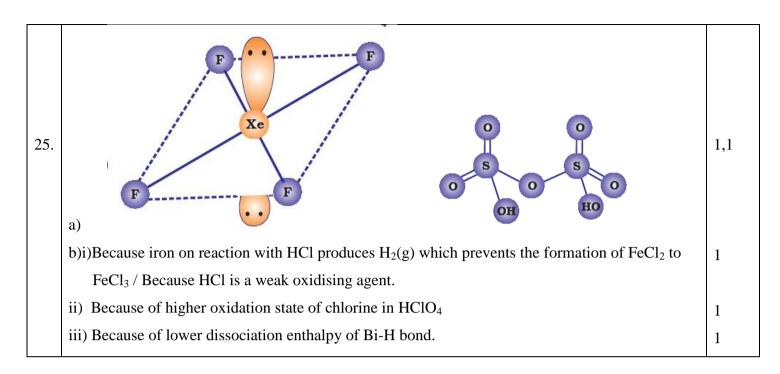
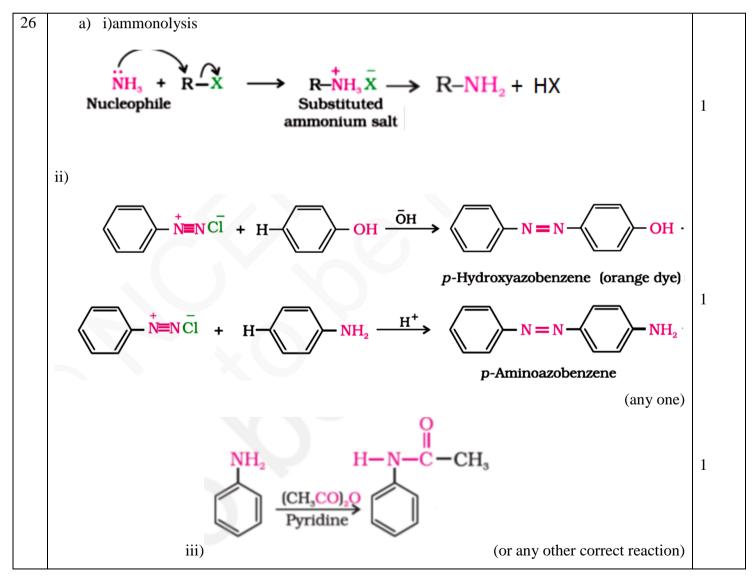
CHEMISTRY MARKING SCHEME 2015 <u>SET -56/2/1 F</u>


Qn	Value points	Marks
1	CH ₃ CH ₂ I, because I is a better leaving group.	1/2 , 1/2
2	Rhombic sulphur	1
3	3-Methylbut-2-en-1-ol	1
4	X_2Y_3	1
5	Because of weak van der Waals' forces in physisorption whereas there are strong chemical forces in chemisorption.	1
6.	i) tris-(ethane-1,2-diamine)chromium(III) chloride	1
	ii) K ₃ [Cr(C ₂ O ₄) ₃]	1
7.	When solute- solvent interaction is stronger than pure solvent or solute interaction.	1
	Eg: chloroform and acetone (or any other correct eg)	1/2
	ΔmixH= negative	1/2
	OR	
7.	Azeotropes -binary mixtures having same composition in liquid and vapour phase and boil at	1
	constant temperature / is a liquid mixture which distills at constant temperature without	
	undergoing change in composition	1/2
	Maximum boiling azeotropes	1/2
	eg: HNO_3 (68%) and $H_2O(32\%)$ (or any other correct example)	
8.	(i) CH ₃ MgBr/ H ₃ O ⁺	1
	(ii) PCl ₅ / PCl ₃ / SOCl ₂	1
9.	a) Cu^{2+} (aq) + 2 e \longrightarrow $Cu(s)$ because of high E^0 value/ more negative ΔG	1/2 , 1/2
	b) It states that limiting molar conductivity of an electrolyte is equal to the sum of the individual	1
	contributions of cations and anions of the electrolyte.	
	It is used to calculate the Λm^0 for weak electrolyte / It is used to calculate α and Kc	1
	(Any one application)	1


