Chapter 3

COORDINATE GEOMETRY

(A) Main Concepts and Results

Cartesian system
Coordinate axes
Origin
Quadrants
Abscissa
Ordinate
Coordinates of a point
Ordered pair
Plotting of points in the cartesian plane:

- In the Cartesian plane, the horizontal line is called the x-axis and the vertical line is called the y-axis,
- The coordinate axes divide the plane into four parts called quadrants,
- The point of intersection of the axes is called the origin,
- Abscissa or the x-coordinate of a point is its distance from the y-axis and the ordinate or the y-coordinate is its distance from the x-axis,
- $\quad(x, y)$ are called the coordinates of the point whose abscissa is x and the ordinate is y,
- Coordinates of a point on the x-axis are of the form $(x, 0)$ and that of the point on the y-axis is of the form $(0, y)$,
- The coordinates of the origin are $(0,0)$,
- Signs of the coordinates of a point in the first quadrant are $(+,+)$, in the second quadrant $(-,+)$, in the third quadrant $(-,-)$ and in the fourth quadrant $(+,-)$.

(B) Multiple Choice Questions

Write the correct answer :
Sample Question 1: The points (other than origin) for which abscissa is equal to the ordinate will lie in
(A) I quadrant only
(B) I and II quadrants
(C) I and III quadrants
(D) II and IV quadrants

Solution: Answer (C)

EXERCISE 3.1

Write the correct answer in each of the following :

1. Point $(-3,5)$ lies in the
(A) first quadrant
(B) second quadrant
(C) third quadrant
(D) fourth quadrant
2. Signs of the abscissa and ordinate of a point in the second quadrant are respectively
(A),++
(B) $\quad-$,
(C),-+
(D) $\quad+,-$
3. Point $(0,-7)$ lies
(A) on the x-axis
(B) in the second quadrant
(C) on the y-axis
(D) in the fourth quadrant
4. Point $(-10,0)$ lies
(A) on the negative direction of the x-axis
(B) on the negative direction of the y-axis
(C) in the third quadrant
(D) in the fourth quadrant
5. Abscissa of all the points on the x-axis is
(A) 0
(B) 1
(C) 2
(D) any number
6. Ordinate of all points on the x-axis is
(A) 0
(B) 1
(C) -1
(D) any number
7. The point at which the two coordinate axes meet is called the
(A) abscissa
(B) ordinate
(C) origin
(D) quadrant
8. A point both of whose coordinates are negative will lie in
(A) I quadrant
(B) II quadrant
(C) III quadrant
(D) IV quadrant
9. Points $(1,-1),(2,-2),(4,-5),(-3,-4)$
(A) lie in II quadrant
(B) lie in III quadrant
(C) lie in IV quadrant
(D) do not lie in the same quadrant
10. If y coordinate of a point is zero, then this point always lies
(A) in I quadrant
(B) in II quadrant
(C) on x - axis
(D) on y-axis
11. The points $(-5,2)$ and $(2,-5)$ lie in the
(A) same quadrant
(B) II and III quadrants, respectively
(C) II and IV quadrants, respectively (D) IV and II quadrants, respectively
12. If the perpendicular distance of a point P from the x-axis is 5 units and the foot of the perpendicular lies on the negative direction of x-axis, then the point P has
(A) x coordinate $=-5$
(B) y coordinate $=5$ only
(C) y coordinate $=-5$ only
(D) y coordinate $=5$ or -5
13. On plotting the points $O(0,0), A(3,0), B(3,4), C(0,4)$ and joining $O A, A B, B C$ and CO which of the following figure is obtained?
(A) Square
(B) Rectangle
(C) Trapezium
(D) Rhombus
14. If $P(-1,1), Q(3,-4), R(1,-1), S(-2,-3)$ and $T(-4,4)$ are plotted on the graph paper, then the point(s) in the fourth quadrant are
(A) P and T
(B) Q and R
(C) Only S
(D) $\quad \mathrm{P}$ and R
15. If the coordinates of the two points are $P(-2,3)$ and $Q(-3,5)$, then (abscissa of P) - (abscissa of Q) is
(A) -5
(B) 1
(C) -1
(D) -2
16. If $P(5,1), Q(8,0), R(0,4), S(0,5)$ and $O(0,0)$ are plotted on the graph paper, then the point(s) on the x-axis are
(A) P and R
(B) $\quad \mathrm{R}$ and S
(C) Only Q
(D) Q and O
17. Abscissa of a point is positive in
(A) I and II quadrants
(B) I and IV quadrants
(C) I quadrant only
(D) II quadrant only
18. The points whose abscissa and ordinate have different signs will lie in
(A) I and II quadrants
(B) II and III quadrants
(C) I and III quadrants
(D) II and IV quadrants
19. In Fig. 3.1, coordinates of P are
(A) $(-4,2)$
(B) $(-2,4)$
(C) $(4,-2)$
(D) $(2,-4)$
20. In Fig. 3.2, the point identified by the coordinates $(-5,3)$ is

