Chapter 7

TRIANGLES

(A) Main Concepts and Results

Triangles and their parts, Congruence of triangles, Congruence and correspondence of vertices, Criteria for Congruence of triangles: (i) SAS (ii) ASA (iii) SSS (iv) RHS
AAS criterion for congruence of triangles as a particular case of ASA criterion.

- Angles opposite to equal sides of a triangle are equal,
- Sides opposite to equal angles of a triangle are equal,
- A point equidistant from two given points lies on the perpendicular bisector of the line-segment joining the two points and its converse,
- A point equidistant from two intersecting lines lies on the bisectors of the angles formed by the two lines,
- In a triangle
(i) side opposite to the greater angle is longer
(ii) angle opposite the longer side is greater
(iii) the sum of any two sides is greater than the third side.

(B) Multiple Choice Questions

Write the correct answer :
Sample Question 1: If $\Delta \mathrm{ABC} \cong \Delta \mathrm{PQR}$ and $\Delta \mathrm{ABC}$ is not congruent to $\Delta \mathrm{RPQ}$, then which of the following is not true:
(A) $\quad \mathrm{BC}=\mathrm{PQ}$
(B) $\mathrm{AC}=\mathrm{PR}$
(C) $\quad \mathrm{QR}=\mathrm{BC}$
(D) $\quad \mathrm{AB}=\mathrm{PQ}$

Solution: Answer (A)

EXERCISE 7.1

In each of the following, write the correct answer:

1. Which of the following is not a criterion for congruence of triangles?
(A) SAS
(B) ASA
(C) SSA
(D) SSS
2. If $A B=Q R, B C=P R$ and $C A=P Q$, then
(A) $\quad \triangle \mathrm{ABC} \cong \triangle \mathrm{PQR}$
(B) $\quad \triangle \mathrm{CBA} \cong \triangle \mathrm{PRQ}$
(C) $\triangle \mathrm{BAC} \cong \triangle \mathrm{RPQ}$
(D) $\Delta \mathrm{PQR} \cong \triangle \mathrm{BCA}$
3. In $\triangle \mathrm{ABC}, \mathrm{AB}=\mathrm{AC}$ and $\angle \mathrm{B}=50^{\circ}$. Then $\angle \mathrm{C}$ is equal to
(A) 40°
(B) 50°
(C) 80°
(D) 130°
4. In $\triangle \mathrm{ABC}, \mathrm{BC}=\mathrm{AB}$ and $\angle \mathrm{B}=80^{\circ}$. Then $\angle \mathrm{A}$ is equal to
(A) 80°
(B) 40°
(C) 50°
(D) 100°
5. In $\triangle \mathrm{PQR}, \angle \mathrm{R}=\angle \mathrm{P}$ and $\mathrm{QR}=4 \mathrm{~cm}$ and $\mathrm{PR}=5 \mathrm{~cm}$. Then the length of PQ is
(A) 4 cm
(B) 5 cm
(C) 2 cm
(D) 2.5 cm
6. D is a point on the side $B C$ of a $\triangle A B C$ such that $A D$ bisects $\angle B A C$. Then
(A) $\mathrm{BD}=\mathrm{CD}$
(B)
$\mathrm{BA}>\mathrm{BD}$
(C) $\mathrm{BD}>\mathrm{BA}$
(D) $\quad \mathrm{CD}>\mathrm{CA}$
7. It is given that $\triangle \mathrm{ABC} \cong \triangle \mathrm{FDE}$ and $\mathrm{AB}=5 \mathrm{~cm}, \angle \mathrm{~B}=40^{\circ}$ and $\angle \mathrm{A}=80^{\circ}$. Then which of the following is true?
(A) $\mathrm{DF}=5 \mathrm{~cm}, \angle \mathrm{~F}=60^{\circ}$
(B) $\mathrm{DF}=5 \mathrm{~cm}, \angle \mathrm{E}=60^{\circ}$
(C) $\mathrm{DE}=5 \mathrm{~cm}, \angle \mathrm{E}=60^{\circ}$
(D) $\mathrm{DE}=5 \mathrm{~cm}, \angle \mathrm{D}=40^{\circ}$
8. Two sides of a triangle are of lengths 5 cm and 1.5 cm . The length of the third side of the triangle cannot be
(A) 3.6 cm
(B) 4.1 cm
(C) 3.8 cm
(D) 3.4 cm
9. In $\triangle \mathrm{PQR}$, if $\angle \mathrm{R}>\angle \mathrm{Q}$, then
(A) $\quad \mathrm{QR}>\mathrm{PR}$
(B) $\mathrm{PQ}>\mathrm{PR}$
(C) $\mathrm{PQ}<\mathrm{PR}$
(D) $\quad \mathrm{QR}<\mathrm{PR}$
10. In triangles ABC and $\mathrm{PQR}, \mathrm{AB}=\mathrm{AC}, \angle \mathrm{C}=\angle \mathrm{P}$ and $\angle \mathrm{B}=\angle \mathrm{Q}$. The two triangles are
(A) isosceles but not congruent
(B) isosceles and congruent
(C) congruent but not isosceles
(D) neither congruent nor isosceles
11. In triangles ABC and $\mathrm{DEF}, \mathrm{AB}=\mathrm{FD}$ and $\angle \mathrm{A}=\angle \mathrm{D}$. The two triangles will be congruent by SAS axiom if
(A) $\mathrm{BC}=\mathrm{EF}$
(B) $\mathrm{AC}=\mathrm{DE}$
(C) $\mathrm{AC}=\mathrm{EF}$
(D) $\quad \mathrm{BC}=\mathrm{DE}$

