Assignment-1

(NCERT Exercise 1.1- Types of Relations)

1. Let N be the set of natural numbers and a relation R be is defined over N as:
$R=\{(x, y): x, y \in N, x+2 y=10\}$. Check it for reflexivity, symmetricity and transitivity.
2. Prove that the relation R on the set Z of all integers defined by $R=\{(a, b): a, b \in Z$ and $(a-b)$ is divisible 5. Prove that R is an equivalence Relation.
3. Let N be the set of all natural numbers and R be the relation on $N \times N$ defined by $(a, b) R(c, d)$ if $a d=b c$ for all $(a, b),(c, d) \in N X N$. Prove that R is an equivalence relation.
4. Let R be a relation defined on Z such that $R=\{(a, b): a, b \in Z$, and $|a-b| \leq 5\}$
5. Let a relation R_{1} on the set R of real numbers be defined as $(a, b) \in R_{1} \Leftrightarrow 1+a b>0$ for all $a, b \in R$.show that R_{1} is reflexive and symmetric but not transitive.
6. A relation R is defined by $R=\{(a, b): a, b \in N$ and b is divisible by $a\}$. Check it for reflexivity, symmetricity and transitivity.
7. Let N be the set of all natural numbers and R be the relation on $N \times N$ defined by $(a, b) R(c, d)$ if $a d(b+c)=b c(a+d)$. Check whether R is an equivalence relation.
8. Prove that a relation R on a set A is symmetric iff $R=R^{-1}$
9. If R is an equivalence relation on a set A, then R^{-1} is also an equivalence relation on A

ANSWERS

1. R is nor reflexive, symmetric and transitive
2. R is an equivalence relation.
3. R is an equivalence relation.
4. R is reflexive, symmetric but not transitive.
5. R_{1} is reflexive, symmetric but not transitive
6. R is reflexive, transitive but not symmetric.
7. R is an equivalence relation.
8. R is an equivalence relation on A

Assignment-2

(NCERT Exercise 1.2- Functions)

1. Let $A=\{x \in R:-1 \leq x \leq 1\}$ show that $f: A \rightarrow B$ given by $f(x)=x|x|$ is a one - one and onto function.
2. Show that the function $f: R \rightarrow R$, given $b y f(x)=a x+b$, where $a, b \in R, a \neq 0$ is a bijection.
3. Show that the function $f: R \rightarrow R$, given by $f(x)=\sin x$ is neither one -one nor onto
4. Let $f: N-\{1\} \rightarrow N$ be defined by $f(n)=$ the highest prime factor of n. Show that f is neither one-one nor onto. Find the range of f
5. Let $f \rightarrow W \times W$, be defined as $f(x)=\left\{\begin{array}{r}x+1, \text { if } x \text { is even } \\ x-1, \text { if } x \text { is odd }\end{array}\right.$ where x is the set of whole numbers. Show that f is a bijection
6. Show that the identity function $\mathrm{I}_{N}: \mathrm{N} \rightarrow \mathrm{N}$ defined by $\mathrm{I}_{N}(\mathrm{x})=\mathrm{x}$ for all $\mathrm{x} \in \mathrm{N}$ is an onto function but
$\mathrm{I}_{N}+\mathrm{I}_{N}: \mathrm{N} \rightarrow \mathrm{N}$ defined as
$\left(\mathrm{I}_{N}+\mathrm{I}_{N}\right)(\mathrm{x})=\mathrm{I}_{N}(\mathrm{x}) \mathrm{I}_{N}+\mathrm{I}_{N}(\mathrm{x})$ is not onto
7. Prove that the function $f: N \rightarrow N$ defined by $f(x)=x^{2}+x+1$ is one -one but not onto.
8. Show that the function $f: R-\{b\} \rightarrow R-\{1\}$ given by $f(x)=\frac{x-a}{x-b}$ is a bijection, where $a \neq b$

