{2}{5} \cdot \frac{1}{3}}=\frac{9}{13}
$$

OR

$$
\begin{array}{rlr}
\text { Required probability }=\mathrm{P}(\mathrm{~A} \cup \mathrm{~B}) & 1 \\
& =\mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B})-\mathrm{P}(\mathrm{~A}) \cdot \mathrm{P}(\mathrm{~B}) & \frac{1}{2} \\
& =\mathrm{P}(\mathrm{~A})[1-\mathrm{P}(\mathrm{~B})]+1-\mathrm{P}\left(\mathrm{~B}^{\prime}\right) & \frac{1}{2} \\
& =\mathrm{P}(\mathrm{~A}) \mathrm{P}\left(\mathrm{~B}^{\prime}\right)-\mathrm{P}\left(\mathrm{~B}^{\prime}\right)+1 & 1 \\
& =\left(1-\mathrm{P}\left(\mathrm{~B}^{\prime}\right)(1-\mathrm{P}(\mathrm{~A}))=1-\mathrm{P}\left(\mathrm{~A}^{\prime}\right) \mathrm{P}\left(\mathrm{~B}^{\prime}\right)\right. & 1
\end{array}
$$

15. Given equation can be written as $\tan ^{-1}(1)-\tan ^{-1} x=\frac{1}{2} \tan ^{-1} x$

$$
\begin{aligned}
& \Rightarrow \quad \frac{3}{2} \tan ^{-1} x=\frac{\pi}{4} \text { or } \tan ^{-1} x=\frac{\pi}{6} \\
& \Rightarrow \quad x=\tan \frac{\pi}{6}=\frac{1}{\sqrt{3}}
\end{aligned}
$$

Equation of line passing through B and C is

$$
\frac{x}{2}=\frac{y+1}{-2}=\frac{z-3}{-4} \text { or } \frac{x}{1}=\frac{y+1}{-1}=\frac{z-3}{-2}
$$

Any point D on BC can be

$$
[\lambda,-\lambda-1,-2 \lambda+3] \text { for some value of } \lambda \text {. }
$$

$\therefore \quad$ Direction ratios of AD are $<\lambda-1,-\lambda-9,-2 \lambda-1>$

$$
\begin{array}{rlr}
& \mathrm{AD} \perp \mathrm{BC} \Rightarrow 1(\lambda-1)-1(-\lambda-9)-2(-2 \lambda-1)=0 & \frac{1}{2} \\
\Rightarrow & \lambda=-\frac{5}{3} & \frac{1}{2} \\
\therefore & \mathrm{D} \text { is }\left(-\frac{5}{3}, \frac{2}{3}, \frac{19}{3}\right) & \frac{1}{2}
\end{array}
$$

17. Let the vector $\vec{p}=(2 \vec{a}+\vec{b}+2 \vec{c})$ makes angles α, β, γ respectively with the vector $\vec{a}, \vec{b}, \vec{c}$

Given that $|\vec{a}|=|\vec{b}|=|\vec{c}|$ and $\vec{a} \cdot \vec{b}=\vec{c} \cdot \vec{a}=0$

$$
\begin{aligned}
\cos \alpha & =\frac{(2 \vec{a}+\vec{b}+2 \vec{c}) \cdot \vec{a}}{|2 \vec{a}+\vec{b}+2 \vec{c}||\vec{a}|} \\
& =\frac{2|a|^{2}}{3|\vec{a}||\vec{a}|}=\frac{2}{3} \Rightarrow \alpha=\cos ^{-1} \frac{2}{3} \\
\cos \beta & =\frac{(2 \vec{a}+\vec{b}+2 \overrightarrow{\mathrm{c}}) \cdot \vec{b}}{|2 \vec{a}+\vec{b}+2 \vec{c}||\vec{b}|}=\frac{|\vec{b}|^{2}}{3|\vec{b}||\vec{b}|}=\frac{1}{3} \Rightarrow \beta=\cos ^{-1} \frac{1}{3} \\
\cos \gamma & =\frac{(2 \vec{a}+\vec{b}+2 \overrightarrow{\mathrm{c}}) \cdot \overrightarrow{\mathrm{c}}}{|2 \vec{a}+\vec{b}+2 \vec{c}||\vec{c}|}=\frac{2|\overrightarrow{\mathrm{c}}|^{2}}{3|\overrightarrow{\mathrm{c}}||\overrightarrow{\mathrm{c}}|}=\frac{2}{3} \Rightarrow \gamma=\cos ^{-1} \frac{2}{3}
\end{aligned}
$$ strictly decreasing in $(-2,3)$

