(A) Main Concepts and Results

Meaning of a Polynomial

Degree of a polynomial

Coefficients

Monomials, Binomials etc.

Constant, Linear, Quadratic Polynomials etc.

Value of a polynomial for a given value of the variable

Zeroes of a polynomial

Remainder theorem

Factor theorem

Factorisation of a quadratic polynomial by splitting the middle term

Factorisation of algebraic expressions by using the Factor theorem

Algebraic identities –

$$(x + y)^{2} = x^{2} + 2xy + y^{2}$$

$$(x - y)^{2} = x^{2} - 2xy + y^{2}$$

$$x^{2} - y^{2} = (x + y) (x - y)$$

$$(x + a) (x + b) = x^{2} + (a + b) x + ab$$

$$(x + y + z)^{2} = x^{2} + y^{2} + z^{2} + 2xy + 2yz + 2zx$$

$$(x + y)^{3} = x^{3} + 3x^{2}y + 3xy^{2} + y^{3} = x^{3} + y^{3} + 3xy (x + y)$$

$$(x - y)^{3} = x^{3} - 3x^{2}y + 3xy^{2} - y^{3} = x^{3} - y^{3} - 3xy (x - y)$$

14

$$x^{3} + y^{3} = (x + y) (x^{2} - xy + y^{2})$$

$$x^{3} - y^{3} = (x - y) (x^{2} + xy + y^{2})$$

$$x^{3} + y^{3} + z^{3} - 3xyz = (x + y + z) (x^{2} + y^{2} + z^{2} - xy - yz - zx)$$

(B) Multiple Choice Questions

Sample Question 1: If $x^2 + kx + 6 = (x + 2)(x + 3)$ for all x, then the value of k is

- (A) 1
- (B) -1
- (C) 5
- (D) 3

Solution: Answer (C)

EXERCISE 2.1

Write the correct answer in each of the following:

1. Which one of the following is a polynomial?

(A)
$$\frac{x^2}{2} - \frac{2}{x^2}$$

(B)
$$\sqrt{2x}$$

(C)
$$x^2 + \frac{3x^{\frac{3}{2}}}{\sqrt{x}}$$

(D)
$$\frac{x-1}{x+1}$$

2. $\sqrt{2}$ is a polynomial of degree

- (A) 2
- (B) (
- (C)
- (D) $\frac{1}{2}$

3. Degree of the polynomial $4x^4 + 0x^3 + 0x^5 + 5x + 7$ is

- (A) 4
- (B) 5
- (C) 3
- (D) 7

4. Degree of the zero polynomial is

- (A) 0
- (B)
- (C) Any natural number

(D) Not defined

5. If $p(x) = x^2 - 2\sqrt{2}x + 1$, then $p(2\sqrt{2})$ is equal to

- (A) 0
- (B)
- (C) 4\
- (D) $8\sqrt{2} + 1$

6. The value of the polynomial $5x - 4x^2 + 3$, when x = -1 is

- (A) -6
- (B)
- (C)
- (D) -2

7.	If $p(x)$	x) = x + 3, then	p(x)	+ p(-x) is equ	ial to			
	(A)	3	(B)	2x	(C)	0	(D)	6
8.	8. Zero of the zero polynomial is							
	(A)	0			(B)	1		
	(C)	Any real num	nber		(D)	Not defined		
9.	Zero of the polynomial $p(x) = 2x + 5$ is							
	(A)	$-\frac{2}{5}$	(B)	$-\frac{5}{2}$	(C)	$\frac{2}{5}$	(D)	$\frac{5}{2}$
10.	10. One of the zeroes of the polynomial $2x^2 + 7x - 4$ is							
	(A)	2	(B)	$\frac{1}{2}$	(C)	$-\frac{1}{2}$	(D)	-2
11.	11. If $x^{51} + 51$ is divided by $x + 1$, the remainder is							
	(A)			1	(C)	49	(D)	50
12. If $x + 1$ is a factor of the polynomial $2x^2 + kx$, then the value of k is								
	(A)	-3	(B)	4	(C)	2	(D)	-2
13. $x + 1$ is a factor of the polynomial								
	(A)	$x^3 + x^2 - x +$	1		(B)	$x^3 + x^2 + x + 1$		
	(C)	$x^4 + x^3 + x^2 +$	-1		(D)	$x^4 + 3x^3 + 3x^2$	+ x + 1	
14.	14. One of the factors of $(25x^2 - 1) + (1 + 5x)^2$ is							
	(A)	5 + x	(B)	5-x	(C)	5x - 1	(D)	10 <i>x</i>
15. The value of $249^2 - 248^2$ is								
	(A)	1^2	(B)	477	(C)	487	(D)	497
16.	The f	factorisation of	$4x^2 +$	8x + 3 is				
	(A)	(x+1)(x+3)	3)		(B)	(2x + 1)(2x +	3)	
	(C)	(2x+2)(2x-	+ 5)		(D)	(2x-1)(2x-3))	
17. Which of the following is a factor of $(x + y)^3 - (x^3 + y^3)$?								
	(A)	$x^2 + y^2 + 2xy$	(B) .	$x^2 + y^2 - xy$	(C)	xy^2	(D)	3xy
18.	The o	coefficient of	in the	expansion of	f(x+3)	$)^3$ is		
	(A)	1	(B)	9	(C)	18	(D)	27
19	If $\frac{x}{x}$	$+\frac{y}{x}=-1$ (x y	±0) 1	the value of r	$^{3}-v^{3}$ is	s		

16

- (A) 1 (B) -1
- (C) 0
- (D) $\frac{1}{2}$

20. If $49x^2 - b = \left(7x + \frac{1}{2}\right)\left(7x - \frac{1}{2}\right)$, then the value of *b* is

- (B) $\frac{1}{\sqrt{2}}$ (C) $\frac{1}{4}$

21. If a + b + c = 0, then $a^3 + b^3 + c^3$ is equal to

- (A)
- (B) abc
- (C) 3abc
- (D)

(C) Short Answer Questions with Reasoning

Sample Question 1: Write whether the following statements are True or False. Justify your answer.

- (i) $\frac{1}{\sqrt{5}}x^{\frac{1}{2}} + 1$ is a polynomial (ii) $\frac{6\sqrt{x} + x^{\frac{3}{2}}}{\sqrt{x}}$ is a polynomial, $x \neq 0$

Solution:

- False, because the exponent of the variable is not a whole number. (i)
- (ii) True, because $\frac{6\sqrt{x} + x^{\frac{3}{2}}}{\sqrt{x}} = 6 + x$, which is a polynomial.

EXERCISE 2.2

- 1. Which of the following expressions are polynomials? Justify your answer:

- (ii) $\sqrt{3}x^2 2x$
- (iii) $1-\sqrt{5x}$

- (iv) $\frac{1}{5x^{-2}} + 5x + 7$ (v) $\frac{(x-2)(x-4)}{x}$

(vii)
$$\frac{1}{7}a^3 - \frac{2}{\sqrt{3}}a^2 + 4a - 7$$
 (viii) $\frac{1}{2x}$

- 2. Write whether the following statements are **True** or **False**. Justify your answer.
 - (i) A binomial can have atmost two terms
 - (ii) Every polynomial is a binomial
 - (iii) A binomial may have degree 5
 - (iv) Zero of a polynomial is always 0
 - (v) A polynomial cannot have more than one zero
 - (vi) The degree of the sum of two polynomials each of degree 5 is always 5.

(D) Short Answer Questions

Sample Question 1:

- (i) Check whether p(x) is a multiple of g(x) or not, where $p(x) = x^3 x + 1$, g(x) = 2 3x
- (ii) Check whether g(x) is a factor of p(x) or not, where

$$p(x) = 8x^3 - 6x^2 - 4x + 3$$
, $g(x) = \frac{x}{3} - \frac{1}{4}$

Solution:

(i) p(x) will be a multiple of g(x) if g(x) divides p(x).

Now,
$$g(x) = 2 - 3x = 0$$
 gives $x = \frac{2}{3}$

Remainder

$$= p\left(\frac{2}{3}\right) = \left(\frac{2}{3}\right)^3 - \left(\frac{2}{3}\right) + 1$$

$$=\frac{8}{27}-\frac{2}{3}+1=\frac{17}{27}$$

Since remainder $\neq 0$, so, p(x) is not a multiple of g(x).