(C) Short Answer Questions with Reasoning

Sample Question 1: In the two triangles ABC and $\mathrm{DEF}, \mathrm{AB}=\mathrm{DE}$ and $\mathrm{AC}=\mathrm{EF}$. Name two angles from the two triangles that must be equal so that the two triangles are congruent. Give reason for your answer.
Solution: The required two angles are $\angle \mathrm{A}$ and $\angle \mathrm{E}$. When $\angle \mathrm{A}=\angle \mathrm{E}, \Delta \mathrm{ABC} \cong \triangle \mathrm{EDF}$ by SAS criterion.
Sample Question 2: In triangles ABC and $\mathrm{DEF}, \angle \mathrm{A}=\angle \mathrm{D}, \angle \mathrm{B}=\angle \mathrm{E}$ and $\mathrm{AB}=\mathrm{EF}$. Will the two triangles be congruent? Give reasons for your answer.
Solution: Two triangles need not be congruent, because AB and EF are not corresponding sides in the two triangles.

EXERCISE 7.2

1. In triangles ABC and $\mathrm{PQR}, \angle \mathrm{A}=\angle \mathrm{Q}$ and $\angle \mathrm{B}=\angle \mathrm{R}$. Which side of $\triangle \mathrm{PQR}$ should be equal to side AB of $\triangle \mathrm{ABC}$ so that the two triangles are congruent? Give reason for your answer.
2. In triangles ABC and $\mathrm{PQR}, \angle \mathrm{A}=\angle \mathrm{Q}$ and $\angle \mathrm{B}=\angle \mathrm{R}$. Which side of $\triangle \mathrm{PQR}$ should be equal to side BC of $\triangle \mathrm{ABC}$ so that the two triangles are congruent? Give reason for your answer.
3. "If two sides and an angle of one triangle are equal to two sides and an angle of another triangle, then the two triangles must be congruent." Is the statement true? Why?
4. "If two angles and a side of one triangle are equal to two angles and a side of another triangle, then the two triangles must be congruent." Is the statement true? Why?
5. Is it possible to construct a triangle with lengths of its sides as $4 \mathrm{~cm}, 3 \mathrm{~cm}$ and 7 cm ? Give reason for your answer.
6. It is given that $\Delta \mathrm{ABC} \cong \Delta \mathrm{RPQ}$. Is it true to say that $\mathrm{BC}=\mathrm{QR}$? Why?
7. If $\Delta \mathrm{PQR} \cong \Delta \mathrm{EDF}$, then is it true to say that $\mathrm{PR}=\mathrm{EF}$? Give reason for your answer.
8. In $\triangle \mathrm{PQR}, \angle \mathrm{P}=70^{\circ}$ and $\angle \mathrm{R}=30^{\circ}$. Which side of this triangle is the longest? Give reason for your answer.
9. $A D$ is a median of the triangle $A B C$. Is it true that $A B+B C+C A>2 A D$? Give reason for your answer.
10. M is a point on side $B C$ of a triangle $A B C$ such that $A M$ is the bisector of $\angle B A C$. Is it true to say that perimeter of the triangle is greater than 2 AM ? Give reason for your answer.
11. Is it possible to construct a triangle with lengths of its sides as $9 \mathrm{~cm}, 7 \mathrm{~cm}$ and 17 cm ? Give reason for your answer.
12. Is it possible to construct a triangle with lengths of its sides as $8 \mathrm{~cm}, 7 \mathrm{~cm}$ and 4 cm ? Give reason for your answer.