19. For $\int \frac{x^{2}+x+1}{(x+1)^{2}(x+2)} d x=\int\left[\frac{3}{x+2}-\frac{2}{x+1}+\frac{1}{(x+1)^{2}}\right] d x$

$$
=3 \log |\mathrm{x}+2|-2 \log |\mathrm{x}+1|-\frac{1}{\mathrm{x}+1}+\mathrm{C}
$$

$$
\begin{aligned}
I & =\int(x-3) \sqrt{3-2 x-x^{2}} d x=\int\left[-\frac{1}{2}(-2-2 x)-4\right] \sqrt{3-2 x-x^{2}} d x \\
& =-\frac{1}{2} \int(-2-2 x) \sqrt{3-2 x-x^{2}} d x-4 \int \sqrt{4-(x+1)^{2}} d x \\
& =-\frac{1}{3}\left(3-2 x-x^{2}\right)^{3 / 2}-4\left[\frac{(x+1)}{2} \sqrt{3-2 x-x^{2}}+2 \sin ^{-1}\left(\frac{x+1}{2}\right)\right]+C
\end{aligned}
$$

20. Let $u=(\cos x)^{x} \Rightarrow \log u=x \cdot \log \cos x$

$$
\left.\begin{array}{ll}
\Rightarrow & \frac{d u}{d x}=(\cos x)^{x} \cdot[-x \tan x+\log \cos x] \\
\therefore & y=(\cos x)^{x}+\sin ^{-1} \sqrt{3 x} \Rightarrow \frac{d y}{d x}=\frac{d u}{d x}+\frac{1}{2} \\
\therefore & \frac{d y}{d x}=(\cos x)^{x}[-x \tan x+\log \cos x]+\frac{\sqrt{3}}{2 \sqrt{x}} \\
2 \sqrt{x} & \frac{1}{\sqrt{1-3 x}}
\end{array} 1 \frac{1}{2}\right) \frac{1}{2}
$$

OR
$y=\left(\sec ^{-1} x\right)^{2} \Rightarrow \frac{d y}{d x}=2 \sec ^{-1} x \cdot \frac{1}{x \sqrt{x^{2}-1}}$
$\therefore \quad \mathrm{x} \sqrt{\mathrm{x}^{2}-1} \cdot \frac{\mathrm{dy}}{\mathrm{dx}}=2 \sec ^{-1} \mathrm{x}$
$\Rightarrow \quad x \sqrt{x^{2}-1} \cdot \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}\left(\frac{x^{2}}{\sqrt{x^{2}-1}}+\sqrt{x^{2}-1}\right)=\frac{2}{x \sqrt{x^{2}-1}}$
$\Rightarrow \quad x^{2}\left(x^{2}-1\right) \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x} \cdot x\left(2 x^{2}-1\right)=2$
i.e., $\quad x^{2}\left(x^{2}-1\right) \frac{d^{2} y}{d x^{2}}+\left(2 x^{3}-x\right) \frac{d y}{d x}=2$
21.