b) Mn, due to involvement of 4s and 3d electrons/ presence of maximum unpaired delectrons. 11 \[\Delta T_f = i \cdot K_f m \] = i \cdot K_f \text{w}_B \times 1000 \\	1/2 ,1/2
11 ∆T _f = i. K _f m = i K _f w _B x 1000 M _B x w _A 2K= 2 x 1.86K kg/mol x w _B x 1000 58.5 g/mol x 37.2 g w _B = 1.17g 12 n HOH ₂ C − CH ₂ OH + n HOOC ← COOH Ethylene glycol (Ethane-1, 2 − dtol) Terephthaltc actd (Benzene-1.4 − dt carboxylic actd) i) OH +CH ₂ O Phenol and formaldehyde CH ₂ = CH − CH = CH ₂ C ₆ H ₅ CH=CH ₂ 1, 3-Butadiene Styrene iii) (Note: half mark for structure/s and half mark for name/s) 13 i) Fructose ii) Acidic amino acid has more number of acidic carboxylic group than basic an group whereas basic amino acid has more number of basic amino group. Vitamin C	
= i K _f w _B x 1000 M _B x w _A 2K= 2 x 1.86K kg/mol x w _B x 1000 58.5 g/mol x 37.2 g w _B = 1.17g 12 n HOH ₂ C - CH ₂ OH + n HOOC COOH Ethylene glycol (Ethane-1, 2 - dtol) i) OH +CH ₂ O ii) Phenol and formaldehyde CH ₂ = CH - CH = CH ₂ C ₆ H ₅ CH=CH ₂ 1, 3-Butadiene Styrene iii) (Note: half mark for structure/s and half mark for name/s) 13 i) Fructose ii) Acidic amino acid has more number of acidic carboxylic group than basic an group whereas basic amino acid has more number of basic amino group.	1
M _B x w _A 2K= 2 x 1.86K kg/mol x w _B x 1000 58.5 g/mol x 37.2 g w _B = 1.17g 12 n HOH ₂ C - CH ₂ OH + n HOOC ← COOH Ethylene glycol (Ethane-1, 2 - diol) OH +CH ₂ O ii) Phenol and formaldehyde CH ₂ = CH - CH = CH ₂ C ₆ H ₅ CH=CH ₂ 1, 3-Butadiene (Note: half mark for structure/s and half mark for name/s) 13 i) Fructose ii) Acidic amino acid has more number of acidic carboxylic group than basic an group whereas basic amino acid has more number of basic amino group. Vitamin C	1
2K= 2 x 1.86K kg/mol x w _B x 1000 58.5 g/mol x 37.2 g w _B = 1.17g 12 n HOH ₂ C - CH ₂ OH + n HOOC———————————————————————————————————	1
58.5 g/mol x 37.2 g w _B = 1.17g 12 n HOH ₂ C - CH ₂ OH + n HOOC COOH Ethylene glycol (Benzene-1, 4 - di carboxylic acid) i) OH +CH ₂ O ii) Phenol and formaldehyde CH ₂ = CH - CH = CH ₂ C ₆ H ₅ CH=CH ₂ 1, 3-Butadiene (Note: half mark for structure/s and half mark for name/s) 13 i) Fructose ii) Acidic amino acid has more number of acidic carboxylic group than basic an group whereas basic amino acid has more number of basic amino group. Vitamin C	
n HOH ₂ C - CH ₂ OH + n HOOC———————————————————————————————————	1
n HOH ₂ C - CH ₂ OH + n HOOC———————————————————————————————————	
n HOH₂C - CH₂OH + n HOOC ← COOH Ethylene glycol (Ethane-1, 2 - diol) i) CH +CH₂O ii) Phenol and formaldehyde CH₂ = CH - CH = CH₂ C₆H₅CH=CH₂ 1, 3-Butadiene (Note: half mark for structure/s and half mark for name/s) ii) Fructose iii) Acidic amino acid has more number of acidic carboxylic group than basic an group whereas basic amino acid has more number of basic amino group. Vitamin C	1
(Ethane-1, 2 - diol) (Benzene-1, 4 - di carboxylic acid) i) OH +CH ₂ O ii) Phenol and formaldehyde CH ₂ = CH - CH = CH ₂ C ₆ H ₅ CH=CH ₂ 1, 3-Butadiene Styrene iii) (Note: half mark for structure/s and half mark for name/s) 13 i) Fructose ii) Acidic amino acid has more number of acidic carboxylic group than basic am group whereas basic amino acid has more number of basic amino group. iii) Vitamin C	
ii) Phenol and formaldehyde CH ₂ = CH - CH = CH ₂ C ₆ H ₅ CH=CH ₂ 1, 3-Butadiene (Note: half mark for structure/s and half mark for name/s) 13 i) Fructose ii) Acidic amino acid has more number of acidic carboxylic group than basic am group whereas basic amino acid has more number of basic amino group. Vitamin C	
ii) Phenol and formaldehyde CH ₂ = CH - CH = CH ₂ 1, 3-Butadiene (Note: half mark for structure/s and half mark for name/s) ii) Fructose iii) Acidic amino acid has more number of acidic carboxylic group than basic an group whereas basic amino acid has more number of basic amino group. Vitamin C	1
+CH ₂ O Phenol and formaldehyde CH ₂ = CH - CH = CH ₂ C ₆ H ₅ CH=CH ₂ 1, 3-Butadiene (Note: half mark for structure/s and half mark for name/s) 13 i) Fructose ii) Acidic amino acid has more number of acidic carboxylic group than basic an group whereas basic amino acid has more number of basic amino group. Vitamin C	
+CH ₂ O Phenol and formaldehyde CH ₂ = CH - CH = CH ₂ C ₆ H ₅ CH=CH ₂ 1, 3-Butadiene (Note: half mark for structure/s and half mark for name/s) 13 i) Fructose ii) Acidic amino acid has more number of acidic carboxylic group than basic an group whereas basic amino acid has more number of basic amino group. Vitamin C	
Phenol and formaldehyde CH ₂ = CH - CH = CH ₂ 1, 3-Butadiene (Note: half mark for structure/s and half mark for name/s) i) Fructose ii) Acidic amino acid has more number of acidic carboxylic group than basic an group whereas basic amino acid has more number of basic amino group. Vitamin C	
Phenol and formaldehyde CH ₂ = CH - CH = CH ₂ 1, 3-Butadiene (Note: half mark for structure/s and half mark for name/s) i) Fructose ii) Acidic amino acid has more number of acidic carboxylic group than basic an group whereas basic amino acid has more number of basic amino group. Vitamin C	1
Phenol and formaldehyde CH ₂ = CH - CH = CH ₂ 1, 3-Butadiene (Note: half mark for structure/s and half mark for name/s) i) Fructose ii) Acidic amino acid has more number of acidic carboxylic group than basic an group whereas basic amino acid has more number of basic amino group. Vitamin C	1
CH ₂ = CH - CH = CH ₂ 1, 3-Butadiene (Note: half mark for structure/s and half mark for name/s) i) Fructose ii) Acidic amino acid has more number of acidic carboxylic group than basic an group whereas basic amino acid has more number of basic amino group. Vitamin C	
1, 3-Butadiene (Note: half mark for structure/s and half mark for name/s) i) Fructose ii) Acidic amino acid has more number of acidic carboxylic group than basic am group whereas basic amino acid has more number of basic amino group. Vitamin C	
1, 3-Butadiene (Note: half mark for structure/s and half mark for name/s) i) Fructose ii) Acidic amino acid has more number of acidic carboxylic group than basic am group whereas basic amino acid has more number of basic amino group. Vitamin C	
iii) (Note: half mark for structure/s and half mark for name/s) i) Fructose ii) Acidic amino acid has more number of acidic carboxylic group than basic an group whereas basic amino acid has more number of basic amino group. Vitamin C	1
i) Fructose ii) Acidic amino acid has more number of acidic carboxylic group than basic am group whereas basic amino acid has more number of basic amino group. iii) Vitamin C	
 ii) Acidic amino acid has more number of acidic carboxylic group than basic am group whereas basic amino acid has more number of basic amino group. iii) Vitamin C 	
group whereas basic amino acid has more number of basic amino group. iii) Vitamin C	1
iii) Vitamin C	ino 1
	1
a) Impure Ni reacts with CO to form volatile Ni(CO) ₄ which when heated at his	
temperature decomposes to give pure Ni.	
b) NaCN acts as a leaching agent to form a soluble complex with gold.	1
c) It is a mixture of Cu ₂ S and FeS	1