Fig. 3.1
(A) T
(B) R
(C) L
(D) S
21. The point whose ordinate is 4 and which lies on y-axis is
(A) $(4,0)$
(B) $(0,4)$
(C) $(1,4)$
(D) $(4,2)$
22. Which of the points $P(0,3)$, $\mathrm{Q}(1,0), \mathrm{R}(0,-1), \mathrm{S}(-5,0)$, $\mathrm{T}(1,2)$ do not lie on the x-axis?
(A) P and R only
(B) Q and S only
(C) P, R and T
(D) Q, S and T
23. The point which lies on y-axis at a distance of 5 units in the negative direction of y-axis is

Fig. 3.2
(A) $(0,5)$
(B) $(5,0)$
(C) $(0,-5)$
(D) $(-5,0)$
24. The perpendicular distance of the point $P(3,4)$ from the y-axis is
(A) 3
(B) 4
(C) 5
(D) 7

(C) Short Answer Questions with Reasoning

Sample Question 1: Write whether the following statements are True or False? Justify your answer.
(i) Point $(0,-2)$ lies on y-axis.
(ii) The perpendicular distance of the point $(4,3)$ from the x-axis is 4 .

Solution :

(i) True, because a point on the y-axis is of the form $(0, y)$.
(ii) False, because the perpendicular distance of a point from the x-axis is its ordinate. Hence it is 3 , not 4 .

EXERCISE 3.2

1. Write whether the following statements are True or False? Justify your answer.
(i) Point $(3,0)$ lies in the first quadrant.
(ii) Points $(1,-1)$ and $(-1,1)$ lie in the same quadrant.
(iii) The coordinates of a point whose ordinate is $-\frac{1}{2}$ and abscissa is 1 are $-\frac{1}{2}, 1$.
(iv) A point lies on y-axis at a distance of 2 units from the x-axis. Its coordinates are $(2,0)$.
(v) $(-1,7)$ is a point in the II quadrant.

(D) Short Answer Questions

Sample Question 1: Plot the point P $(-6,2)$ and from it draw PM and PN as perpendiculars to x-axis and y-axis, respectively. Write the coordinates of the points M and N .

Solution :

Fig. 3.3

From the graph, we see that $\mathrm{M}(-6,0)$ and $\mathrm{N}(0,2)$.
Sample Question 2 : From the Fig. 3.4, write the following:
(i) Coordinates of B, C and E
(ii) The point identified by the coordinates $(0,-2)$
(iii) The abscissa of the point H
(iv) The ordinate of the point D

Solution :

(i) $\mathrm{B}=(-5,2), \mathrm{C}(-2,-3)$, $\mathrm{E}=(3,-1)$
(ii) F

Fig. 3.4
(iii) 1
(iv) 0

EXERCISE 3.3

1. Write the coordinates of each of the points $\mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S}, \mathrm{T}$ and O from the Fig. 3.5.