Correct lines $1 \frac{1}{2}$ Correct shading
$Z(20,0)=2100, Z(40,0)=4200, Z(20,30)=4800$
$Z(30,20)=4950$
max. value of Z is 4950 when $x=30, y=20$
22. Given differential equation can be written as,

$$
\frac{d y}{d x}=\frac{2 x y+y^{2}}{2 x^{2}}
$$

Put $y=v x, \frac{d y}{d x}=v+x \frac{d v}{d x}$
so, $\quad v+x \frac{d v}{d x}=\frac{2 v+v^{2}}{2}$

$$
\begin{aligned}
& \int \frac{2}{v^{2}} d v=\int \frac{d x}{x} \\
& \frac{-2}{v}=\log |x|+C \Rightarrow \frac{-2 x}{y}=\log |x|+C
\end{aligned}
$$

$$
y=2, x=1 \text { gives } C=-1
$$

Solution is $\frac{2 x}{y}=1-\log |x|$ or $y=\frac{2 x}{1-\log |x|} \quad$ where, $x \neq 0$, e
23. $I=\int_{0}^{\pi} \frac{x}{1+\sin x} d x=\int_{0}^{\pi} \frac{(\pi-x)}{1+\sin (\pi-x)} d x$

$$
\begin{aligned}
& \Rightarrow \quad \mathrm{I}=\pi \int_{0}^{\pi} \frac{\mathrm{dx}}{1+\sin \mathrm{x}}-\mathrm{I} \\
& \Rightarrow \quad 2 \mathrm{I}=\pi \int_{0}^{\pi} \frac{\mathrm{dx}}{1+\sin \mathrm{x}} \\
& \quad=\pi \int_{0}^{\pi} \frac{(1-\sin \mathrm{x})}{\cos ^{2} \mathrm{x}} \mathrm{dx}=\pi\left[\int_{0}^{\pi} \sec ^{2} \mathrm{xdx}-\int_{0}^{\pi} \sec \mathrm{x} \tan \mathrm{xdx}\right] \\
& \quad=\pi|\tan \mathrm{x}|_{0}^{\pi}-\pi|\sec \mathrm{x}|_{0}^{\pi}
\end{aligned}
$$

$$
=0-\pi(-2)
$$

$$
\Rightarrow \quad \mathrm{I}=\pi
$$

SECTION D

24.

Equation ofAB: $x=\frac{1}{7}(2 y+11)$

Equation of $\mathrm{BC}: \mathrm{x}=\frac{1}{3}(19-2 \mathrm{y})$
Equation of AC: $x=y+3$
Required area $=\int_{-2}^{2}(y+3) d y+\frac{1}{3} \int_{2}^{5}(19-2 y) d y-\frac{1}{7} \int_{-2}^{5}(2 y+11)$ dy $\quad 1 \frac{1}{2}$
$\left.\left.\left.\Rightarrow \mathrm{A}=\frac{(\mathrm{y}+3)^{2}}{2}\right]_{-2}^{2}+\frac{1}{3} \frac{(19-2 \mathrm{y})^{2}}{-4}\right]_{2}^{5}-\frac{1}{7} \frac{(2 \mathrm{y}+11)^{2}}{4}\right]_{-2}^{5}$
$=\frac{1}{2}(25-1)-\frac{1}{12}(81-225)-\frac{1}{28}(441-49)=10$ sq.units

Here $\mathrm{h}=\frac{4}{\mathrm{n}}$ or $\mathrm{nh}=4, \mathrm{f}(\mathrm{x})=3 \mathrm{x}^{2}+2 \mathrm{x}+1$