15	E cell = E^0 cell - $\frac{0.059}{n}V$ log $\frac{[Zn^{2+}]}{[H^+]^2}$	1
	E cell = $0.76 \text{ V} - \frac{0.059}{2} \text{ V log} = \frac{10^{-3}}{(10^{-2})2}$	1
	E cell = $0.76 - 0.0295$ V log 10	
	= 0.7305 V	1
16	i) Due to coagulation of colloidal clay particles.	1
10	 ii) Because NH₃ is easily liquefiable than N₂ due to its larger molecular size. 	
	iii) Because of more surface area.	
17	,	1
17	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	ii) _{t.} 4	1
	t_{2g}^{4} iii) dsp^{2} , diamagnetic	1/2, 1/2
18	a) Because they are unable to form H-bonds with water molecules.	1
10	b) Because of the presence of chiral carbon in butan-2-ol.	1
10	c) Due to dominating +R effect	1
19	i) $C_6H_5COOH PCl_5 C_6H_5COCl H_2/Pd C_6H_5CHO$	1
	BaSO ₄ ::) CH=CH + H O H ₂ ²⁺ /H SO CH CHO	
	ii) $CH \equiv CH + H_2O $	$\begin{vmatrix} 1 \\ 1 \end{vmatrix}$
		1
	OR	
19.	$RCN + SnCl_2 + HCl \longrightarrow RCH = NH \xrightarrow{H_3 \mathring{O}} RCHO$	1
	$C = O \xrightarrow{NH_2NH_2} C = NNH_2 \xrightarrow{KOH/\text{ethylene glycol}} CH_2 + N_2$ ii)	1
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1