(D) Short Answer Questions

Sample Question 1: In Fig 7.1, PQ = PR and $\angle \mathrm{Q}=\angle \mathrm{R}$. Prove that $\Delta \mathrm{PQS} \cong \Delta \mathrm{PRT}$.
Solution: In $\Delta \mathrm{PQS}$ and $\Delta \mathrm{PRT}$,

$$
\begin{array}{ll}
\mathrm{PQ}=\mathrm{PR} & \text { (Given) } \\
\angle \mathrm{Q}=\angle \mathrm{R} & \text { (Given) }
\end{array}
$$

and $\angle \mathrm{QPS}=\angle \mathrm{RPT}$ (Same angle)
Therefore,

$$
\Delta \mathrm{PQS} \cong \Delta \mathrm{PRT} \quad(\mathrm{ASA})
$$

Sample Question 2 : In Fig.7.2, two lines AB

Fig. 7.1 and CD intersect each other at the point O such that $\mathrm{BC} \| \mathrm{DA}$ and $\mathrm{BC}=\mathrm{DA}$. Show that O is the midpoint of both the line-segments AB and CD .
Solution: BC II AD (Given)
Therefore, $\quad \angle \mathrm{CBO}=\angle \mathrm{DAO}$ (Alternate interior angles)
and $\quad \angle \mathrm{BCO}=\angle \mathrm{ADO}$ (Alternate interior angles)
Also, $\quad \mathrm{BC}=\mathrm{DA} \quad$ (Given)
So,

$$
\Delta \mathrm{BOC} \cong \Delta \mathrm{AOD} \quad(\mathrm{ASA})
$$

Therefore, $\quad \mathrm{OB}=\mathrm{OA}$ and $\mathrm{OC}=\mathrm{OD}$, i.e., O is

Fig. 7.2
the mid-point of both AB and CD .
Sample Question 3 : In Fig.7.3, PQ $>P R$ and QS and RS are the bisectors of $\angle \mathrm{Q}$ and $\angle \mathrm{R}$, respectively. Show that $\mathrm{SQ}>\mathrm{SR}$.
Solution: $\mathrm{PQ}>\mathrm{PR}$ (Given)
Therefore, $\angle \mathrm{R}>\angle \mathrm{Q}$ (Angles opposite the longer side is greater)
So, $\angle \mathrm{SRQ}>\angle \mathrm{SQR}$ (Half of each angle)
Therefore, SQ $>$ SR(Side opposite the greater angle will be longer)

Fig. 7.3

EXERCISE 7.3

1. ABC is an isosceles triangle with $\mathrm{AB}=\mathrm{AC}$ and $B D$ and $C E$ are its two medians. Show that $\mathrm{BD}=\mathrm{CE}$.
2. In Fig.7.4, D and E are points on side BC of a $\Delta \mathrm{ABC}$ such that $\mathrm{BD}=\mathrm{CE}$ and $\mathrm{AD}=\mathrm{AE}$. Show that $\triangle \mathrm{ABD} \cong \triangle \mathrm{ACE}$.
3. CDE is an equilateral triangle formed on a side CD of a square ABCD (Fig.7.5). Show that $\Delta \mathrm{ADE} \cong \Delta \mathrm{BCE}$.

