1. If $A=\left[\begin{array}{ccc}1 & 4 & 3 \\ -1 & 0 & 8 \\ 11 & 5 & 13\end{array}\right]$ and $B=\left[\begin{array}{ccc}2 & 3 & 8 \\ 5 & -9 & 12 \\ 0 & 11 & -2\end{array}\right]$ find $A+3 B$
2. Find $3 I_{3}$ - A where A is given by : $\mathrm{A}=\left[\begin{array}{ccc}1 & 9 & 5 \\ 0 & 12 & -8 \\ 1 & 3 & 5\end{array}\right]$
3. Simplify the Following : $\sin \theta\left[\begin{array}{cc}\sin \theta & -\cos \theta \\ \cos \theta & \sin \theta\end{array}\right]+\cos \theta\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$ - diagonal [1,1]
4. If $X-2 Y=\left[\begin{array}{ccc}1 & 5 & 9 \\ 3 & 8 & 12\end{array}\right]$ and $Y-2 X=\left[\begin{array}{ccc}3 & 5 & 0 \\ 1 & 9 & 11\end{array}\right]$, find the value of X and Y
5. If $A=\left[\begin{array}{ll}2 & 3 \\ 5 & 8\end{array}\right]$ and $B=\left[\begin{array}{rr}1 & 6 \\ 11 & 8\end{array}\right]$, find a matrix C, such that $2 A+3 B+4 C$ is an identity matrix.
6.
7. Find the value of x, such that $\left[\begin{array}{lll}1 & 2 & 1\end{array}\right]\left[\begin{array}{lll}1 & 2 & 0 \\ 2 & 0 & 1 \\ 1 & 0 & 2\end{array}\right]\left[\begin{array}{c}0 \\ 0 \\ x\end{array}\right]=0$
13.if $A=\left[\begin{array}{cc}5 & 3 \\ 12 & 7\end{array}\right]$, then verify that $A^{2}-12 A-I=O$ where I is a unit matrix of order 2 and O is a null matrix of order 2
14.if $A=\left[\begin{array}{cc}\cos \theta & i \sin \theta \\ i \sin \theta & \cos \theta\end{array}\right]$, then prove that : $A^{n}=\left[\begin{array}{cc}\cos n \theta & i \sin n \theta \\ i \sin n \theta & \cos n \theta\end{array}\right]$

VIDYARTH CLASS.COM

ANSWERS

1.

$\left[\begin{array}{ccc}7 & 13 & 27 \\ 14 & -27 & 44 \\ 14 & 3^{8} & 7\end{array}\right]$
$11 . B=\left[\begin{array}{cc}6 & -5 \\ -5 & 6\end{array}\right]$
12. $\mathrm{X}=0$

VIDYARTHI CLASS.COM

CBSE \| OLYMPIADS \| NTSE \| NDA

