Chapter 2

POLYNOMIALS

(A) Main Concepts and Results

Meaning of a Polynomial
Degree of a polynomial

Coefficients

Monomials, Binomials etc.
Constant, Linear, Quadratic Polynomials etc.
Value of a polynomial for a given value of the variable

Zeroes of a polynomial

Remainder theorem
Factor theorem
Factorisation of a quadratic polynomial by splitting the middle term
Factorisation of algebraic expressions by using the Factor theorem
Algebraic identities -

$$
\begin{aligned}
& (x+y)^{2}=x^{2}+2 x y+y^{2} \\
& (x-y)^{2}=x^{2}-2 x y+y^{2} \\
& x^{2}-y^{2}=(x+y)(x-y) \\
& (x+a)(x+b)=x^{2}+(a+b) x+a b \\
& (x+y+z)^{2}=x^{2}+y^{2}+z^{2}+2 x y+2 y z+2 z x \\
& (x+y)^{3}=x^{3}+3 x^{2} y+3 x y^{2}+y^{3}=x^{3}+y^{3}+3 x y(x+y) \\
& (x-y)^{3}=x^{3}-3 x^{2} y+3 x y^{2}-y^{3}=x^{3}-y^{3}-3 x y(x-y)
\end{aligned}
$$

$$
\begin{aligned}
& x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right) \\
& x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right) \\
& x^{3}+y^{3}+z^{3}-3 x y z=(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-y z-z x\right)
\end{aligned}
$$

(B) Multiple Choice Questions

Sample Question 1: If $x^{2}+k x+6=(x+2)(x+3)$ for all x, then the value of k is
(A) 1
(B) -1
(C) 5
(D) 3

Solution : Answer (C)

EXERCISE 2.1

Write the correct answer in each of the following :

1. Which one of the following is a polynomial?
(A) $\frac{x^{2}}{2}-\frac{2}{x^{2}}$
(B) $\sqrt{2 x}-1$
(C) $x^{2}+\frac{3 x^{\frac{3}{2}}}{\sqrt{x}}$
(D) $\frac{x-1}{x+1}$
2. $\sqrt{2}$ is a polynomial of degree
(A) 2
(B) 0
(C) 1
(D) $\frac{1}{2}$
3. Degree of the polynomial $4 x^{4}+0 x^{3}+0 x^{5}+5 x+7$ is
(A) 4
(B) 5
(C) 3
(D) 7
4. Degree of the zero polynomial is
(A) 0
(B) 1
(C) Any natural number
(D) Not defined
5. If $p(x)=x^{2}-2 \sqrt{2} x+1$, then $p(2 \sqrt{2})$ is equal to
(A) 0
(B) 1
(C) $4 \sqrt{2}$
(D) $8 \sqrt{2}+1$
6. The value of the polynomial $5 x-4 x^{2}+3$, when $x=-1$ is
(A) -6
(B) 6
(C) 2
(D) $\quad-2$
7. If $p(x)=x+3$, then $p(x)+p(-x)$ is equal to
(A) 3
(B) $2 x$
(C) 0
(D) 6
8. Zero of the zero polynomial is
(A) 0
(B) 1
(C) Any real number
(D) Not defined
9. Zero of the polynomial $p(x)=2 x+5$ is
(A) $-\frac{2}{5}$
(B) $-\frac{5}{2}$
(C) $\frac{2}{5}$
(D) $\frac{5}{2}$
10. One of the zeroes of the polynomial $2 x^{2}+7 x-4$ is
(A) 2
(B) $\frac{1}{2}$
(C) $-\frac{1}{2}$
(D) -2
11. If $x^{51}+51$ is divided by $x+1$, the remainder is
(A) 0
(B) 1
(C) 49
(D) 50
12. If $x+1$ is a factor of the polynomial $2 x^{2}+k x$, then the value of k is
(A) -3
(B) 4
(C) 2
(D) -2
13. $x+1$ is a factor of the polynomial
(A) $x^{3}+x^{2}-x+1$
(B) $x^{3}+x^{2}+x+1$
(C) $x^{4}+x^{3}+x^{2}+1$
(D) $x^{4}+3 x^{3}+3 x^{2}+x+1$
14. One of the factors of $\left(25 x^{2}-1\right)+(1+5 x)^{2}$ is
(A) $5+x$
(B) $5-x$
(C) $5 x-1$
(D) $10 x$
15. The value of $249^{2}-248^{2}$ is
(A) 1^{2}
(B) 477
(C) 487
(D) 497
16. The factorisation of $4 x^{2}+8 x+3$ is
(A) $(x+1)(x+3)$
(B) $(2 x+1)(2 x+3)$
(C) $(2 x+2)(2 x+5)$
(D) $(2 x-1)(2 x-3)$
17. Which of the following is a factor of $(x+y)^{3}-\left(x^{3}+y^{3}\right)$?
(A) $x^{2}+y^{2}+2 x y$
(B) $x^{2}+y^{2}-x y$
(C) $x y^{2}$
(D) $3 x y$
18. The coefficient of x in the expansion of $(x+3)^{3}$ is
(A) 1
(B) 9
(C) 18
(D) 27
19. If $\frac{x}{y}+\frac{y}{x}=-1(x, y \neq 0)$, the value of $x^{3}-y^{3}$ is
(A) 1
(B) -1
(C) 0
(D) $\frac{1}{2}$
20. If $49 x^{2}-b=\left(7 x+\frac{1}{2}\right)\left(7 x-\frac{1}{2}\right)$, then the value of b is
(A) 0
(B) $\frac{1}{\sqrt{2}}$
(C) $\frac{1}{4}$
(D) $\frac{1}{2}$
21. If $a+b+c=0$, then $a^{3}+b^{3}+c^{3}$ is equal to
(A) 0
(B) $a b c$
(C) $3 a b c$
(D) $2 a b c$