(ii)
$$g(x) = \frac{x}{3} - \frac{1}{4} = 0$$
 gives $x = \frac{3}{4}$

g(x) will be a factor of p(x) if $p\left(\frac{3}{4}\right) = 0$ (Factor theorem)

Now,
$$p\left(\frac{3}{4}\right) = 8\left(\frac{3}{4}\right)^3 - 6\left(\frac{3}{4}\right)^2 - 4\left(\frac{3}{4}\right) + 3$$

$$= 8 \times \frac{27}{64} - 6 \times \frac{9}{16} - 3 + 3 = 0$$

Since, $p\left(\frac{3}{4}\right) = 0$, so, g(x) is a factor of p(x).

Sample Question 2: Find the value of a, if x - a is a factor of $x^3 - ax^2 + 2x + a - 1$.

Solution : Let $p(x) = x^3 - ax^2 + 2x + a - 1$

Since x - a is a factor of p(x), so p(a) = 0.

i.e.,
$$a^3 - a(a)^2 + 2a + a - 1 = 0$$

 $a^3 - a^3 + 2a + a - 1 = 0$
 $3a = 1$

Therefore, $a = \frac{1}{3}$

Sample Question 3: (i) Without actually calculating the cubes, find the value of $48^3 - 30^3 - 18^3$.

(ii) Without finding the cubes, factorise $(x - y)^3 + (y - z)^3 + (z - x)^3$.

Solution : We know that $x^3 + y^3 + z^3 - 3xyz = (x + y + z)(x^2 + y^2 + z^2 - xy - yz - zx)$.

If x + y + z = 0, then $x^3 + y^3 + z^3 - 3xyz = 0$ or $x^3 + y^3 + z^3 = 3xyz$.

(i) We have to find the value of $48^3 - 30^3 - 18^3 = 48^3 + (-30)^3 + (-18)^3$. Here, 48 + (-30) + (-18) = 0So, $48^3 + (-30)^3 + (-18)^3 = 3 \times 48 \times (-30) \times (-18) = 77760$

(ii) Here,
$$(x - y) + (y - z) + (z - x) = 0$$

Therefore, $(x - y)^3 + (y - z)^3 + (z - x)^3 = 3(x - y)(y - z)(z - x)$.

EXERCISE 2.3

- 1. Classify the following polynomials as polynomials in one variable, two variables etc.
 - (i) $x^2 + x + 1$

(ii) $v^3 - 5v$

(iii) xy + yz + zx

(iv) $x^2 - 2xy + y^2 + 1$

2. Determine the degree of each of the following polynomials :

(i)
$$2x - 1$$

(ii)
$$-10$$

(iii)
$$x^3 - 9x + 3x^5$$

(iv)
$$y^3 (1 - y^4)$$

3. For the polynomial

$$\frac{x^3 + 2x + 1}{5} - \frac{7}{2}x^2 - x^6$$
, write

- (i) the degree of the polynomial
- the coefficient of x^3 (ii)
- (iii) the coefficient of x^6
- (iv) the constant term
- **4.** Write the coefficient of x^2 in each of the following:

(i)
$$\frac{\pi}{6}x + x^2 - 1$$

(ii)
$$3x-5$$

(iii)
$$(x-1)(3x-4)$$

(iv)
$$(2x-5)(2x^2-3x+1)$$

5. Classify the following as a constant, linear, quadratic and cubic polynomials:

(i)
$$2 - x^2 + x^3$$
 (ii)

(iii)
$$5t - \sqrt{7}$$
 (iv) $4 - 5y^2$

(iv)
$$4 - 5v^2$$

(vi)
$$2 + x$$

(vii)
$$y^3 - y$$

(vii)
$$y^3 - y$$
 (viii) $1 + x + x^2$

19

(ix)
$$t^2$$

(x)
$$\sqrt{2}x-1$$

- **6.** Give an example of a polynomial, which is:
 - (i) monomial of degree 1
 - (ii) binomial of degree 20
 - trinomial of degree 2 (iii)
- 7. Find the value of the polynomial $3x^3 4x^2 + 7x 5$, when x = 3 and also when x = -3.