$$
\begin{align*}
& \int_{0}^{4}\left(3 x^{2}+2 \mathrm{x}+1\right) \mathrm{dx}=\lim _{\mathrm{h} \rightarrow 0} \mathrm{~h}[\mathrm{f}(0)+\mathrm{f}(0+\mathrm{h})+\mathrm{f}(0+2 \mathrm{~h})+\ldots+\mathrm{f}(0+\overline{\mathrm{n}-1} \mathrm{~h})] \tag{1}\\
& =\lim _{\mathrm{h} \rightarrow 0} \mathrm{~h}\left[(1)+\left(3 \mathrm{~h}^{2}+2 \mathrm{~h}+1\right)+\left(3.2^{2} \mathrm{~h}^{2}+2.2 \mathrm{~h}+1\right)+\ldots+\left(3(\mathrm{n}-1)^{2} \mathrm{~h}^{2}+2(\mathrm{n}-1) \mathrm{h}+1\right)\right] \\
& =\lim _{\mathrm{h} \rightarrow 0} \mathrm{~h}\left[\mathrm{n}+3 \mathrm{~h}^{2} \frac{\mathrm{n}(\mathrm{n}-1)(2 \mathrm{n}-1)}{6}+2 \mathrm{~h} \frac{\mathrm{n}(\mathrm{n}-1)}{2}\right] \\
& =\lim _{\mathrm{h} \rightarrow 0}\left[\mathrm{nh}+\frac{(\mathrm{nh})(\mathrm{nh}-\mathrm{h})(2 \mathrm{nh}-\mathrm{h})}{2}+(\mathrm{nh})(\mathrm{nh}-\mathrm{h})\right] \\
& =4+64+16=84
\end{align*}
$$

25. Let given volume of cone be, $V=\frac{1}{3} \pi r^{2} h$
$\therefore \quad$ Surface area (curved) $\mathrm{S}=\pi \mathrm{rl}=\pi \mathrm{r} \sqrt{\mathrm{r}^{2}+\mathrm{h}^{2}}$
or $\quad \mathrm{A}=\mathrm{S}^{2}=\pi \mathrm{r}^{2}\left(\mathrm{r}^{2}+\mathrm{h}^{2}\right)$

$$
\begin{array}{rlr}
\mathrm{A} & =\mathrm{S}^{2}=\pi^{2} \mathrm{r}^{2}\left[\mathrm{r}^{2}+\left(\frac{3 \mathrm{~V}}{\pi \mathrm{r}^{2}}\right)^{2}\right] & {[\operatorname{using}(\mathrm{i})]} \\
& =\pi^{2}\left[\mathrm{r}^{4}+\frac{9 \mathrm{~V}^{2}}{\pi^{2} \mathrm{r}^{2}}\right] & 1 \frac{1}{2} \\
\frac{\mathrm{dA}}{\mathrm{dr}} & =\pi^{2}\left[4 \mathrm{r}^{3}-\frac{18 \mathrm{~V}^{2}}{\pi^{2} \mathrm{r}^{3}}\right] & 1 \\
\frac{\mathrm{dA}}{\mathrm{dr}} & =0 \Rightarrow 4 \pi^{2} \mathrm{r}^{6}=18 \cdot \frac{1}{9} \pi^{2} \mathrm{r}^{4} \mathrm{~h}^{2} & 1 \frac{1}{2} \\
\Rightarrow \quad 2 \mathrm{r}^{2} & =\mathrm{h}^{2} \text { or } \mathrm{h}=\sqrt{2} \mathrm{r} \\
\frac{\mathrm{~d}^{2} \mathrm{~A}}{\mathrm{dr}^{2}} & =\pi^{2}\left[12 \mathrm{r}^{2}+\frac{54 \mathrm{~V}^{2}}{\pi^{2} \mathrm{r}^{4}}\right]>0
\end{array}
$$

$\Rightarrow \quad$ for least curved surface area, height $=\sqrt{2}$ (radius)

$$
\begin{aligned}
x & =a \cos \theta+a \theta \sin \theta \Rightarrow \frac{d x}{d \theta}=-a \sin \theta+a \sin \theta+a \theta \cos \theta \\
& =a \theta \cos \theta \\
y & =a \sin \theta-a \theta \cos \theta \Rightarrow \frac{d y}{d \theta}=a \cos \theta-a \cos \theta+a \theta \sin \theta \\
& =a \theta \sin \theta \\
\frac{d y}{d x} & =\frac{a \theta \sin \theta}{a \theta \cos \theta}=\tan \theta
\end{aligned}
$$