(C) Short Answer Questions with Reasoning

Sample Question 1: Write whether the following statements are True or False. Justify your answer.
(i) $\frac{1}{\sqrt{5}} x^{\frac{1}{2}}+1$ is a polynomial
(ii) $\frac{6 \sqrt{x}+x^{\frac{3}{2}}}{\sqrt{x}}$ is a polynomial, $x \neq 0$

Solution :

(i) False, because the exponent of the variable is not a whole number.
(ii) True, because $\frac{6 \sqrt{x}+x^{\frac{3}{2}}}{\sqrt{x}}=6+x$, which is a polynomial.

EXERCISE 2.2

1. Which of the following expressions are polynomials? Justify your answer:
(i) 8
(ii) $\sqrt{3} x^{2}-2 x$
(iii) $1-\sqrt{5 x}$
(iv) $\frac{1}{5 x^{-2}}+5 x+7$
(v) $\frac{(x-2)(x-4)}{x}$
(vi) $\frac{1}{x+1}$
(vii) $\frac{1}{7} a^{3}-\frac{2}{\sqrt{3}} a^{2}+4 a-7$
(viii) $\frac{1}{2 x}$
2. Write whether the following statements are True or False. Justify your answer.
(i) A binomial can have atmost two terms
(ii) Every polynomial is a binomial
(iii) A binomial may have degree 5
(iv) Zero of a polynomial is always 0
(v) A polynomial cannot have more than one zero
(vi) The degree of the sum of two polynomials each of degree 5 is always 5 .

(D) Short Answer Questions

Sample Question 1 :

(i) Check whether $p(x)$ is a multiple of $g(x)$ or not, where

$$
p(x)=x^{3}-x+1, \quad g(x)=2-3 x
$$

(ii) Check whether $g(x)$ is a factor of $p(x)$ or not, where

$$
p(x)=8 x^{3}-6 x^{2}-4 x+3, \quad g(x)=\frac{x}{3}-\frac{1}{4}
$$

Solution :

(i) $p(x)$ will be a multiple of $g(x)$ if $g(x)$ divides $p(x)$.