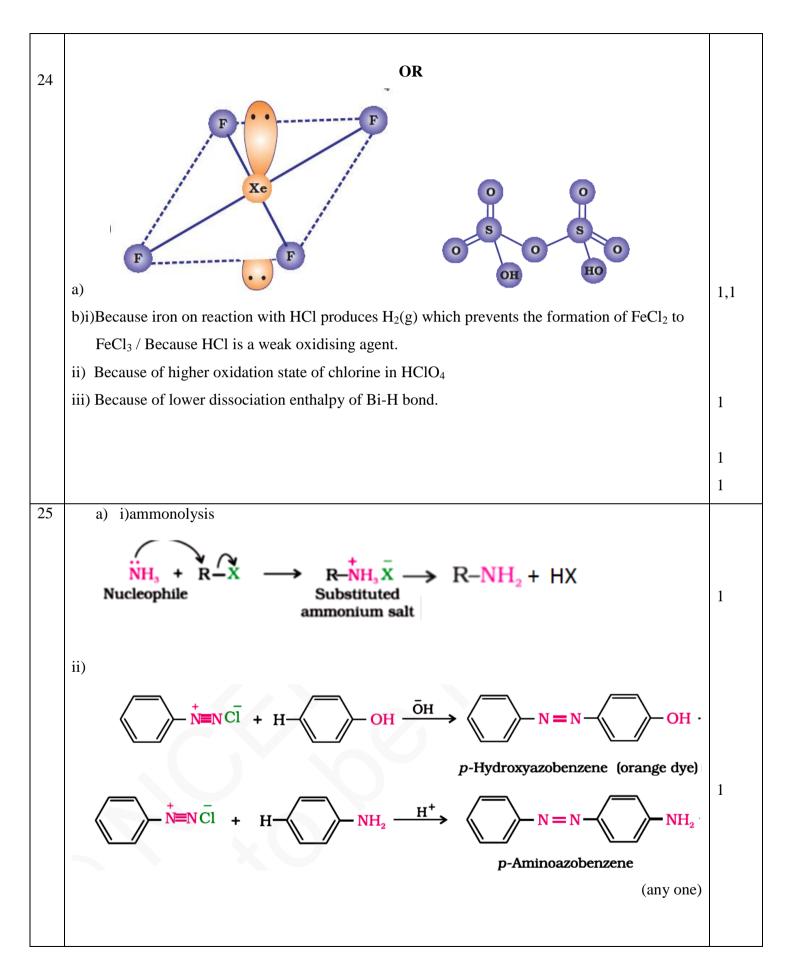
20	i) Because oxygen stabilizes Mn more than F due to multiple bonding	1
	ii) Because of their ability to show variable oxidation state(or any other correct reason)	1
	iii) $3MnO_4^{2-} + 4H^+ \longrightarrow 2MnO_4^{-} + MnO_2 + 2H_2O$	1
21	i) CH ₃ CH ₂ CH ₂ OH	1
	OH Br I D.	
	Br	
		1
	ii) Br	
	iii) CH₃CHO	1
22	$d = \frac{Z \times M}{N_a \times a^3}$	1/2
	$6.23 \text{ g cm}^{-3} = \frac{\text{z x } 60 \text{ g/mol}}{6.022 \text{x} 10^{23} \text{ mol}^{-1} \text{ x } (4 \text{ x } 10 - 8 \text{cm})^3}$	1/2
	z=4	1
	fcc	1
23	a) Concern for students health, Application of knowledge of chemistry to daily life, empathy	1/2 , 1/2
	, caring or any otherb) Through posters, nukkad natak in community, social media, play in assembly (or any other	
	relevant answer)	1
	c) Wrong choice and overdose may be harmful	1
	d) Aspartame, saccharin (or any other correct example)	1/2+ 1/2
24	a)i) Activation energy- Extra energy required by reactants to form activated complex.	1
	ii) Rate constant- rate of reaction when the concentration of reactant is unity.	1
	in, rate constant rate of reaction when the concentration of reaction is unity.	
	b)	
	1-2202 log [A]	1/2
	$k = \underbrace{2.303}_{t} \log \left[\underbrace{A_0}_{A} \right]$	/2
	·	
	$k = 2.303 \log 100$	1/2
	10 min 75	
	$k = 2.303 \times 0.125$	
	10 min	

	$k = 0.02879 \text{ min}^{-1}$	1
	$t_{1/2} = \frac{0.693}{k} = \frac{0.693}{0.02879 min^{-1}}$	
	$t_{1/2} = 24.07 min$	1
	OR	
24.	a) i)First order ii) -k iii) s ⁻¹	
	b)	1,1,1
	$t = \frac{2.303}{k} \log \frac{[R]0}{[R]}$	
	$t_{99\%} = \frac{2.303}{k} \log \frac{100}{1}$	
		1/2
	$t = \frac{2.303}{k} \times 2$	
	$t_{90\%} = \frac{2.303}{k} \log \frac{100}{10}$	
	$=\frac{2.303}{k}$	1/2
	•	
	$t_{99\%} = 2 \times t_{90\%}$	1
25	a) i)Because of lone pair in NH ₃ , lone pair-bond pair repulsion decreases the bond angle	1
	ii)Because of absence of H-bonding in H ₂ S	1
	iii)Because stability of +4 oxidation state increases from SO ₂ to TeO ₂	1
	P O OH	1,1
	b) $H_4P_2O_7$	
	OR	