8. If
$$p(x) = x^2 - 4x + 3$$
, evaluate : $p(2) - p(-1) + p\left(\frac{1}{2}\right)$

9. Find p(0), p(1), p(-2) for the following polynomials:

(i)
$$p(x) = 10x - 4x^2 - 3$$

(ii)
$$p(y) = (y + 2) (y - 2)$$

10. Verify whether the following are True or False:

(i)
$$-3$$
 is a zero of $x - 3$

- (ii) $-\frac{1}{3}$ is a zero of 3x + 1
- (iii) $\frac{-4}{5}$ is a zero of 4 –5y
- (iv) 0 and 2 are the zeroes of $t^2 2t$
- (v) -3 is a zero of $y^2 + y 6$
- 11. Find the zeroes of the polynomial in each of the following:
 - (i) p(x) = x 4

(ii) g(x) = 3 - 6x

(iii) q(x) = 2x - 7

- (iv) h(y) = 2y
- **12.** Find the zeroes of the polynomial:

$$p(x) = (x-2)^2 - (x+2)^2$$

- **13.** By actual division, find the quotient and the remainder when the first polynomial is divided by the second polynomial : $x^4 + 1$; x 1
- **14.** By Remainder Theorem find the remainder, when p(x) is divided by g(x), where
 - (i) $p(x) = x^3 2x^2 4x 1$, g(x) = x + 1
 - (ii) $p(x) = x^3 3x^2 + 4x + 50$, g(x) = x 3
 - (iii) $p(x) = 4x^3 12x^2 + 14x 3$, g(x) = 2x 1

(iv)
$$p(x) = x^3 - 6x^2 + 2x - 4$$
, $g(x) = 1 - \frac{3}{2}x$

- **15.** Check whether p(x) is a multiple of g(x) or not :
 - (i) $p(x) = x^3 5x^2 + 4x 3$, g(x) = x 2
 - (ii) $p(x) = 2x^3 11x^2 4x + 5$, g(x) = 2x + 1
- **16.** Show that :
 - (i) x + 3 is a factor of $69 + 11x x^2 + x^3$.
 - (ii) 2x 3 is a factor of $x + 2x^3 9x^2 + 12$.
- 17. Determine which of the following polynomials has x 2 a factor :
 - (i) $3x^2 + 6x 24$

- (ii) $4x^2 + x 2$
- **18.** Show that p-1 is a factor of $p^{10}-1$ and also of $p^{11}-1$.
- **19.** For what value of m is $x^3 2mx^2 + 16$ divisible by x + 2?
- **20.** If x + 2a is a factor of $x^5 4a^2x^3 + 2x + 2a + 3$, find a.
- **21.** Find the value of m so that 2x 1 be a factor of $8x^4 + 4x^3 16x^2 + 10x + m$.

21

22. If x + 1 is a factor of $ax^3 + x^2 - 2x + 4a - 9$, find the value of a.

23. Factorise:

(i)
$$x^2 + 9x + 18$$

(ii)
$$6x^2 + 7x - 3$$

(iii)
$$2x^2 - 7x - 15$$

(iv)
$$84 - 2r - 2r^2$$

24. Factorise:

(i)
$$2x^3 - 3x^2 - 17x + 30$$

(ii)
$$x^3 - 6x^2 + 11x - 6$$

(iii)
$$x^3 + x^2 - 4x - 4$$

(iv)
$$3x^3 - x^2 - 3x + 1$$

25. Using suitable identity, evaluate the following:

(ii)
$$101 \times 102$$

26. Factorise the following:

(i)
$$4x^2 + 20x + 25$$

(ii)
$$9y^2 - 66yz + 121z^2$$

(iii)
$$\left(2x + \frac{1}{3}\right)^2 - \left(x - \frac{1}{2}\right)^2$$

27. Factorise the following:

(i)
$$9x^2 - 12x + 3$$

(ii)
$$9x^2 - 12x + 4$$

28. Expand the following:

(i)
$$(4a - b + 2c)^2$$

(ii)
$$(3a - 5b - c)^2$$

(iii)
$$(-x + 2y - 3z)^2$$

29. Factorise the following:

(i)
$$9x^2 + 4y^2 + 16z^2 + 12xy - 16yz - 24xz$$

(ii)
$$25x^2 + 16y^2 + 4z^2 - 40xy + 16yz - 20xz$$

(iii)
$$16x^2 + 4y^2 + 9z^2 - 16xy - 12yz + 24xz$$

30. If a + b + c = 9 and ab + bc + ca = 26, find $a^2 + b^2 + c^2$.

31. Expand the following:

(i)
$$(3a-2b)^3$$

(ii)
$$\left(\frac{1}{x} + \frac{y}{3}\right)^3$$

(ii)
$$\left(\frac{1}{x} + \frac{y}{3}\right)^3$$
 (iii) $\left(4 - \frac{1}{3x}\right)^3$

