CONSTRUCTIONS

(A) Main Concepts and Results

- Division of a line segment internally in a given ratio.
- Construction of a triangle similar to a given triangle as per given scale factor which may be less than 1 or greater than 1 .
- Construction of the pair of tangents from an external point to a circle.
(B) Multiple Choice Questions

Choose the correct answer from the given four options:
Sample Question 1: To divide a line segment AB in the ratio $p: q$ (p, q are positive integers), draw a ray AX so that $\angle \mathrm{BAX}$ is an acute angle and then mark points on ray AX at equal distances such that the minimum number of these points is
(A) greater of p and q
(B) $p+q$
(C) $p+q-1$
(D) $p q$

Solution : Answer (B)
Sample Question 2: To draw a pair of tangents to a circle which are inclined to each other at an angle of 35°, it is required to draw tangents at the end points of those two radii of the circle, the angle between which is
(A) 105°
(B) 70°
(C) 140°
(D) 145°

Solution : Answer (D)

EXERCISE 10.1

Choose the correct answer from the given four options:

1. To divide a line segment $A B$ in the ratio $5: 7$, first a ray $A X$ is drawn so that $\angle \mathrm{BAX}$ is an acute angle and then at equal distances points are marked on the ray $A X$ such that the minimum number of these points is
(A) 8
(B) 10
(C) 11
(D) 12
2. To divide a line segment $A B$ in the ratio $4: 7$, a ray $A X$ is drawn first such that $\angle \mathrm{BAX}$ is an acute angle and then points $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}, \ldots$. are located at equal distances on the ray AX and the point B is joined to
(A) A_{12}
(B) A_{11}
(C) A_{10}
(D) A_{9}
3. To divide a line segment AB in the ratio $5: 6$, draw a ray AX such that $\angle \mathrm{BAX}$ is an acute angle, then draw a ray BY parallel to AX and the points $A_{1}, A_{2}, A_{3}, \ldots$ and $B_{1}, B_{2}, B_{3}, \ldots$ are located at equal distances on ray $A X$ and BY, respectively. Then the points joined are
(A) A_{5} and B_{6}
(B) A_{6} and B_{5}
(C) A_{4} and B_{5}
(D) A_{5} and B_{4}
4. To construct a triangle similar to a given $\triangle \mathrm{ABC}$ with its sides $\frac{3}{7}$ of the corresponding sides of $\triangle A B C$, first draw a ray $B X$ such that $\angle C B X$ is an acute angle and X lies on the opposite side of A with respect to BC . Then locate points $B_{1}, B_{2}, B_{3}, \ldots$ on $B X$ at equal distances and next step is to join
(A) B_{10} to C
(B) B_{3} to C
(C) B_{7} to C
(D) B_{4} to C
5. To construct a triangle similar to a given $\triangle \mathrm{ABC}$ with its sides $\frac{8}{5}$ of the corresponding sides of $\triangle A B C$ draw a ray $B X$ such that $\angle C B X$ is an acute angle and X is on the opposite side of A with respect to BC . The minimum number of points to be located at equal distances on ray $B X$ is
(A) 5
(B) 8
(C) 13
(D) 3
6. To draw a pair of tangents to a circle which are inclined to each other at an angle of 60°, it is required to draw tangents at end points of those two radii of the circle, the angle between them should be
(A) 135°
(B) 90°
(C) 60°
(D) 120°

(C) Short Answer Questions with Reasoning

Write True or False and give reasons for your answer.
Sample Questions 1: By geometrical construction, it is possible to divide a line segment in the ratio $2 \sqrt{3}: 2 \sqrt{3}$.

Solution : False. As $2 \sqrt{3}: 2 \quad \sqrt{3}$ can be simplified as $7 \quad 4 \sqrt{3}: 1$ and $7 \quad 4 \sqrt{3}$ is not a positive integer, while 1 is.

EXERCISE 10.2

Write True or False and give reasons for your answer in each of the following:

1. By geometrical construction, it is possible to divide a line segment in the ratio

$$
\sqrt{3}: \frac{1}{\sqrt{3}}
$$

2. To construct a triangle similar to a given $\triangle \mathrm{ABC}$ with its sides $\frac{7}{3}$ of the corresponding sides of $\triangle \mathrm{ABC}$, draw a ray BX making acute angle with BC and X lies on the opposite side of A with respect to BC . The points $\mathrm{B}_{1}, \mathrm{~B}_{2}, \ldots$, B_{7} are located at equal distances on $B X, B_{3}$ is joined to C and then a line segment $\mathrm{B}_{6} \mathrm{C}^{\prime}$ is drawn parallel to $\mathrm{B}_{3} \mathrm{C}$ where C^{\prime} lies on BC produced. Finally, line segment $\mathrm{A}^{\prime} \mathrm{C}^{\prime}$ is drawn parallel to AC .
3. A pair of tangents can be constructed from a point P to a circle of radius 3.5 cm situated at a distance of 3 cm from the centre.
4. A pair of tangents can be constructed to a circle inclined at an angle of 170°.

(D) Short Answer Questions

Sample Question 1: Draw an equilateral triangle ABC of each side 4 cm . Construct a triangle similar to it and of scale factor $\frac{3}{5}$. Is the new triangle also an equilateral?

Solution : Follow the similar steps as given in Mathematics Textbook for Class X. Yes, the new triangle is also equilateral.