Now, $\quad g(x)=2-3 x=0$ gives $x=\frac{2}{3}$

Remainder

$$
\begin{aligned}
& =p\left(\frac{2}{3}\right)=\left(\frac{2}{3}\right)^{3}-\left(\frac{2}{3}\right)+1 \\
& =\frac{8}{27}-\frac{2}{3}+1=\frac{17}{27}
\end{aligned}
$$

Since remainder $\neq 0$, so, $p(x)$ is not a multiple of $g(x)$.
(ii) $g(x)=\frac{x}{3}-\frac{1}{4}=0$ gives $x=\frac{3}{4}$
$g(x)$ will be a factor of $p(x)$ if $p\left(\frac{3}{4}\right)=0$ (Factor theorem)
Now, $\quad p\left(\frac{3}{4}\right)=8\left(\frac{3}{4}\right)^{3}-6\left(\frac{3}{4}\right)^{2}-4\left(\frac{3}{4}\right)+3$

$$
=8 \times \frac{27}{64}-6 \times \frac{9}{16}-3+3=0
$$

Since, $\quad p\left(\frac{3}{4}\right)=0$, so, $g(x)$ is a factor of $p(x)$.
Sample Question 2: Find the value of a, if $x-a$ is a factor of $x^{3}-a x^{2}+2 x+a-1$.
Solution: Let $p(x)=x^{3}-a x^{2}+2 x+a-1$
Since $x-a$ is a factor of $p(x)$, so $p(a)=0$.

$$
\begin{array}{ll}
\text { i.e., } & a^{3}-a(a)^{2}+2 a+a-1=0 \\
& a^{3}-a^{3}+2 a+a-1=0 \\
& 3 a=1
\end{array}
$$

Therefore, $a=\frac{1}{3}$
Sample Question 3 : (i) Without actually calculating the cubes, find the value of $48^{3}-30^{3}-18^{3}$.
(ii)Without finding the cubes, factorise $(x-y)^{3}+(y-z)^{3}+(z-x)^{3}$.

Solution: We know that $x^{3}+y^{3}+z^{3}-3 x y z=(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-y z-z x\right)$.
If $x+y+z=0$, then $x^{3}+y^{3}+z^{3}-3 x y z=0$ or $x^{3}+y^{3}+z^{3}=3 x y z$.
(i) We have to find the value of $48^{3}-30^{3}-18^{3}=48^{3}+(-30)^{3}+(-18)^{3}$.

Here, $48+(-30)+(-18)=0$
So, $48^{3}+(-30)^{3}+(-18)^{3}=3 \times 48 \times(-30) \times(-18)=77760$
(ii) Here, $(x-y)+(y-z)+(z-x)=0$

Therefore, $(x-y)^{3}+(y-z)^{3}+(z-x)^{3}=3(x-y)(y-z)(z-x)$.

EXERCISE 2.3

1. Classify the following polynomials as polynomials in one variable, two variables etc.
(i) $x^{2}+x+1$
(ii) $y^{3}-5 y$
(iii) $x y+y z+z x$
(iv) $x^{2}-2 x y+y^{2}+1$
2. Determine the degree of each of the following polynomials :
(i) $2 x-1$
(ii) -10
(iii) $x^{3}-9 x+3 x^{5}$
(iv) $y^{3}\left(1-y^{4}\right)$
3. For the polynomial $\frac{x^{3}+2 x+1}{5}-\frac{7}{2} x^{2}-x^{6}$, write
(i) the degree of the polynomial
(ii) the coefficient of x^{3}
(iii) the coefficient of x^{6}
(iv) the constant term
4. Write the coefficient of x^{2} in each of the following :
(i) $\frac{\pi}{6} x+x^{2}-1$
(ii) $3 x-5$
(iii) $(x-1)(3 x-4)$
(iv) $(2 x-5)\left(2 x^{2}-3 x+1\right)$
5. Classify the following as a constant, linear, quadratic and cubic polynomials :
(i) $2-x^{2}+x^{3}$
(ii) $3 x^{3}$
(iii) $5 t-\sqrt{7}$
(iv) $4-5 y^{2}$
(v) 3
(vi) $2+x$
(vii) $y^{3}-y$
(viii) $1+x+x^{2}$
(ix) t^{2}
(x) $\sqrt{2} x-1$
6. Give an example of a polynomial, which is :
(i) monomial of degree 1
(ii) binomial of degree 20
(iii) trinomial of degree 2
7. Find the value of the polynomial $3 x^{3}-4 x^{2}+7 x-5$, when $x=3$ and also when $x=-3$.
8. If $p(x)=x^{2}-4 x+3$, evaluate : $p(2)-p(-1)+p\left(\frac{1}{2}\right)$
9. Find $p(0), p(1), p(-2)$ for the following polynomials :
(i) $p(x)=10 x-4 x^{2}-3$
(ii) $p(y)=(y+2)(y-2)$
10. Verify whether the following are True or False :
(i) -3 is a zero of $x-3$
(ii) $-\frac{1}{3}$ is a z ero of $3 x+1$
(iii) $\frac{-4}{5}$ is a zero of $4-5 y$
(iv) 0 and 2 are the zeroes of $t^{2}-2 t$
(v) -3 is a zero of $y^{2}+y-6$
11. Find the zeroes of the polynomial in each of the following :
(i) $p(x)=x-4$
(ii) $g(x)=3-6 x$
(iii) $\quad q(x)=2 x-7$
(iv) $h(y)=2 y$
12. Find the zeroes of the polynomial :