Equation of tangent is

$$
\begin{equation*}
y-(a \sin \theta-a \theta \cos \theta)=\tan \theta(x-a \cos \theta-a \theta \sin \theta) \tag{1}
\end{equation*}
$$

Equation of normal is

$$
\begin{align*}
& y-(a \sin \theta-a \theta \cos \theta)=-\frac{\cos \theta}{\sin \theta}(x-a \cos \theta-a \theta \sin \theta) \\
\Rightarrow & y \sin \theta+x \cos \theta=a \\
& \text { distance of normal from origin }=\frac{|-a|}{\sqrt{\sin ^{2} \theta+\cos ^{2} \theta}}=|a|=\text { constant } \tag{1}
\end{align*}
$$

26. (i) for any $\mathrm{A}, \mathrm{B} \in \mathrm{P}(\mathrm{X}), \mathrm{A}^{*} \mathrm{~B}=\mathrm{A} \cap \mathrm{B}$ and $\mathrm{B}^{*} \mathrm{~A}=\mathrm{B} \cap \mathrm{A}$

$$
\text { as } \mathrm{A} \cap \mathrm{~B}=\mathrm{B} \cap \mathrm{~A} \therefore \mathrm{~A}^{*} \mathrm{~B}=\mathrm{B}^{*} \mathrm{~A}
$$

$\Rightarrow \quad *$ is commutative
(ii) for any $\mathrm{A}, \mathrm{B}, \mathrm{C} \in \mathrm{P}(\mathrm{X})$

$$
(\mathrm{A} * \mathrm{~B}) * \mathrm{C}=(\mathrm{A} \cap \mathrm{~B}) * \mathrm{C}=(\mathrm{A} \cap \mathrm{~B}) \cap \mathrm{C}
$$

$$
\text { and } \mathrm{A}^{*}\left(\mathrm{~B}^{*} \mathrm{C}\right)=\mathrm{A}^{*}(\mathrm{~B} \cap \mathrm{C})=\mathrm{A} \cap(\mathrm{~B} \cap \mathrm{C})
$$

$$
\text { Since }(\mathrm{A} \cap \mathrm{~B}) \cap \mathrm{C}=\mathrm{A} \cap(\mathrm{~B} \cap \mathrm{C}) \Rightarrow^{*} \text { is associative }
$$

(iii) for every $\mathrm{A} \in \mathrm{P}(\mathrm{X}), \mathrm{A} * \mathrm{X}=\mathrm{A} \cap \mathrm{X}=\mathrm{A}$

$$
\mathrm{X} * \mathrm{~A}=\mathrm{X} \cap \mathrm{~A}=\mathrm{A}
$$

$\Rightarrow \quad \mathrm{X}$ is the identity element
(iv) $\mathrm{X} * \mathrm{X}=\mathrm{X} \cap \mathrm{X}=\mathrm{X} \Rightarrow \mathrm{X}$ is the only invertible element. \because it is true only for X .

$$
f(x)=\frac{4 x}{3 x+4}
$$

for $\mathrm{x}_{1}, \mathrm{x}_{2} \in \mathrm{R}-\left\{-\frac{4}{3}\right\}, \mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{f}\left(\mathrm{x}_{2}\right) \Rightarrow \frac{4 \mathrm{x}_{1}}{3 \mathrm{x}_{1}+4}=\frac{4 \mathrm{x}_{2}}{3 \mathrm{x}_{2}+4}$
$\therefore \quad 12 \mathrm{x}_{1} \mathrm{x}_{2}+16 \mathrm{x}_{1}=12 \mathrm{x}_{1} \mathrm{x}_{2}+16 \mathrm{x}_{2}$
$\Rightarrow \quad \mathrm{x}_{1}=\mathrm{x}_{2}$
$\therefore \quad$ fis a $1-1$ function.
for $\mathrm{y}=\frac{4}{3}$, there is no x such that $\mathrm{f}(\mathrm{x})=\frac{4}{3}$
$\therefore \quad \mathrm{f}$ is not invertible
But $f: R-\left\{-\frac{4}{3}\right\} \rightarrow$ Range of f is ONTO so invertible.
and $f^{-1}(y)=\frac{4 y}{4-3 y}$
27. $\mathrm{C}_{1} \rightarrow \mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}$