Fig. 7.4

Fig. 7.5
4. In Fig.7.6, $\mathrm{BA} \perp \mathrm{AC}, \mathrm{DE} \perp \mathrm{DF}$ such that $\mathrm{BA}=\mathrm{DE}$ and $\mathrm{BF}=\mathrm{EC}$. Show that $\triangle \mathrm{ABC} \cong \triangle \mathrm{DEF}$.
5. Q is a point on the side SR of a $\Delta \mathrm{PSR}$ such that $P Q=P R$. Prove that $P S>P Q$.
6. S is any point on side QR of a $\Delta \mathrm{PQR}$. Show that: $P Q+Q R+R P>2 P S$.
7. D is any point on side $A C$ of a $\triangle A B C$ with $A B=A C$. Show that CD $<\mathrm{BD}$.
8. In Fig. 7.7, $l \| m$ and M is the mid-point of a line segment $A B$. Show that M is also the mid-point of any line segment CD , having its end points on l and m, respectively.
9. Bisectors of the angles B and C of an isosceles triangle with $A B=A C$ intersect each other at O. $B O$ is produced to a point M . Prove that $\angle \mathrm{MOC}=$ $\angle \mathrm{ABC}$.

Fig. 7.7

Fig. 7.6
10. Bisectors of the angles B and C of an isosceles triangle $A B C$ with $A B=A C$ intersect each other at O . Show that external angle adjacent to $\angle \mathrm{ABC}$ is equal to $\angle \mathrm{BOC}$.
11. In Fig. 7.8, AD is the bisector of $\angle \mathrm{BAC}$. Prove that $\mathrm{AB}>\mathrm{BD}$.

(E) Long Answer Questions

Sample Question 1: In Fig. 7.9, ABC is a right triangle and right angled at B such that $\angle \mathrm{BCA}=2 \angle \mathrm{BAC}$. Show that hypotenuse $\mathrm{AC}=2 \mathrm{BC}$.
Solution: Produce CB to a point D such that $\mathrm{BC}=\mathrm{BD}$ and join AD.
In $\triangle \mathrm{ABC}$ and $\Delta \mathrm{ABD}$, we have

$$
\begin{aligned}
\mathrm{BC} & =\mathrm{BD} & & (\text { By construction }) \\
\mathrm{AB} & =\mathrm{AB} & & (\text { Same side }) \\
\angle \mathrm{ABC} & =\angle \mathrm{ABD} & & \left(\text { Each of } 90^{\circ}\right)
\end{aligned}
$$

Fig. 7.9

Therefore, $\quad \Delta \mathrm{ABC} \cong \triangle \mathrm{ABD} \quad$ (SAS)
So,
and $\left.\begin{array}{rl}\angle \mathrm{CAB} & =\angle \mathrm{DAB} \\ \mathrm{AC} & =\mathrm{AD}\end{array}\right\}(\mathrm{CPCT})$
Thus,

$$
\begin{equation*}
\angle \mathrm{CAD}=\angle \mathrm{CAB}+\angle \mathrm{BAD}=x+x=2 x \quad[\text { From }(1)] \tag{1}
\end{equation*}
$$

and

$$
\angle \mathrm{ACD}=\angle \mathrm{ADB}=2 x
$$

$$
\begin{equation*}
[\text { From }(2), \mathrm{AC}=\mathrm{AD}] \tag{3}
\end{equation*}
$$

That is, $\triangle \mathrm{ACD}$ is an equilateral triangle. [From (3) and (4)]
or

$$
\mathrm{AC}=\mathrm{CD} \text {, i.e., } \mathrm{AC}=2 \mathrm{BC}(\text { Since } \mathrm{BC}=\mathrm{BD})
$$

