HERON'S FORMULA

(A) Main Concepts and Results

- Rectangle
(a) Area $=$ length \times breadth
(b) Perimeter $=2$ (length + breadth $)$
(c) Diagonal $=\sqrt{(\text { length })^{2}+(\text { breadth })^{2}}$
- Square
(a) Area $=(\text { side })^{2}$
(b) Perimeter $=4 \times$ side
(c) Diagonal $=\sqrt{2} \times$ side
- Triangle with base (b) and altitude (h)

Area $=\frac{1}{2} \times b \times h$

- Triangle with sides as a, b, c
(i) Semi-perimeter $=\frac{a+b+c}{2}=s$
(ii) Area $=\sqrt{s(s-a)(s-b)(s-c)}$ (Heron's Formula)
- Isosceles triangle, with base a and equal sides b

Area of isosceles triangle $=\frac{a}{4} \sqrt{4 b^{2}-a^{2}}$

- Equilateral triangle with side a

Area $=\frac{\sqrt{3}}{4} a^{2}$

- Parallelogram with base b and altitude h

Area $=b h$

- Rhombus with diagonals d_{1} and d_{2}
(a) Area $=\frac{1}{2} d_{1} \times d_{2}$
(b) \quad Perimeter $=2 \sqrt{d_{1}^{2}+d_{2}^{2}}$
- Trapezium with parallel sides a and b, and the distance between two parallel sides as h.

Area $=\frac{1}{2}(a+b) \times h$

- Regular hexagon with side a

Area $=6 \times$ Area of an equilateral triangle with side a

$$
=6 \times \frac{\sqrt{3}}{4} a^{2}=\frac{3}{2} \sqrt{3} a^{2}
$$

(B) Multiple Choice Questions

Write the correct answer:

Sample Question 1: The base of a right triangle is 8 cm and hypotenuse is 10 cm . Its area will be
(A) $24 \mathrm{~cm}^{2}$
(B) $40 \mathrm{~cm}^{2}$
(C) $48 \mathrm{~cm}^{2}$
(D) $80 \mathrm{~cm}^{2}$

Solution: Answer (A)

EXERCISE 12.1

1. An isosceles right triangle has area $8 \mathrm{~cm}^{2}$. The length of its hypotenuse is
(A) $\sqrt{32} \mathrm{~cm}$
(B) $\sqrt{16} \mathrm{~cm}$
(C) $\sqrt{48} \mathrm{~cm}$
(D) $\sqrt{24} \mathrm{~cm}$
2. The perimeter of an equilateral triangle is 60 m . The area is
(A) $10 \sqrt{3} \mathrm{~m}^{2}$
(B) $15 \sqrt{3} \mathrm{~m}^{2}$
(C) $20 \sqrt{3} \mathrm{~m}^{2}$
(D) $100 \sqrt{3} \mathrm{~m}^{2}$
3. The sides of a triangle are $56 \mathrm{~cm}, 60 \mathrm{~cm}$ and 52 cm long. Then the area of the triangle is
(A) $1322 \mathrm{~cm}^{2}$
(B) $1311 \mathrm{~cm}^{2}$
(C) $1344 \mathrm{~cm}^{2}$
(D) $1392 \mathrm{~cm}^{2}$
4. The area of an equilateral triangle with side $2 \sqrt{3} \mathrm{~cm}$ is
(A) $5.196 \mathrm{~cm}^{2}$
(B) $0.866 \mathrm{~cm}^{2}$
(C) $3.496 \mathrm{~cm}^{2}$
(D) $1.732 \mathrm{~cm}^{2}$
5. The length of each side of an equilateral triangle having an area of $9 \sqrt{3} \mathrm{~cm}^{2}$ is
(A) 8 cm
(B) 36 cm
(C) 4 cm
(D) 6 cm
6. If the area of an equilateral triangle is $16 \sqrt{3} \mathrm{~cm}^{2}$, then the perimeter of the triangle is
(A) 48 cm
(B) 24 cm
(C) 12 cm
(D) 36 cm
7. The sides of a triangle are $35 \mathrm{~cm}, 54 \mathrm{~cm}$ and 61 cm , respectively. The length of its longest altitude
(A) $16 \sqrt{5} \mathrm{~cm}$
(B) $10 \sqrt{5} \mathrm{~cm}$
(C) $24 \sqrt{5} \mathrm{~cm}$
(D) 28 cm
8. The area of an isosceles triangle having base 2 cm and the length of one of the equal sides 4 cm , is
(A) $\sqrt{15} \mathrm{~cm}^{2}$
(B) $\sqrt{\frac{15}{2}} \mathrm{~cm}^{2}$
(C) $2 \sqrt{15} \mathrm{~cm}^{2}$
(D) $4 \sqrt{15} \mathrm{~cm}^{2}$
9. The edges of a triangular board are $6 \mathrm{~cm}, 8 \mathrm{~cm}$ and 10 cm . The cost of painting it at the rate of 9 paise per cm^{2} is
(A) Rs 2.00
(B) Rs 2.16
(C) Rs 2.48
(D) Rs 3.00