$$
\begin{aligned}
& \left|\begin{array}{lll}
a & b & c \\
b & c & a \\
c & a & b
\end{array}\right|=0 \Rightarrow(a+b+c)\left|\begin{array}{lll}
1 & b & c \\
1 & c & a \\
1 & a & b
\end{array}\right|=0 \\
& R_{2} \rightarrow R_{2}-R_{1}, R_{3} \rightarrow R_{3}-R_{1} \\
& \Rightarrow \quad(a+b+c)\left|\begin{array}{ccc}
1 & b & c \\
0 & c-b & a-c \\
0 & a-b & b-c
\end{array}\right|=0 \\
& \Rightarrow \quad-(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)=0 \\
& \Rightarrow \quad \frac{-1}{2}(a+b+c)\left[(a-b)^{2}+(b-c)^{2}+(c-a)^{2}\right]=0 \\
& \Rightarrow \quad a-b=0=b-c=c-a \text { as } a+b+c \neq 0 \\
& \Rightarrow \quad a=b=c
\end{aligned}
$$

28. Equation of plane passing through $\mathrm{A}(1,-2,2), \mathrm{B}(4,2,3)$ and $\mathrm{C}(3,0,2)$ is

$$
\begin{align*}
& {[\overrightarrow{\mathrm{r}}-(\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+2 \hat{\mathrm{k}})] \cdot[(3 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}+\hat{\mathrm{k}}) \times(2 \hat{\mathrm{i}}+2 \hat{\mathrm{j}})]=0 } \\
\Rightarrow \quad & \overrightarrow{\mathrm{r}} \cdot(\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}})=5 \tag{i}
\end{align*}
$$

Any point on the given line is $(2+3 \lambda,-1+4 \lambda, 2+2 \lambda)$
$\Rightarrow \quad$ When the line intersects the plane
$((2+3 \lambda) \hat{i}+(-1+4 \lambda) \hat{j}+(2+2 \lambda) \hat{k}) \cdot(\hat{i}-\hat{j}+\hat{k})=5$
$\Rightarrow \lambda=0$
$\Rightarrow \quad$ The required point is $(2,-1,2)$
29. $\mathrm{P}($ probability of getting 4$)=\frac{1}{10}$
$P($ probability of not getting 4$)=\frac{9}{10}$

X	0	1	2
$\mathrm{P}(\mathrm{X})$	$\left(\frac{9}{10}\right)^{2}=\frac{81}{100}$	$2 \times \frac{9}{10} \times \frac{1}{10}=\frac{18}{100}$	$\left(\frac{1}{10}\right)^{2}=\frac{1}{100}$
$\mathrm{XP}(\mathrm{X})$	0	$\frac{18}{100}$	$\frac{2}{100}$
$\mathrm{X}^{2} \mathrm{P}(\mathrm{X})$	0	$\frac{18}{100}$	$\frac{4}{100}$

Variance $=\Sigma \mathrm{X}^{2} \mathrm{P}(\mathrm{X})-[\Sigma \mathrm{XP}(\mathrm{X})]^{2}$

$$
\begin{equation*}
=\frac{22}{100}-\left(\frac{20}{100}\right)^{2}=\frac{18}{100}=0.18 \tag{1}
\end{equation*}
$$