$$
p(x)=(x-2)^{2}-(x+2)^{2}
$$

13. By actual division, find the quotient and the remainder when the first polynomial is divided by the second polynomial : $x^{4}+1 ; x-1$
14. By Remainder Theorem find the remainder, when $p(x)$ is divided by $g(x)$, where
(i) $p(x)=x^{3}-2 x^{2}-4 x-1, \quad g(x)=x+1$
(ii) $p(x)=x^{3}-3 x^{2}+4 x+50, \quad g(x)=x-3$
(iii) $p(x)=4 x^{3}-12 x^{2}+14 x-3, \quad g(x)=2 x-1$
(iv) $p(x)=x^{3}-6 x^{2}+2 x-4, \quad g(x)=1-\frac{3}{2} x$
15. Check whether $p(x)$ is a multiple of $g(x)$ or not:
(i) $p(x)=x^{3}-5 x^{2}+4 x-3, \quad g(x)=x-2$
(ii) $p(x)=2 x^{3}-11 x^{2}-4 x+5, \quad g(x)=2 x+1$
16. Show that:
(i) $x+3$ is a factor of $69+11 x-x^{2}+x^{3}$.
(ii) $2 x-3$ is a factor of $x+2 x^{3}-9 x^{2}+12$.
17. Determine which of the following polynomials has $x-2$ a factor :
(i) $3 x^{2}+6 x-24$
(ii) $4 x^{2}+x-2$
18. Show that $p-1$ is a factor of $p^{10}-1$ and also of $p^{11}-1$.
19. For what value of m is $x^{3}-2 m x^{2}+16$ divisible by $x+2$?
20. If $x+2 a$ is a factor of $x^{5}-4 a^{2} x^{3}+2 x+2 a+3$, find a.
21. Find the value of m so that $2 x-1$ be a factor of $8 x^{4}+4 x^{3}-16 x^{2}+10 x+m$.
22. If $x+1$ is a factor of $a x^{3}+x^{2}-2 x+4 a-9$, find the value of a.
23. Factorise :
(i) $x^{2}+9 x+18$
(ii) $6 x^{2}+7 x-3$
(iii) $2 x^{2}-7 x-15$
(iv) $84-2 r-2 r^{2}$
24. Factorise :
(i) $2 x^{3}-3 x^{2}-17 x+30$
(ii) $x^{3}-6 x^{2}+11 x-6$
(iii) $x^{3}+x^{2}-4 x-4$
(iv) $3 x^{3}-x^{2}-3 x+1$
25. Using suitable identity, evaluate the following:
(i) 103^{3}
(ii) 101×102
(iii) 999^{2}
26. Factorise the following:
(i) $4 x^{2}+20 x+25$
(ii) $9 y^{2}-66 y z+121 z^{2}$
(iii) $\left(2 x+\frac{1}{3}\right)^{2}-\left(x-\frac{1}{2}\right)^{2}$
27. Factorise the following :
(i) $9 x^{2}-12 x+3$
(ii) $9 x^{2}-12 x+4$
28. Expand the following :
(i) $(4 a-b+2 c)^{2}$
(ii) $(3 a-5 b-c)^{2}$
(iii) $(-x+2 y-3 z)^{2}$
29. Factorise the following :
(i) $9 x^{2}+4 y^{2}+16 z^{2}+12 x y-16 y z-24 x z$
(ii) $25 x^{2}+16 y^{2}+4 z^{2}-40 x y+16 y z-20 x z$
(iii) $16 x^{2}+4 y^{2}+9 z^{2}-16 x y-12 y z+24 x z$
30. If $a+b+c=9$ and $a b+b c+c a=26$, find $a^{2}+b^{2}+c^{2}$.
31. Expand the following :
(i) $(3 a-2 b)^{3}$
(ii) $\left(\frac{1}{x}+\frac{y}{3}\right)^{3}$
(iii) $\left(4-\frac{1}{3 x}\right)^{3}$
32. Factorise the following:
(i) $1-64 a^{3}-12 a+48 a^{2}$
(ii) $8 p^{3}+\frac{12}{5} p^{2}+\frac{6}{25} p+\frac{1}{125}$
33. Find the following products:
(i) $\left(\frac{x}{2}+2 y\right)\left(\frac{x^{2}}{4}-x y+4 y^{2}\right)$
(ii) $\left(x^{2}-1\right)\left(x^{4}+x^{2}+1\right)$
34. Factorise :
(i) $1+64 x^{3}$
(ii) $a^{3}-2 \sqrt{2} b^{3}$
35. Find the following product:

$$
(2 x-y+3 z)\left(4 x^{2}+y^{2}+9 z^{2}+2 x y+3 y z-6 x z\right)
$$

36. Factorise :
(i) $a^{3}-8 b^{3}-64 c^{3}-24 a b c$
(ii) $2 \sqrt{2} a^{3}+8 b^{3}-27 c^{3}+18 \sqrt{2} a b c$.
37. Without actually calculating the cubes, find the value of:
(i) $\left(\frac{1}{2}\right)^{3}+\left(\frac{1}{3}\right)^{3}-\left(\frac{5}{6}\right)^{3}$
(ii) $(0.2)^{3}-(0.3)^{3}+(0.1)^{3}$
38. Without finding the cubes, factorise $(x-2 y)^{3}+(2 y-3 z)^{3}+(3 z-x)^{3}$
39. Find the value of
(i) $x^{3}+y^{3}-12 x y+64$, when $x+y=-4$
(ii) $x^{3}-8 y^{3}-36 x y-216$, when $x=2 y+6$
40. Give possible expressions for the length and breadth of the rectangle whose area is given by $4 a^{2}+4 a-3$.

(E) Long Answer Questions

Sample Question 1: If $x+y=12$ and $x y=27$, find the value of $x^{3}+y^{3}$.

Solution :

$$
\begin{aligned}
x^{3}+y^{3} & =(x+y)\left(x^{2}-x y+y^{2}\right) \\
& =(x+y)\left[(x+y)^{2}-3 x y\right] \\
& =12\left[12^{2}-3 \times 27\right] \\
& =12 \times 63=756
\end{aligned}
$$

Alternative Solution :

$$
\begin{aligned}
x^{3}+y^{3} & =(x+y)^{3}-3 x y(x+y) \\
& =12^{3}-3 \times 27 \times 12 \\
& =12\left[12^{2}-3 \times 27\right] \\
& =12 \times 63=756
\end{aligned}
$$

EXERCISE 2.4

1. If the polynomials $a z^{3}+4 z^{2}+3 z-4$ and $z^{3}-4 z+a$ leave the same remainder when divided by $z-3$, find the value of a.
2. The polynomial $p(x)=x^{4}-2 x^{3}+3 x^{2}-a x+3 a-7$ when divided by $x+1$ leaves the remainder 19. Find the values of a. Also find the remainder when $p(x)$ is divided by $x+2$.
3. If both $x-2$ and $x-\frac{1}{2}$ are factors of $p x^{2}+5 x+r$, show that $p=r$.
4. Without actual division, prove that $2 x^{4}-5 x^{3}+2 x^{2}-x+2$ is divisible by $x^{2}-3 x+2$. [Hint: Factorise $x^{2}-3 x+2$]
5. Simplify $(2 x-5 y)^{3}-(2 x+5 y)^{3}$.
6. Multiply $x^{2}+4 y^{2}+z^{2}+2 x y+x z-2 y z$ by $(-z+x-2 y)$.
7. If a, b, c are all non-zero and $a+b+c=0$, prove that $\frac{a^{2}}{b c}+\frac{b^{2}}{c a}+\frac{c^{2}}{a b}=3$.
8. If $a+b+c=5$ and $a b+b c+c a=10$, then prove that $a^{3}+b^{3}+c^{3}-3 a b c=-25$.
9. Prove that $(a+b+c)^{3}-a^{3}-b^{3}-c^{3}=3(a+b)(b+c)(c+a)$.