(C) Short Answer Questions with Reasoning

Write True or False and justify your answer:
Sample Question 1: If a, b, c are the lengths of three sides of a triangle, then area of a triangle $=\sqrt{s(s-a)(s-b)(s-c)}$, where $s=$ perimeter of triangle.
Solution: False. Since in Heron's formula,
$s=\frac{1}{2}(a+b+c)$
$=\frac{1}{2}$ (perimeter of triangle)

EXERCISE 12.2

Write True or False and justify your answer:

1. The area of a triangle with base 4 cm and height 6 cm is $24 \mathrm{~cm}^{2}$.
2. The area of $\triangle \mathrm{ABC}$ is $8 \mathrm{~cm}^{2}$ in which $\mathrm{AB}=\mathrm{AC}=4 \mathrm{~cm}$ and $\angle \mathrm{A}=90^{\circ}$.
3. The area of the isosceles triangle is $\frac{5}{4} \sqrt{11} \mathrm{~cm}^{2}$, if the perimeter is 11 cm and the base is 5 cm .
4. The area of the equilateral triangle is $20 \sqrt{3} \mathrm{~cm}^{2}$ whose each side is 8 cm .
5. If the side of a rhombus is 10 cm and one diagonal is 16 cm , the area of the rhombus is $96 \mathrm{~cm}^{2}$.
6. The base and the corresponding altitude of a parallelogram are 10 cm and 3.5 cm , respectively. The area of the parallelogram is $30 \mathrm{~cm}^{2}$.
7. The area of a regular hexagon of side ' a ' is the sum of the areas of the five equilateral triangles with side a.
8. The cost of levelling the ground in the form of a triangle having the sides 51 m , 37 m and 20 m at the rate of Rs 3 per m^{2} is Rs 918.
9. In a triangle, the sides are given as $11 \mathrm{~cm}, 12 \mathrm{~cm}$ and 13 cm . The length of the altitude is 10.25 cm corresponding to the side having length 12 cm .

(D) ShortAnswer Questions

Sample Question 1: The sides of a triangular field are $41 \mathrm{~m}, 40 \mathrm{~m}$ and 9 m . Find the number of rose beds that can be prepared in the field, if each rose bed, on an average needs $900 \mathrm{~cm}^{2}$ space.
Solution : Let $a=41 \mathrm{~m}, b=40 \mathrm{~m}, c=9 \mathrm{~m}$.

$$
s=\frac{a+b+c}{2}=\frac{41+40+9}{2} \mathrm{~m}=45 \mathrm{~m}
$$

Area of the triangular field

$$
\begin{aligned}
& =\sqrt{s(s-a)(s-b)(s-c)} \\
& =\sqrt{45(45-41)(45-40)(45-9)} \\
& =\sqrt{45 \times 4 \times 5 \times 36}=180 \mathrm{~m}^{2}
\end{aligned}
$$

So, the number of rose beds $=\frac{180}{0.09}=2000$
Sample Question 2 : Calculate the area of the shaded region in Fig. 12.1.
Solution : For the triangle having the sides $122 \mathrm{~m}, 120 \mathrm{~m}$ and 22 m :

$$
s=\frac{122+120+22}{2}=132
$$

$$
\begin{aligned}
\text { Area of the triangle } & =\sqrt{s(s-a)(s-b)(s-c)} \\
& =\sqrt{132(132-122)(132-120)(132-22)} \\
& =\sqrt{132 \times 10 \times 12 \times 110} \\
& =1320 \mathrm{~m}^{2}
\end{aligned}
$$

For the triangle having the sides $22 \mathrm{~m}, 24 \mathrm{~m}$ and 26 m :

$$
\begin{gathered}
\qquad \mathrm{s}=\frac{22+24+26}{2}=36 \\
\text { Area of the triangle }=\sqrt{36(36-22)(36-24)(36-26)}
\end{gathered}
$$

$$
\begin{aligned}
& =\sqrt{36 \times 14 \times 12 \times 10} \\
& =24 \sqrt{105} \\
& =24 \times 10.25 \mathrm{~m}^{2} \text { (approx.) } \\
& =246 \mathrm{~m}^{2}
\end{aligned}
$$

Therefore, the area of the shaded portion

$$
\begin{aligned}
& =(1320-246) \mathrm{m}^{2} \\
& =1074 \mathrm{~m}^{2}
\end{aligned}
$$