ANSWERS

1. Range of f is the set of all prime numbers.
2. Let $f: R \rightarrow R ; f(x)=\sin x$ and $: R \rightarrow R ; g(x)=x^{2}$, find fog and gof. Also show that fog \neq gof
3. If $\mathrm{f}: R \rightarrow R$ is given by $f(x)=\left(3-x^{3}\right)^{1 / 3}$ then show that fof $=\mathrm{I}_{\mathrm{R}}$, where I_{R} is the identity function on R .
4. Let R be the set of all real numbers. If $f: R \rightarrow R$ is given by $f(x)=3 x+2, \forall x \in R$ and $g: R \rightarrow R$ is given by $g(x)=\frac{x}{x^{2}+1} \forall x \in R$ then find i) gof ii) fog iii) fof iv) gog
5. Let $\mathrm{f}(\mathrm{x})=x^{2}$ and $\mathrm{g}(\mathrm{x})=\sqrt{x}$, both f and g are defined from R to R then show that gof $(-4)=4$.
6. If $\mathrm{f}: R \rightarrow R$ and $\mathrm{g}: R \rightarrow R$ be function defined by $\mathrm{f}(\mathrm{x})=[\mathrm{x}]$ and $\mathrm{g}(\mathrm{x})=|x|$ then evaluate the following
i) $(f+2 g)(-2)$
ii) $(f-g)\left(\frac{1}{2}\right)$
iii) $\operatorname{gof}\left(\frac{7}{3}\right)-\operatorname{fog}\left(\frac{7}{3}\right)$
7. Let $\mathrm{f}: R \rightarrow R$ be signum function defined as $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{c}1 \text {, if } x>0 \\ 0, \text { if } x=0 \\ -1 \text {, if } x<0\end{array}\right.$ and $\mathrm{g}: R \rightarrow R$, be the greatest integer function defined as $\mathrm{g}(\mathrm{x})=[\mathrm{x}]$, then find whethe gof and fog coincide in $(0,1)$
8. If $\mathrm{f}(\mathrm{x})=e^{x}$ and $\mathrm{g}(\mathrm{x})=\log _{e^{x}}(\mathrm{x}>0)$, find fog and gof. Are they equal?
9. If $f(x)=\frac{1}{x}$ and $g(x)=0$ are two real functions, show that fog is not defined.
10. If $\mathrm{f}(\mathrm{x})=\frac{x-1}{x+1}, \mathrm{x} \neq-1$ then show that fof $(\mathrm{x})=-\frac{1}{x}, \mathrm{x} \neq 0,-1$
11. If $A=\{1,2,3,4,5\}, B=\{2,4,6,8,10\}$ and $f: A \rightarrow B$ is defined by $f(x)=2 x$, find f and f^{-1} as a set of ordered pairs
12. Let $\mathrm{f}: R \rightarrow R$ be defined by $\mathrm{f}(\mathrm{x})=5 \mathrm{x}-9$. Show that f is invertible and hence find f^{-1}
13. Show that $\mathrm{f}: \mathrm{R}-\{0\} \rightarrow \mathrm{R}-\{0\}$ given by $\mathrm{f}(\mathrm{x})=\frac{2}{x}$ is invertible and it is inverse of itself.
14. Let a function $\mathrm{f}: R \rightarrow R$ be defined by $f(x)=1+\alpha x, \alpha \neq 0$, for all $x \in \mathrm{R}$. show that f is invertible and find its inverse function. Also find the value(s) of α for which inverse of f is itself
15. Let $\mathrm{f}: \mathrm{N} \cup\{0\} \rightarrow \mathrm{N} \cup\{0\}$ be defined by $f(x)=\left\{\begin{array}{c}x+1, \text { if } x \text { is odd } \\ x-1 \text {, if } x \text { is even }\end{array}\right.$. Show that f is invertible and $\mathrm{f}=\mathrm{f}^{-1}$
16. Let $f: N \rightarrow R$ be a function defined by $f(x)=4 x^{2}+12 x+15$. Show that $f: N \rightarrow$ Range (f) is invertible. Find the inverse of f

ANSWERS

1. gof $=\sin ^{2} x, f o g=\sin x^{2}$
2. i) $\frac{3 x+2}{9 x^{2}+12 x+5}$
ii) $\frac{3 x+2 x^{2}+2}{x^{2}+1}$
iii) $9 x+8$
iv) $\frac{x\left(x^{2}+1\right)}{x^{4}+3 x^{2}+1}$
3. i) 2
ii) $-\frac{1}{2}$
iii) 0
4. fog $=x$, gof $=x$ but domain of fog and gof are not equal so gof \neq fog
5. $f=\left\{(1,2),(2,4),(3,6),(4,8),(5,10), f^{-1}=\{(1,2),(4,2),(6,3),(8,4),(10,5)\}\right.$
6. $\mathrm{f}^{-1}=\frac{x+9}{5}$
7. $\mathrm{f}^{-1}=\frac{x-a}{\alpha}, \alpha=-1$
8. $f^{-1}=\frac{-3+\sqrt{x-6}}{2}$

Assignment-4

(NCERT Exercise 1.4-Binary Operations)