32. Factorise the following:

(i)
$$1 - 64a^3 - 12a + 48a^2$$

(ii)
$$8p^3 + \frac{12}{5}p^2 + \frac{6}{25}p + \frac{1}{125}$$

33. Find the following products:

(i)
$$\left(\frac{x}{2} + 2y\right) \left(\frac{x^2}{4} - xy + 4y^2\right)$$
 (ii) $(x^2 - 1)(x^4 + x^2 + 1)$

- 34. Factorise:
 - (i) $1 + 64x^3$

- (ii) $a^3 2\sqrt{2}b^3$
- **35.** Find the following product:

$$(2x - y + 3z) (4x^2 + y^2 + 9z^2 + 2xy + 3yz - 6xz)$$

- **36.** Factorise:
 - (i) $a^3 8b^3 64c^3 24abc$
- (ii) $2\sqrt{2}a^3 + 8b^3 27c^3 + 18\sqrt{2}abc$.
- **37.** Without actually calculating the cubes, find the value of :

(i)
$$\left(\frac{1}{2}\right)^3 + \left(\frac{1}{3}\right)^3 - \left(\frac{5}{6}\right)^3$$

(ii)
$$(0.2)^3 - (0.3)^3 + (0.1)^3$$

38. Without finding the cubes, factorise

$$(x-2y)^3 + (2y-3z)^3 + (3z-x)^3$$

- **39.** Find the value of
 - (i) $x^3 + y^3 12xy + 64$, when x + y = -4
 - (ii) $x^3 8y^3 36xy 216$, when x = 2y + 6
- **40.** Give possible expressions for the length and breadth of the rectangle whose area is given by $4a^2 + 4a 3$.

(E) Long Answer Questions

Sample Question 1 : If x + y = 12 and xy = 27, find the value of $x^3 + y^3$. **Solution :**

$$x^{3} + y^{3} = (x + y) (x^{2} - xy + y^{2})$$

$$= (x + y) [(x + y)^{2} - 3xy]$$

$$= 12 [12^{2} - 3 \times 27]$$

$$= 12 \times 63 = 756$$

Alternative Solution:

$$x^{3} + y^{3} = (x + y)^{3} - 3xy (x + y)$$

$$= 12^{3} - 3 \times 27 \times 12$$

$$= 12 [12^{2} - 3 \times 27]$$

$$= 12 \times 63 = 756$$

EXERCISE 2.4

- 1. If the polynomials $az^3 + 4z^2 + 3z 4$ and $z^3 4z + a$ leave the same remainder when divided by z 3, find the value of a.
- 2. The polynomial $p(x) = x^4 2x^3 + 3x^2 ax + 3a 7$ when divided by x + 1 leaves the remainder 19. Find the values of a. Also find the remainder when p(x) is divided by x + 2.
- 3. If both x 2 and $x \frac{1}{2}$ are factors of $px^2 + 5x + r$, show that p = r.
- **4.** Without actual division, prove that $2x^4 5x^3 + 2x^2 x + 2$ is divisible by $x^2 3x + 2$. [Hint: Factorise $x^2 3x + 2$]
- 5. Simplify $(2x-5y)^3-(2x+5y)^3$.
- **6.** Multiply $x^2 + 4y^2 + z^2 + 2xy + xz 2yz$ by (-z + x 2y).
- 7. If a, b, c are all non-zero and a + b + c = 0, prove that $\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab} = 3$.
- **8.** If a + b + c = 5 and ab + bc + ca = 10, then prove that $a^3 + b^3 + c^3 3abc = -25$.
- **9.** Prove that $(a + b + c)^3 a^3 b^3 c^3 = 3(a + b)(b + c)(c + a)$.