b)reaction of primary amine 1 (soluble in alkali) Reaction of secondary amine (insoluble in alkali) Tertiary amine doesn't react OR 26. 1 a) i) 1 Br ii) $\frac{+}{N_2}Cl$ 1/2, 1/2, NH_2 1/2 b) i) A-B-C-1/2 ,1/2, CH₃CN CH₃CH₂OH ii) A-B-CH₃CH₂NH₂ 1/2

Sr. Name	Sr. Name	
----------	----------	--

No.	N	lo.	


CHEMISTRY MARKING SCHEME 2015 <u>SET -56/2/2 F</u>

Qn	Value points	Marks
1	3-Methylbut-2-en-1-ol	1
2	Because of weak van der Waals' forces in physisorption whereas there are strong chemical forces in chemisorption.	1
3	CH ₃ CH ₂ I, because I is a better leaving group.	1/2 , 1/2
4	Rhombic sulphur	1
5	X_2Y_3	1
6	(i) CH ₃ MgBr/H ₃ O ⁺	1
	(ii) PCl ₅ / PCl ₃ / SOCl ₂	1
7	a) Cu^{2+} (aq) + 2 e \longrightarrow $Cu(s)$ because of high E^0 value/ more negative ΔG	1/2 , 1/2
	b) It states that limiting molar conductivity of an electrolyte is equal to the sum of the individual	1
	contributions of cations and anions of the electrolyte.	
	It is used to calculate the Λm^0 for weak electrolyte / It is used to calculate α and Kc	
	(Any one application)	1
8	When solute- solvent interaction is stronger than pure solvent or solute interaction.	1
	Eg: chloroform and acetone (or any other correct eg)	1/2
	ΔmixH= negative	1/2
	OR	
8	Azeotropes -binary mixtures having same composition in liquid and vapour phase and boil at	1
	constant temperature / is a liquid mixture which distills at constant temperature without	
	undergoing change in composition	1/2
	Maximum boiling azeotropes	1/2
	eg: HNO ₃ (68%) and H ₂ O(32%) (or any other correct example)	
9	a) Due to presence of unpaired d-electrons/ comparable energies of 3d and 4s orbitals.b) Mn, due to involvement of 4s and 3d electrons/ presence of maximum unpaired d-electrons.	1 1/2 ,1/2

10	i) tris-(etl	hane-1,2-diamine)chromium(III) chloride	1
	ii) K ₃ [C ₁	$C(C_2O_4)_3$	1
11	E cell = I	$E^{0} \operatorname{cell} - \frac{0.059}{n} V \log \frac{[\operatorname{Zn}^{2+}]}{[\operatorname{H}^{+}]^{2}}$	1
	E cell =	$0.76 \text{ V} - \frac{0.059}{2} \text{ V} \log \frac{10^{-3}}{(10^{-2})2}$	1
	E cell = 0	0.76 – 0.0295 V log 10	
	= 0	0.7305 V	1
12	i)	Due to coagulation of colloidal clay particles.	1
	ii)	Because NH_3 is easily liquefiable than N_2 due to its larger molecular size.	1
	iii)	Because of more surface area.	1
13	i)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1
	::>	4	1
	ii)	t_{2g}^4	1 1/4 1/4
	iii)	dsp ² , diamagnetic	1/2 , 1/2
14	i)	Because oxygen stabilizes Mn more than F due to multiple bonding	1
	ii)	Because of their ability to show variable oxidation state(or any other correct reason)	1
	iii)	$3MnO_4^{2-} + 4H^+ \longrightarrow 2MnO_4^- + MnO_2 + 2H_2O$	1
15	i)	CH ₃ CH ₂ CH ₂ OH Br Br Br	1
	ii) iii)	Br CH₃CHO	1

