Chapter 11

CONSTRUCTIONS

(A) Main Concepts and Results

- To bisect a given angle,
- To draw the perpendicular bisector of a line segment,
- To construct angles of $15^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}, 90^{\circ}$, etc.
- To construct a triangle given its base, a base angle and the sum of other two sides,
- To construct a triangle given its base, a base angle and the difference of other two sides,
- To construct a triangle given its perimeter and the two base angles
- Geometrical construction means using only a ruler and a pair of compasses as geometrical instruments.

(B) Multiple Choice Questions

Sample Question 1: With the help of a ruler and a compass, it is possible to construct an angle of :
(A) 35°
(B) 40°
(C) 37.5°
(D) 47.5°

Solution: Answer (C)

Sample Question 2: The construction of a triangle $A B C$ in which $A B=4 \mathrm{~cm}$, $\angle \mathrm{A}=60^{\circ}$ is not possible when difference of BC and AC is equal to:
(A) 3.5 cm
(B) 4.5 cm
(C) 3 cm
(D) 2.5 cm

Solution : Answer (B)

EXERCISE 11.1

1. With the help of a ruler and a compass it is not possible to construct an angle of :
(A) 37.5°
(B) 40°
(C) 22.5°
(D) 67.5°
2. The construction of a triangle $A B C$, given that $B C=6 \mathrm{~cm}, \angle B=45^{\circ}$ is not possible when difference of $A B$ and $A C$ is equal to:
(A) 6.9 cm
(B) 5.2 cm
(C) 5.0 cm
(D) 4.0 cm
3. The construction of a triangle ABC , given that $\mathrm{BC}=3 \mathrm{~cm}, \angle \mathrm{C}=60^{\circ}$ is possible when difference of $A B$ and $A C$ is equal to :
(A) 3.2 cm
(B) 3.1 cm
(C) 3 cm
(D) 2.8 cm

(C) Short Answer Questions with Reasoning

Write True or False and give reasons for your answer.
Sample Question 1 : An angle of 67.5° can be constructed.
Solution: True. As $67.5^{\circ}=\frac{135^{\circ}}{2}=\frac{1}{2}\left(90^{\circ}+45^{\circ}\right)$.

EXERCISE 11.2

Write True or False in each of the following. Give reasons for your answer:

1. An angle of 52.5° can be constructed.
2. An angle of 42.5° can be constructed.
3. A triangle ABC can be constructed in which $\mathrm{AB}=5 \mathrm{~cm}, \angle \mathrm{~A}=45^{\circ}$ and $\mathrm{BC}+$ $A C=5 \mathrm{~cm}$.
4. A triangle ABC can be constructed in which $\mathrm{BC}=6 \mathrm{~cm}, \angle \mathrm{C}=30^{\circ}$ and AC $A B=4 \mathrm{~cm}$.
5. A triangle ABC can be constructed in which $\angle \mathrm{B}=105^{\circ}, \angle \mathrm{C}=90^{\circ}$ and $\mathrm{AB}+\mathrm{BC}+$ $\mathrm{AC}=10 \mathrm{~cm}$.
6. A triangle ABC can be constructed in which $\angle \mathrm{B}=60^{\circ}, \angle \mathrm{C}=45^{\circ}$ and $\mathrm{AB}+\mathrm{BC}+\mathrm{AC}=$ 12 cm .

(D) Short Answer Questions

Sample Question 1: Construct a triangle ABC in which $\mathrm{BC}=7.5 \mathrm{~cm}, \angle \mathrm{~B}=45^{\circ}$ and $\mathrm{AB}-\mathrm{AC}=4 \mathrm{~cm}$.
Solution: See Mathematics Textbook for Class IX.

EXERCISE 11.3

1. Draw an angle of 110° with the help of a protractor and bisect it. Measure each angle.
2. Draw a line segment $A B$ of 4 cm in length. Draw a line perpendicular to $A B$ through A and B, respectively. Are these lines parallel?
3. Draw an angle of 80° with the help of a protractor. Then construct angles of (i) 40° (ii) 160° and (iii) 120°.
4. Construct a triangle whose sides are $3.6 \mathrm{~cm}, 3.0 \mathrm{~cm}$ and 4.8 cm . Bisect the smallest angle and measure each part.
5. Construct a triangle ABC in which $\mathrm{BC}=5 \mathrm{~cm}, \angle \mathrm{~B}=60^{\circ}$ and $\mathrm{AC}+\mathrm{AB}=7.5 \mathrm{~cm}$.
6. Construct a square of side 3 cm .
7. Construct a rectangle whose adjacent sides are of lengths 5 cm and 3.5 cm .
8. Construct a rhombus whose side is of length 3.4 cm and one of its angles is 45°.

(E) Long Answer Questions

Sample Question 1: Construct an equilateral triangle if its altitude is 6 cm . Give justification for your construction.
Solution : Draw a line XY. Take any point D on this line. Construct perpendicular PD on XY . Cut a line segment AD from D equal to 6 cm .
Make angles equal to 30° at A on both sides of AD , say $\angle \mathrm{CAD}$ and $\angle \mathrm{BAD}$ where B and C lie on $X Y$. Then $A B C$ is the required triangle. Justification
Since $\angle \mathrm{A}=30^{\circ}+$ $30^{\circ}=60^{\circ}$ and $\mathrm{AD} \perp \mathrm{BC}, \triangle \mathrm{ABC}$ is an equilateral triangle with altitude $\mathrm{AD}=$ 6 cm .

Fig. 11.1

EXERCISE 11.4

Construct each of the following and give justification :

1. A triangle if its perimeter is 10.4 cm and two angles are 45° and 120°.
2. A triangle PQR given that $\mathrm{QR}=3 \mathrm{~cm}, \angle \mathrm{PQR}=45^{\circ}$ and $\mathrm{QP}-\mathrm{PR}=2 \mathrm{~cm}$.
3. A right triangle when one side is 3.5 cm and sum of other sides and the hypotenuse is 5.5 cm .
4. An equilateral triangle if its altitude is 3.2 cm .
5. A rhombus whose diagonals are 4 cm and 6 cm in lengths.