EXERCISE 10.3

1. Draw a line segment of length 7 cm . Find a point P on it which divides it in the ratio 3:5.
2. Draw a right triangle ABC in which $\mathrm{BC}=12 \mathrm{~cm}, \mathrm{AB}=5 \mathrm{~cm}$ and $\angle \mathrm{B}=90^{\circ}$. Construct a triangle similar to it and of scale factor $\frac{2}{3}$. Is the new triangle also a right triangle?
3. Draw a triangle ABC in which $\mathrm{BC}=6 \mathrm{~cm}, \mathrm{CA}=5 \mathrm{~cm}$ and $\mathrm{AB}=4 \mathrm{~cm}$. Construct a triangle similar to it and of scale factor $\frac{5}{3}$.
4. Construct a tangent to a circle of radius 4 cm from a point which is at a distance of 6 cm from its centre.

(E) Long Answer Questions

Sample Questions $\mathbb{1}$: Given a rhombus $A B C D$ in which $A B=4 \mathrm{~cm}$ and $\angle \mathrm{ABC}=60^{\circ}$, divide it into two triangles say, ABC and ADC . Construct the triangle $\mathrm{AB}^{\prime} \mathrm{C}^{\prime}$ similar to $\triangle \mathrm{ABC}$ with scale factor $\frac{2}{3}$. Draw a line segment $\mathrm{C}^{\prime} \mathrm{D}^{\prime}$ parallel to CD where D^{\prime} lies on $A D$. Is $A B^{\prime} C^{\prime} D^{\prime}$ a rhombus? Give reasons.

Solution : First draw the rhombus ABCD in which $\mathrm{AB}=4 \mathrm{~cm}$ and $\angle \mathrm{ABC}=60^{\circ}$ as given in Fig. 10.1 and join $A C$. Construct the triangle $\mathrm{AB}^{\prime} \mathrm{C}^{\prime}$ similar to $\triangle \mathrm{ABC}$ with scale factor $\frac{2}{3}$ as instructed in the Mathematics Textbook for Class X (See Fig. 10.1).

Finally draw the line segment $\mathrm{C}^{\prime} \mathrm{D}^{\prime}$ parallel to CD .

Now $\quad \frac{\mathrm{AB}^{\prime}}{\mathrm{AB}}=\frac{2}{3}=\frac{\mathrm{A}^{\prime} \mathrm{C}^{\prime}}{\mathrm{AC}}$
Also $\quad \frac{\mathrm{AC}^{\prime}}{\mathrm{AC}} \quad \frac{\mathrm{C}^{\prime} \mathrm{D}^{\prime}}{\mathrm{CD}}=\frac{\mathrm{AD}^{\prime}}{\mathrm{AD}}=\frac{2}{3}$
Therefore, $\mathrm{AB}^{\prime}=\mathrm{B}^{\prime} \mathrm{C}^{\prime}=\mathrm{CD}^{\prime}=\mathrm{AD}^{\prime}=\frac{2}{3} \mathrm{AB}$.
i.e., $\mathrm{AB}{ }^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}$ is a rhombus.

EXERCISE 10.4

1. Two line segments $A B$ and $A C$ include an angle of 60° where $A B=5 \mathrm{~cm}$ and $\mathrm{AC}=7 \mathrm{~cm}$. Locate points P and Q on AB and AC , respectively such that $\mathrm{AP}=\frac{3}{4} \mathrm{AB}$ and $\mathrm{AQ}=\frac{1}{4} \mathrm{AC}$. Join P and Q and measure the length PQ.
2. Draw a parallelogram ABCD in which $\mathrm{BC}=5 \mathrm{~cm}, \mathrm{AB}=3 \mathrm{~cm}$ and $\angle \mathrm{ABC}=60^{\circ}$, divide it into triangles BCD and ABD by the diagonal BD . Construct the triangle $\mathrm{BD}^{\prime} \mathrm{C}^{\prime}$ similar to $\triangle \mathrm{BDC}$ with scale factor $\frac{4}{3}$. Draw the line segment $\mathrm{D}^{\prime} \mathrm{A}^{\prime}$ ' parallel to DA where A^{\prime} lies on extended side BA . Is $\mathrm{A}^{\prime} \mathrm{BC}^{\prime} \mathrm{D}^{\prime}$ a parallelogram?
3. Draw two concentric circles of radii 3 cm and 5 cm . Taking a point on outer circle construct the pair of tangents to the other. Measure the length of a tangent and verify it by actual calculation.
4. Draw an isosceles triangle ABC in which $\mathrm{AB}=\mathrm{AC}=6 \mathrm{~cm}$ and $\mathrm{BC}=5 \mathrm{~cm}$. Construct a triangle PQR similar to ABC in which $\mathrm{PQ}=8 \mathrm{~cm}$. Also justify the construction.
5. Draw a triangle ABC in which $\mathrm{AB}=5 \mathrm{~cm}, \mathrm{BC}=6 \mathrm{~cm}$ and $\mathrm{ABC}=60^{\circ}$. Construct a triangle similar to ABC with scale factor $\frac{5}{7}$. Justify the construction.
6. Draw a circle of radius 4 cm . Construct a pair of tangents to it, the angle between which is 60°. Also justify the construction. Measure the distance between the centre of the circle and the point of intersection of tangents.
7. Draw a triangle ABC in which $\mathrm{AB}=4 \mathrm{~cm}, \mathrm{BC}=6 \mathrm{~cm}$ and $\mathrm{AC}=9 \mathrm{~cm}$. Construct a triangle similar to $\triangle \mathrm{ABC}$ with scale factor $\frac{3}{2}$. Justify the construction. Are the two triangles congruent? Note that all the three angles and two sides of the two triangles are equal.