16	$d = \frac{Z \times M}{N_a \times a^3}$	1/2
	$6.23 \text{ g cm}^{-3} = \frac{\text{z x } 60 \text{ g/mol}}{6.022 \times 10^{23} \text{ mol}^{-1} \text{ x } (4 \text{ x } 10 - 8 \text{ cm})^3}$	
	$6.022x10^{23} mol^{-1} x (4 x 10 - 8cm)^3$	1/2
	z=4	1
	fcc	1 1
17	$\Delta T_f = i. K_f m$	1
1,	$= i K_f w_B \times 1000$	1
	$M_{\mathrm{B}} \times W_{\mathrm{A}}$	
	2K= 2 x 1.86K kg/mol x w _B x 1000	1
	58.5 g/mol x 37.2 g	
	$w_B = 1.17g$	1
18	n HOH ₂ C - CH ₂ OH + n HOOC—COOH	
	Ethylene glycol Terephthalic acid	
	(Ethane-1, 2 - diol) (Benzene-1,4 - di carboxylic acid)	1
	i)	
	OH	
	+CH ₂ O	1
	ii)	
	Phenol and formaldehyde	
	$CH_2 = CH - CH = CH_2 \cdot C_6H_5CH = CH_2$	1
	1, 3-Butadiene Styrene	1
	iii) (Notes helf means for atmentums/s and helf means for name/s)	
19	(Note: half mark for structure/s and half mark for name/s)a) Because they are unable to form H-bonds with water molecules.	1
19	b) Because of the presence of chiral carbon in butan-2-ol.	1 1
20	c) Due to dominating +R effect i) C ₆ H ₅ COOH PCl ₅ C ₆ H ₅ COCl H ₂ /Pd C ₆ H ₅ CHO	1
20	i) C_6H_5COOH PCl ₅ C_6H_5COCl H_2/Pd C_6H_5CHO BaSO ₄	1
	ii) $CH = CH + H_2O $ Hg^{2+}/H_2SO_4 CH_3CHO	1
	iii) $CH_3COOH \xrightarrow{NaOH} CH_3COONa \xrightarrow{NaOH + CaO, heat} CH_4$	1
	OR	

20	i) RCN + SnCl ₂ + HCl \longrightarrow RCH = NH $\xrightarrow{\text{H}_3 \bullet}$ RCHO $C = 0 \xrightarrow{\text{NH}_2 \text{NH}_2} \xrightarrow{\text{CH}_3 \bullet} C = \text{NNH}_2 \xrightarrow{\text{KOH/ethylene glycol}} CH_2 + N_2$ iii) $CH_3 + \text{CrO}_2 \text{Cl}_2 \xrightarrow{\text{CS}_3} CH(\text{OCrOHCl}_2)_2 \xrightarrow{\text{H}_3 \bullet} CHO$	1 1 1
21	i) Fructose	1
	ii) Acidic amino acid has more number of acidic carboxylic group than basic amino	1
	group whereas basic amino acid has more number of basic amino group. iii) Vitamin C	1
22	a) Impure Ni reacts with CO to form volatile Ni(CO) ₄ which when heated at higher	1
	temperature decomposes to give pure Ni.	
	b) NaCN acts as a leaching agent to form a soluble complex with gold.	1
	c) It is a mixture of Cu ₂ S and FeS	1
23	a) Concern for students health, Application of knowledge of chemistry to daily life, empathy , caring or any other	1/2 , 1/2
	b) Through posters, nukkad natak in community, social media, play in assembly (or any other	
	relevant answer)	1
	c) Wrong choice and overdose may be harmful	1
	d) Aspartame, saccharin (or any other correct example)	1/2+ 1/2
24	a) i)Because of lone pair in NH ₃ , lone pair-bond pair repulsion decreases the bond angle	1
	ii)Because of absence of H-bonding in H ₂ S	1
	iii)Because stability of +4 oxidation state increases from SO ₂ to TeO ₂	1
	HO OH OH OH F	1,1

1 H-N-C-CH₃ (or any other correct reaction) iii) b)reaction of primary amine 1 (soluble in alkali) Reaction of secondary amine $-Cl + H-N-C_2H_5 \longrightarrow \begin{pmatrix} \\ \\ \\ C_2H_5 \end{pmatrix}$ 1 (insoluble in alkali) Tertiary amine doesn't react OR 1 25 1 a) i) ii) 1/2,1/2, 1/2

	+ -	1/2 ,1/2,
	N_2C1 OH	1/2
	$\frac{NH_2}{\downarrow}$	
	b) i) A- B- C-	
	ii) A- CH ₃ CN B- CH ₃ CH ₂ NH ₂ C- CH ₃ CH ₂ OH	
26	a)i) Activation energy- Extra energy required by reactants to form activated complex.	1
	ii) Rate constant- rate of reaction when the concentration of reactant is unity.	1
	b)	
	$k = 2.303 \log [A_0]$	1/2
	t [A]	
	$k = 2.303 \log 100$	
	$\frac{2.305}{10 \min} \frac{100}{75}$	1/2
	1 0000 0107	
	$k = 2.303 \times 0.125$ 10 min	
	$k = 0.02879 \text{ min}^{-1}$	1
	$t_{1/2} = \frac{0.693}{1} = \frac{0.693}{0.00070 \text{ min}^{-1}}$	
	$t_{1/2} = \frac{0.073}{k} = \frac{0.073}{0.02879 min^{-1}}$	
	$t_{1/2} = 24.07 min$	
		1
	OR	
	a) i)First order ii) -k iii) s ⁻¹	1 1 1
26	b)	1,1,1
	$t = \frac{2.303}{k} \log \frac{[R]0}{[R]}$	
	$t_{99\%} = \frac{2.303}{k} \log \frac{100}{1}$	1/2
		72
	$t = \frac{2.303}{k} \times 2$	