1. let $S=\{a+\sqrt{2} b: a, b \in Z\}$ Then Prove that an operation on S defined by $\left(a_{1}+\sqrt{2} b_{1}\right)$ $\left(a_{2}+\sqrt{2} b_{2}\right)=\left(a_{1}+a_{2}\right)+\sqrt{2}\left(b_{1}+b_{2}\right)$ for all $a_{1}, b_{1}, a_{2}, b_{2} \in Z$ is a binary operation on S
2. Show that the operation ${ }^{\vee}$ and ${ }^{\wedge}$ on R defined as
$a \vee b=$ maximum of a and b
$a^{\wedge} b=$ minimum of a and b are binary operation on R
3. On the set Q of all rational numbers an operation is defined by $a * b=1+a b$. Show that * is a binary operation on Q .
4. Let M be the set of all singular matrices of the form $\left[\begin{array}{ll}x & x \\ x & x\end{array}\right]$, where x is a non - zero real number. On M , Let * be an operation defined by $A^{*} B=A B$ for all $A, B \in M$. prove that * is a binary operation
5. Let * be a binary operation on R the set of all real numbers, defined by $\mathrm{a}^{*} \mathrm{~b}=\sqrt{a^{2}+b^{2}}$ for $\mathrm{all} \mathrm{a}, \mathrm{b} \in \mathrm{R}$. Show that * is commutative
6. If the operation * is defined on the set Q of all rational numbers by the rule $\mathrm{a} * \mathrm{~b}=\frac{a b}{3}$ for $\mathrm{all} \mathrm{a}, \mathrm{b} \in \mathrm{Q}$
7. Discuss the commutativity and associativity of binary operation * defined on Q by the rule $a * b=a-b+a b$ for all $a, b \in A$.
8. Let A be a non-empty set and S be the set of all functions from A to itself. Show that the composition of functions ' O ' is a non- commutative binary operations on S. Also, prove that ' O ' is an associative binary operation on S.
9. Let $A=N X N$ and ${ }^{*}$ be a binary operation on A defined $b y(a, b)^{*}(c, d)=(a c, b d)$ for $a l l a, b, c, d \in N$ Show that '*' is commutative and associative binary operation on A
10. Let S be a non-empty set and $P(S)$ be the power set of set S. Find the identity element for the union (U) as a binary operation on $P(S)$.Also find the identity element for intersection (\cap) as a binary operation on $P(S)$
11. Let * be a binary operation on set $Q-\{1\}$ defined by $a * b=a+b-a b ; a, b \in Q-\{1\}$. find the identity element With respect to * on Q. prove that every element $Q-\{1\}$ is invertible.
12.On the set $R-\{-1\}$ a binary operation * is defined by $a * b=a+b+a b$ for all $a, b \in R-\{-1\}$. Prove that * is commutative as well as associative on $\mathrm{R}-\{-1\}$. Find the identity element (if exist).
13.On the set $S=M(x)=\left\{\left[\begin{array}{ll}x & x \\ x & x\end{array}\right]: x \in R\right\}$ of 2×2 matrices, find the identity element for the multiplication of matrices as a binary operation.
12. Let $A=N X N$ and * be a binary operation on A defined by $(a, b)^{*}(c, d)=(a+c, b+d)$. Show that * is commutative and associative. Find the identity element for ${ }^{*}$ on A, if any.
13. If $A=N X N$ and ${ }^{\prime *}$ ' on A is defined by $(a, b)^{*}(c, d)=(a d+b c, b d)$ for all $(a, b),(c, d) \in A$, then show that
i. \quad '*' is a binary operation on A
ii. ' $*$ ' is commutative on A
iii. '*' is associative on A.
iv. A has no identity element with respect to the given operation.
16.If $A=Q \times Q$ and '*' on A is defined by $(a, b)^{*}(c, d)=(a c, b+a d)$ for all $(a, b),(c, d) \in A$, then
i. Show that ${ }^{* \prime}$ ' is a binary operation on A.
ii. Show that the operation '*' is non- commutative on A
iii. Show that operation ${ }^{*}$ ' is associative on A
iv. Find the identity element in A
v. Find the invertible elements of A
14. S is a binary operation
15. * is neither commutative nor associative
16. Φ is the identity element in $P(S)$ for the operation ' U ' and S is the identity element for intersection (\cap) on $\mathrm{P}(\mathrm{S})$
17. 0 is the identity element
18. $\left[\begin{array}{ll}1 / 2 & 1 / 2 \\ 1 / 2 & 1 / 2\end{array}\right]$ is the identity element
19. There does not exist any identity element for * on A
20. Iv) $(1,0)$ is the identity element in $\mathrm{A} v)(1 / a \quad-b / a)$