Sample Question 2 : Prove that if in two triangles two angles and the included side of one triangle are equal to two angles and the included side of the other triangle, then the two triangles are congruent.
Solution: See proof of Theorem 7.1 of Class IX Mathematics Textbook.
Sample Question 3 : If the bisector of an angle of a triangle also bisects the opposite side, prove that the triangle is isosceles. Solution: We are given a point D on side $B C$ of a $\triangle A B C$ such that $\angle \mathrm{BAD}=\angle \mathrm{CAD}$ and $\mathrm{BD}=\mathrm{CD}$ (see Fig. 7.10). We are to prove that $\mathrm{AB}=\mathrm{AC}$.
Produce AD to a point E such that $\mathrm{AD}=\mathrm{DE}$ and then join CE . Now, in $\triangle \mathrm{ABD}$ and $\triangle \mathrm{ECD}$, we have

Fig. 7.10

$$
\begin{array}{ll}
\mathrm{BD}=\mathrm{CD} & \text { (Given) } \\
\mathrm{AD}=\mathrm{ED} & \text { (By construction) }
\end{array}
$$

and $\quad \angle \mathrm{ADB}=\angle \mathrm{EDC} \quad$ (Vertically opposite angles)
Therefore, $\quad \Delta \mathrm{ABD} \cong \Delta \mathrm{ECD}$ (SAS)
So,
and $\quad \angle \mathrm{BAD}=\angle \mathrm{CED}\}(\mathrm{CPCT})$
Also, $\quad \angle \mathrm{BAD}=\angle \mathrm{CAD}$ (Given)
Therefore, $\quad \angle \mathrm{CAD}=\angle \mathrm{CED} \quad[$ From (2)]
So, $\quad \mathrm{AC}=\mathrm{EC} \quad$ [Sides opposite the equal angles]
Therefore, $\quad \mathrm{AB}=\mathrm{AC} \quad[$ From (1) and (3)]
Sample Question 4 : S is any point in the interior of $\Delta \mathrm{PQR}$. Show that $\mathrm{SQ}+\mathrm{SR}<$ $P Q+P R$.
Solution : Produce QS to intersect PR at T (See Fig. 7.11).
From Δ PQT, we have
$\mathrm{PQ}+\mathrm{PT}>\mathrm{QT}$ (Sum of any two sides is greater than the third side)

$$
\text { i.e., } \quad \mathrm{PQ}+\mathrm{PT}>\mathrm{SQ}+\mathrm{ST}
$$

From Δ TSR, we have

$$
\begin{equation*}
\mathrm{ST}+\mathrm{TR}>\mathrm{SR} \tag{2}
\end{equation*}
$$

Fig. 7.11

Adding (1) and (2), we get

$$
\begin{array}{ll}
& \mathrm{PQ}+\mathrm{PT}+\mathrm{ST}+\mathrm{TR}>\mathrm{SQ}+\mathrm{ST}+\mathrm{SR} \\
\text { i.e., } & \mathrm{PQ}+\mathrm{PT}+\mathrm{TR}>\mathrm{SQ}+\mathrm{SR} \\
\text { i.e., } & \mathrm{PQ}+\mathrm{PR}>\mathrm{SQ}+\mathrm{SR} \\
\text { or } & \mathrm{SQ}+\mathrm{SR}<\mathrm{PQ}+\mathrm{PR}
\end{array}
$$

EXERCISE 7.4

1. Find all the angles of an equilateral triangle.
2. The image of an object placed at a point A before a plane mirror LM is seen at the point B by an observer at D as shown in Fig. 7.12. Prove that the image is as far behind the mirror as the object is in front of the mirror.

Fig. 7.12
[Hint: CN is normal to the mirror. Also, angle of incidence $=$ angle of reflection].
3. $A B C$ is an isosceles triangle with $A B=A C$ and D is a point on $B C$ such that $\mathrm{AD} \perp \mathrm{BC}$ (Fig. 7.13). To prove that $\angle \mathrm{BAD}=\angle \mathrm{CAD}$, a student proceeded as follows:
In $\triangle \mathrm{ABD}$ and $\Delta \mathrm{ACD}$,

$$
\begin{array}{ll}
\mathrm{AB}=\mathrm{AC} & \text { (Given) } \\
\angle \mathrm{B}=\angle \mathrm{C} & \text { (because } \mathrm{AB}=\mathrm{AC})
\end{array}
$$

and

$$
\angle \mathrm{ADB}=\angle \mathrm{ADC}
$$

Therefore, $\quad \triangle \mathrm{ABD} \cong \triangle \mathrm{ACD}$ (AAS)
So, $\quad \angle \mathrm{BAD}=\angle \mathrm{CAD}(\mathrm{CPCT})$
What is the defect in the above arguments?