$t_{90\%} = \frac{2.303}{k} \log \frac{100}{10}$ $= \frac{2.303}{k}$	1/2
$t_{99\%} = 2 \times t_{90\%}$	1

CHEMISTRY MARKING SCHEME 2015 <u>SET -56/2/3 F</u>

Qn	Value points	Marks
1	X_2Y_3	1
2	3-Methylbut-2-en-1-ol	1
3	Because of weak van der Waals' forces in physisorption whereas there are strong chemical forces in chemisorption.	1
4	CH ₃ CH ₂ I, because I is a better leaving group.	1/2 , 1/2
5	Rhombic sulphur	1
6	a) Cu^{2+} (aq) + 2 e \longrightarrow $Cu(s)$ because of high E^0 value/ more negative ΔG	1/2 , 1/2
	b) It states that limiting molar conductivity of an electrolyte is equal to the sum of the individual	1
	contributions of cations and anions of the electrolyte.	
	It is used to calculate the Λm^0 for weak electrolyte / It is used to calculate α and Kc	
	(Any one application)	1
7	 a) Due to presence of unpaired d-electrons/ comparable energies of 3d and 4s orbitals. b) Mn, due to involvement of 4s and 3d electrons/ presence of maximum unpaired d-electrons. 	1 1/2 ,1/2
8	i) tris-(ethane-1,2-diamine)chromium(III) chloride	1
	ii) K ₃ [Cr(C ₂ O ₄) ₃]	1
9	(i) CH ₃ MgBr/ H ₃ O ⁺	1
	(ii) PCl ₅ / PCl ₃ / SOCl ₂	1
10	When solute- solvent interaction is stronger than pure solvent or solute interaction.	1
	Eg: chloroform and acetone (or any other correct eg)	1/2
	ΔmixH= negative	1/2
	OR	
10	Azeotropes -binary mixtures having same composition in liquid and vapour phase and boil at	1
	constant temperature / is a liquid mixture which distills at constant temperature without	
	undergoing change in composition	1/2

	Maximum boiling azeotropes	1/2
	eg: HNO_3 (68%) and $H_2O(32\%)$ (or any other correct example)	
11	 a) Because they are unable to form H-bonds with water molecules. b) Because of the presence of chiral carbon in butan-2-ol. c) Due to dominating +R effect 	1 1 1
12	i) C ₆ H ₅ COOH PCl ₅ C ₆ H ₅ COCl H ₂ /Pd C ₆ H ₅ CHO BaSO ₄	1
	ii) $CH \equiv CH + H_2O \underline{Hg^{2+}/H_2SO_4} CH_3CHO$	1
	iii) CH ₃ COOH NaOH CH ₃ COONa NaOH + CaO, heat CH ₄	1
	OR	
	$RCN + SnCl_2 + HCl \longrightarrow RCH = NH \xrightarrow{H_3O} RCHO$	1
	$C = O \xrightarrow{NH_2NH_2} C = NNH_2 \xrightarrow{KOH/\text{ethylene glycol}} CH_2 + N_2$ ii)	1
	$ \begin{array}{c} \text{CH}_3 \\ + \text{CrO}_2\text{Cl}_2 \xrightarrow{\text{CS}_2} \end{array} \begin{array}{c} \text{CH(OCrOHCl}_2)_2 \\ \xrightarrow{\text{H}_3\text{O}^*} \end{array} \begin{array}{c} \text{CHO} \\ \end{array} $	1
13	$\Delta T_f = i. K_f m$	
	$= i K_f w_B \times 1000$	1
	$M_{\mathrm{B}} x w_{\mathrm{A}}$	
	$2K = 2 \times 1.86K \text{ kg/mol x w}_B \times 1000$	1
	58.5 g/mol x 37.2 g	
1.4	$w_{B} = 1.17g$	1
14	n HOH₂C - CH₂OH + n HOOC — COOH	
	Ethylene glycol Terephthalic acid (Ethane-1, 2 - diol) (Benzene-1,4 - di carboxylic acid)	1
	OH	
	ii) +CH ₂ O	1
	Phenol and formaldehyde	