Fig. 3.5
2. Plot the following points and write the name of the figure obtained by joining them in order:

$$
\mathrm{P}(-3,2), \mathrm{Q}(-7,-3), \mathrm{R}(6,-3), \mathrm{S}(2,2)
$$

3. Plot the points (x, y) given by the following table:

x	2	4	-3	-2	3	0
y	4	2	0	5	-3	0

4. Plot the following points and check whether they are collinear or not :
(i) $(1,3),(-1,-1),(-2,-3)$
(ii) $(1,1),(2,-3),(-1,-2)$
(iii) $(0,0),(2,2),(5,5)$
5. Without plotting the points indicate the quadrant in which they will lie, if
(i) ordinate is 5 and abscissa is - 3
(ii) abscissa is -5 and ordinate is -3
(iii) abscissa is - 5 and ordinate is 3
(iv) ordinate is 5 and abscissa is 3
6. In Fig. 3.6, LM is a line parallel to the y-axis at a distance of 3 units.
(i) What are the coordinates of the points P, R and Q ?
(ii) What is the difference between the abscissa of the points L and M ?
7. In which quadrant or on which axis each of the following points lie?

$$
(-3,5),(4,-1),(2,0),(2,2),(-3,-6)
$$

8. Which of the following points lie on y-axis?
$\mathrm{A}(1,1), \mathrm{B}(1,0), \mathrm{C}(0,1), \mathrm{D}(0,0), \mathrm{E}(0,-1)$, $\mathrm{F}(-1,0), \mathrm{G}(0,5), \mathrm{H}(-7,0), \mathrm{I}(3,3)$.
9. Plot the points (x, y) given by the following table.

Fig. 3.6

Use scale $1 \mathrm{~cm}=0.25$ units

x	1.25	0.25	1.5	-1.75
y	-0.5	1	1.5	-0.25

10. A point lies on the x-axis at a distance of 7 units from the y-axis. What are its coordinates? What will be the coordinates if it lies on y-axis at a distance of -7 units from x-axis?
11. Find the coordinates of the point
(i) which lies on x and y axes both.
(ii) whose ordinate is -4 and which lies on y-axis.
(iii) whose abscissa is 5 and which lies on x-axis.
12. Taking 0.5 cm as 1 unit, plot the following points on the graph paper :

$$
\mathrm{A}(1,3), \mathrm{B}(-3,-1), \mathrm{C}(1,-4), \mathrm{D}(-2,3), \mathrm{E}(0,-8), \mathrm{F}(1,0)
$$

(E) Long Answer Questions

Sample Question 1 : Three vertices of a rectangle are $(3,2),(-4,2)$ and $(-4,5)$. Plot these points and find the coordinates of the fourth vertex.
Solution: Plot the three vertices of the rectangle as $\mathrm{A}(3,2), \mathrm{B}(-4,2), \mathrm{C}(-4,5)$ (see Fig. 3.7).

Fig. 3.7

We have to find the coordinates of the fourth vertex D so that ABCD is a rectangle. Since the opposite sides of a rectangle are equal, so the abscissa of D should be equal to abscissa of A, i.e., 3 and the ordinate of D should be equal to the ordinate of C, i.e., 5 .
So, the coordinates of D are $(3,5)$.

EXERCISE 3.4

1. Points $A(5,3), B(-2,3)$ and $D(5,-4)$ are three vertices of a square $A B C D$. Plot these points on a graph paper and hence find the coordinates of the vertex C.
2. Write the coordinates of the vertices of a rectangle whose length and breadth are 5 and 3 units respectively, one vertex at the origin, the longer side lies on the x-axis and one of the vertices lies in the third quadrant.
3. Plot the points $P(1,0), Q(4,0)$ and $S(1,3)$. Find the coordinates of the point R such that PQRS is a square.
4. From the Fig. 3.8, answer the following :
(i) Write the points whose abscissa is 0 .
(ii) Write the points whose ordinate is 0 .
(iii) Write the points whose abscissa is -5 .
5. Plot the points $\mathrm{A}(1,-1)$ and $B(4,5)$

Fig. 3.8
(i) Draw a line segment joining these points. Write the coordinates of a point on this line segment between the points A and B.
(ii) Extend this line segment and write the coordinates of a point on this line which lies outside the line segment $A B$.