Fig. 7.13
[Hint: Recall how $\angle \mathrm{B}=\angle \mathrm{C}$ is proved when $\mathrm{AB}=\mathrm{AC}$].
4. P is a point on the bisector of $\angle A B C$. If the line through P, parallel to $B A$ meet $B C$ at Q , prove that BPQ is an isosceles triangle.
5. $A B C D$ is a quadrilateral in which $A B=B C$ and $A D=C D$. Show that $B D$ bisects both the angles ABC and ADC .
6. ABC is a right triangle with $\mathrm{AB}=\mathrm{AC}$. Bisector of $\angle \mathrm{A}$ meets BC at D . Prove that $\mathrm{BC}=2 \mathrm{AD}$.
7. O is a point in the interior of a square $A B C D$ such that $O A B$ is an equilateral triangle. Show that $\triangle \mathrm{OCD}$ is an isosceles triangle.
8. $A B C$ and $D B C$ are two triangles on the same base $B C$ such that A and D lie on the opposite sides of $\mathrm{BC}, \mathrm{AB}=\mathrm{AC}$ and $\mathrm{DB}=\mathrm{DC}$. Show that AD is the perpendicular bisector of BC .
9. ABC is an isosceles triangle in which $\mathrm{AC}=\mathrm{BC} . \mathrm{AD}$ and BE are respectively two altitudes to sides BC and AC . Prove that $\mathrm{AE}=\mathrm{BD}$.
10. Prove that sum of any two sides of a triangle is greater than twice the median with respect to the third side.
11. Show that in a quadrilateral $\mathrm{ABCD}, \mathrm{AB}+\mathrm{BC}+\mathrm{CD}+\mathrm{DA}<2(\mathrm{BD}+\mathrm{AC})$
12. Show that in a quadrilateral $A B C D$,

$$
\mathrm{AB}+\mathrm{BC}+\mathrm{CD}+\mathrm{DA}>\mathrm{AC}+\mathrm{BD}
$$

$A B+B C+C D+D A>A C+B D$
13. In a triangle $A B C, D$ is the mid-point of side $A C$ such that $B D=\frac{1}{2} A C$. Show that $\angle \mathrm{ABC}$ is a right angle.
14. In a right triangle, prove that the line-segment joining the mid-point of the hypotenuse to the opposite vertex is half the hypotenuse.
15. Two lines l and m intersect at the point O and P is a point on a line n passing through the point O such that P is equidistant from l and m. Prove that n is the bisector of the angle formed by l and m.
16. Line segment joining the mid-points M and N of parallel sides $A B$ and $D C$, respectively of a trapezium $A B C D$ is perpendicular to both the sides $A B$ and $D C$. Prove that $\mathrm{AD}=\mathrm{BC}$.
17. $A B C D$ is a quadrilateral such that diagonal $A C$ bisects the angles A and C. Prove that $\mathrm{AB}=\mathrm{AD}$ and $\mathrm{CB}=\mathrm{CD}$.
18. $A B C$ is a right triangle such that $A B=A C$ and bisector of angle C intersects the side $A B$ at D. Prove that $A C+A D=B C$.
19. $A B$ and $C D$ are the smallest and largest sides of a quadrilateral $A B C D$. Out of $\angle \mathrm{B}$ and $\angle \mathrm{D}$ decide which is greater.
20. Prove that in a triangle, other than an equilateral triangle, angle opposite the longest side is greater than $\frac{2}{3}$ of a right angle.
21. $A B C D$ is quadrilateral such that $A B=A D$ and $C B=C D$. Prove that $A C$ is the perpendicular bisector of $B D$.