	$CH_2 = CH - CH = CH_2 \cdot C_6H_5CH = CH_2$	1
	1, 3-Butadiene Styrene	
	(Note: half mark for structure/s and half mark for name/s)	
15	 i) Fructose ii) Acidic amino acid has more number of acidic carboxylic group than basic amino group whereas basic amino acid has more number of basic amino group. iii) Vitamin C 	1 1 1
16	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1
	cis- isomer trans-isomer	
	t_{2g}^4	1
	iii) dsp ² , diamagnetic	1/2 , 1/2
17	a) Impure Ni reacts with CO to form volatile Ni(CO) ₄ which when heated at higher	1
	temperature decomposes to give pure Ni.	
	b) NaCN acts as a leaching agent to form a soluble complex with gold.	1
10	c) It is a mixture of Cu ₂ S and FeS	1
18	E cell = E^0 cell $-\frac{0.059}{n}V$ log $\frac{[Zn^{2+}]}{[H^+]^2}$	1
	E cell = $0.76 \text{ V} - \frac{0.059}{2} \text{ V log} = \frac{10^{-3}}{(10^{-2})2}$	1
	E cell = $0.76 - 0.0295$ V log 10	-
	= 0.7305 V	1
19	i) CH ₃ CH ₂ CH ₂ OH	1
	ii) Br Br	1

		1
	iii) CH ₃ CHO	
20	$d = \frac{Z \times M}{N_a \times a^3}$	1/2
	$6.23 \text{ g cm}^{-3} = \frac{\text{z x } 60 \text{ g/mol}}{6.022 \text{x} 10^{23} \text{ mol}^{-1} \text{ x } (4 \text{ x } 10 - 8 \text{cm})^3}$	1/2
	z=4	1
	fcc	1
21	i) Because oxygen stabilizes Mn more than F due to multiple bonding	1
	ii) Because of their ability to show variable oxidation state(or any other correct reason)	1
	iii) $3MnO_4^{2-} + 4H^+ \longrightarrow 2MnO_4^{-} + MnO_2 + 2H_2O$	1
22	i) Due to coagulation of colloidal clay particles.	1
	ii) Because NH ₃ is easily liquefiable than N ₂ due to its larger molecular size.	1
	iii) Because of more surface area.	1
23	a) Concern for students health, Application of knowledge of chemistry to daily life, empathy	1/2 , 1/2
	, caring or any other	
	b) Through posters, nukkad natak in community, social media, play in assembly (or any other	1
	relevant answer)	1
	c) Wrong choice and overdose may be harmful	1/2+ 1/2
2.4	d) Aspartame, saccharin (or any other correct example)	
24	a) i)ammonolysis	
	$ \begin{array}{ccc} & & & & & \\ NH_3 & + & R - X & \longrightarrow & R - NH_3 X \longrightarrow & R - NH_2 + HX \\ & & & & & \\ Nucleophile & & & & & \\ & & & & & \\ Nucleophile & & & & & \\ & & & & & \\ & & & & & \\ & & & & $	1
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1

(any one)

1

1

iii)

(or any other correct reaction)

b)reaction of primary amine

(soluble in alkali)

Reaction of secondary amine

(insoluble in alkali)

Tertiary amine doesn't react

OR

24

a) i)

Br

ii)

1/2,1/2,

1/2

1

1

	b) i) A- CH ₃ CN B- CH ₃ CH ₂ NH ₂ C- CH ₃ CH ₂ OH	1/2 ,1/2, 1/2
25	a)i) Activation energy- Extra energy required by reactants to form activated complex.	1
	ii) Rate constant- rate of reaction when the concentration of reactant is unity.	1
	b)	1/2
	$k = \frac{2.303}{t} \log \left[\frac{A_0}{A} \right]$ $k = \frac{2.303}{t} \log \left[\frac{A_0}{A} \right]$,,,
	$k = \frac{2.303}{10 \text{ min}} \frac{100}{75}$	1/2
	$k = \frac{2.303 \times 0.125}{10 \text{ min}}$	
	$k = 0.02879 \text{ min}^{-1}$	1
	$t_{1/2} = \frac{0.693}{k} = \frac{0.693}{0.02879 min^{-1}}$	
	$t_{1/2} = 24.07 min$	1
	OR	
	a) i)First order ii) -k iii) s ⁻¹	
	b)	1,1,1
	$t = \frac{2.303}{k} \log \frac{[R]0}{[R]}$	
	$t_{99\%} = \frac{2.303}{k} \log \frac{100}{1}$	1/2
	$t = \frac{2.303}{k} x 2$	

	2 202 100	1
	$t_{90\%} = \frac{2.303}{k} \log \frac{100}{10}$	
	$=\frac{2.303}{k}$	1/2
	$t_{99\%} = 2 \times t_{90\%}$	
		1
26	a) i)Because of lone pair in NH ₃ , lone pair-bond pair repulsion decreases the bond angle	1
	ii)Because of absence of H-bonding in H ₂ S	1
	iii)Because stability of +4 oxidation state increases from SO ₂ to TeO ₂	1
	b) H ₄ P ₂ O ₇	1,1
	OR	
	a) F OH HO	1,1
	b)i)Because iron on reaction with HCl produces H ₂ (g) which prevents the formation of FeCl ₂ to	1
	FeCl ₃ / Because HCl is a weak oxidising agent.	
	ii) Because of higher oxidation state of chlorine in HClO ₄	1
	/ =	-
	iii) Because of lower dissociation enthalpy of Bi-H bond.	1