Fig. 12.1

EXERCISE 12.3

1 Find the cost of laying grass in a triangular field of sides $50 \mathrm{~m}, 65 \mathrm{~m}$ and 65 m at the rate of Rs 7 per m^{2}.
2 The triangular side walls of a flyover have been used for advertisements. The sides of the walls are $13 \mathrm{~m}, 14 \mathrm{~m}$ and 15 m . The advertisements yield an earning of Rs 2000 per m^{2} a year. A company hired one of its walls for 6 months. How much rent did it pay?
3 From a point in the interior of an equilateral triangle, perpendiculars are drawn on the three sides. The lengths of the perpendiculars are $14 \mathrm{~cm}, 10 \mathrm{~cm}$ and 6 cm . Find the area of the triangle.
4 The perimeter of an isosceles triangle is 32 cm . The ratio of the equal side to its base is $3: 2$. Find the area of the triangle.
5 Find the area of a parallelogram given in Fig. 12.2. Also find the length of the altitude from vertex A on the side DC.
6 A field in the form of a parallelogram has sides 60 m and 40 m and one of its diagonals is 80 m long. Find the area of the parallelogram.
7 The perimeter of a triangular field is 420 m and its sides are in the ratio $6: 7: 8$. Find the area of the triangular field.
8 The sides of a quadrilateral ABCD are $6 \mathrm{~cm}, 8$ $\mathrm{cm}, 12 \mathrm{~cm}$ and 14 cm (taken in order) respectively, and the angle between the first two sides is a

Fig. 12.2 right angle. Find its area.
9 A rhombus shaped sheet with perimeter 40 cm and one diagonal 12 cm , is painted on both sides at the rate of Rs 5 per m^{2}. Find the cost of painting.
10 Find the area of the trapezium PQRS with height PQ given in Fig. 12.3

Fig. 12.3

(E) Long Answer Questions

Sample Question 1: If each side of a triangle is doubled, then find the ratio of area of the new triangle thus formed and the given triangle.

Solution : Let a, b, c be the sides of the triangle (existing) and s be its semi-perimeter.
Then, $s=\frac{a+b+c}{2}$
or, $2 s=a+b+c$
Area of the existing triangle $=\sqrt{s(s-a)(s-b)(s-c)}=\Delta$, say
According to the statement, the sides of the new triangle will be $2 a, 2 b$ and $2 c$. Let S be the semi-perimeter of the new triangle.
$\mathrm{S}=\frac{2 a+2 b+2 c}{2}=a+b+c$
From (1) and (2), we get

$$
\begin{equation*}
\mathrm{S}=2 s \tag{3}
\end{equation*}
$$

Area of the new triangle

$$
=\sqrt{\mathrm{S}(\mathrm{~S}-2 a)(\mathrm{S}-2 b)(\mathrm{S}-2 c)}
$$

Putting the values, we get

$$
=\sqrt{2 s(2 s-2 a)(2 s-2 b)(2 s-2 c)}
$$

$$
=\sqrt{16 s(s-a)(s-b)(s-c)}
$$

$$
=4 \sqrt{s(s-a)(s-b)(s-c)}=4 \Delta
$$

Therefore, the required ratio is $4: 1$.

EXERCISE 12.4

1. How much paper of each shade is needed to make a kite given in Fig. 12.4, in which ABCD is a square with diagonal 44 cm .

Fig. 12.4
2. The perimeter of a triangle is 50 cm . One side of a triangle is 4 cm longer than the smaller side and the third side is 6 cm less than twice the smaller side. Find the area of the triangle.
3. The area of a trapezium is $475 \mathrm{~cm}^{2}$ and the height is 19 cm . Find the lengths of its two parallel sides if one side is 4 cm greater than the other.
4. A rectangular plot is given for constructing a house, having a measurement of 40 m long and 15 m in the front. According to the laws, a minimum of 3 m , wide space should be left in the front and back each and 2 m wide space on each of other sides. Find the largest area where house can be constructed.
5. A field is in the shape of a trapezium having parallel sides 90 m and 30 m . These sides meet the third side at right angles. The length of the fourth side is 100 m . If it costs Rs 4 to plough $1 \mathrm{~m}^{2}$ of the field, find the total cost of ploughing the field.
6. In Fig. 12.5, $\Delta \mathrm{ABC}$ has sides $\mathrm{AB}=7.5 \mathrm{~cm}, \mathrm{AC}=6.5 \mathrm{~cm}$ and $\mathrm{BC}=7 \mathrm{~cm}$. On base BC a parallelogram DBCE of same area as that of $\triangle \mathrm{ABC}$ is constructed. Find the height DF of the parallelogram.
7. The dimensions of a rectangle ABCD are $51 \mathrm{~cm} \times 25 \mathrm{~cm}$. A trapezium PQCD with its parallel

Fig. 12.5
sides QC and PD in the ratio $9: 8$, is cut off from the rectangle as shown in the Fig. 12.6. If the area of the trapezium PQCD is $\frac{5}{6}$ th part of the area of the rectangle, find the lengths QC and PD.

Fig. 12.6
8. A design is made on a rectangular tile of dimensions $50 \mathrm{~cm} \times 70 \mathrm{~cm}$ as shown in Fig. 12.7. The design shows 8 triangles, each of sides $26 \mathrm{~cm}, 17 \mathrm{~cm}$ and 25 cm . Find the total area of the design and the remaining area of the tile.

Fig. 12.7

