

Assignment-1

(NCERT Exercise 1.1- Types of Relations)

- 1. Let *N* be the set of natural numbers and a relation *R* be is defined over N as: $R = \{ (x, y) : x, y \in N, x + 2y = 10 \}$. Check it for reflexivity, symmetricity and transitivity.
- 2. Prove that the relation R on the set Z of all integers defined by $R = \{(a, b) : a, b \in Z \text{ and } (a b) \text{ is divisible}$ 5. Prove that R is an equivalence Relation.
- 3. Let N be the set of all natural numbers and R be the relation on $N \times N$ defined by (a, b) R(c, d) if ad = bc for all $(a, b), (c, d) \in N \times N$. Prove that R is an equivalence relation.
- 4. Let R be a relation defined on Z such that R = { (a,b): a, b \in Z, and $|a b| \le 5$ }
- 5. Let a relation R_1 on the set R of real numbers be defined as $(a,b) \in R_1 \Leftrightarrow 1 + ab > 0$ for all $a,b \in R$.show that R_1 is reflexive and symmetric but not transitive.
- 6. A relation R is defined by $R = \{(a, b) : a, b \in N \text{ and } b \text{ is divisible by } a\}$. Check it for reflexivity, symmetricity and transitivity.
- 7. Let N be the set of all natural numbers and R be the relation on $N \times N$ defined by (a, b) R(c, d) if ad(b + c) = bc(a + d). Check whether R is an equivalence relation.
- 8. Prove that a relation R on a set A is symmetric iff $R = R^{-1}$
- 9. If R is an equivalence relation on a set A, then R⁻¹ is also an equivalence relation on A

- 1. R is nor reflexive, symmetric and transitive
- 2. R is an equivalence relation.
- 3. R is an equivalence relation.
- 4. R is reflexive, symmetric but not transitive.
- 5. R1 is reflexive , symmetric but not transitive
- 6. R is reflexive, transitive but not symmetric.
- 7. R is an equivalence relation.
- 9. R is an equivalence relation on A

CBSE Class 12 Mathematics Assignment Chapter 1 – Relation & Functions

Assignment-2

(NCERT Exercise 1.2- Functions)

221

- 1. Let A = { $x \in R : -1 \le x \le 1$ } show that f : A \rightarrow B given by f(x) = x|x| is a one one and onto function.
- 2. Show that the function $f : R \rightarrow R$, given by f(x) = ax + b, where a, $b \in R$, $a \neq 0$ is a bijection.
- 3. Show that the function $f : R \rightarrow R$, given by f(x) = sinx is neither one –one nor onto
- Let f : N-{1}→ N be defined by f(n) = the highest prime factor of n. Show that f is neither one-one nor onto. Find the range of f
- 5. Let $f \to W \times W$, be defined as $f(x) = \begin{cases} x + 1, & \text{if } x \text{ is } even \\ x 1, & \text{if } x \text{ is } odd \end{cases}$ where x is the set of whole numbers. Show that f is a bijection
- 6. Show that the identity function $I_N : N \rightarrow N$ defined by $I_N(x) = x$ for all $x \in N$ is an onto function but

 $I_N + I_N : N \rightarrow N$ defined as

 $(I_N + I_N)(x) = I_N(x) I_N + I_N(x)$ is not onto

- 7. Prove that the function $f: N \rightarrow N$ defined by $f(x) = x^2 + x + 1$ is one –one but not onto.
- 8. Show that the function f : R { b} \rightarrow R {1} given by f(x) = $\frac{x-a}{x-b}$ is a bijection, where a \neq b

	- V				
ANSWERS	V.		/ \1	× 1 1	
	<u> </u>	A 6		$\cap \cap$	A A

1. Range of f is the set of all prime numbers.

CBSE | OLYMPIADS | NTSE | NDA

Assignment-3 (NCERT Exercise 1.3- Composite Of Functions, Invertible Functions

- 1. Let $f: R \to R$; $f(x) = \sin x$ and $R \to R$; $g(x) = x^2$, find fog and gof. Also show that fog \neq gof
- 2. If f : $R \to R$ is given by $f(x) = (3 x^3)^{1/3}$ then show that fof = I_R, where I_R is the identity function on R.
- 3. Let R be the set of all real numbers. If $f : R \to R$ is given by f(x) = 3x + 2, $\forall x \in R$ and $g : R \to R$ is given by $g(x) = \frac{x}{x^2+1} \forall x \in R$ then find i) gof ii) fog iii) fof iv) gog
- 4. Let $f(x) = x^2$ and $g(x) = \sqrt{x}$, both f and g are defined from R to R then show that gof(-4) = 4.
- 5. If f : $R \to R$ and g : $R \to R$ be function defined by f(x) = [x] and g(x) = |x| then evaluate the following

i)
$$(f + 2g)(-2)$$
 ii) $(f - g)\left(\frac{1}{2}\right)$ iii) $gof\left(\frac{7}{3}\right) - fog\left(\frac{7}{3}\right)$

6. Let $f: R \to R$ be signum function defined as $f(x) = \begin{cases} 1 & \text{, if } x > 0 \\ 0, \text{ if } x = 0 & \text{and} \\ -1, \text{ if } x < 0 \end{cases}$

g: $R \rightarrow R$, be the greatest integer function defined as g(x) = [x], then find whethe gof and fog coincide in (0, 1)

- 7. If $f(x) = e^x$ and $g(x) = log_{e^x}$ (x > 0), find fog and gof. Are they equal?
- 8. If $f(x) = \frac{1}{x}$ and g(x) = 0 are two real functions, show that fog is not defined.
- 9. If $f(x) = \frac{x-1}{x+1}$, $x \neq -1$ then show that fof $(x) = -\frac{1}{x}$, $x \neq 0$, -1
- 9. If $f(x) = \frac{1}{x+1}$, $x \neq -1$ then show that for $(x) = -\frac{1}{x}$, $x \neq 0$, -110. If A = { 1,2,3,4,5} , B = {2,4,6,8,10 } and f : A \rightarrow B is defined by f(x) = 2x, find f and f⁻¹ as a set of ordered pairs
- 11. Let f : $R \rightarrow R$ be defined by f(x) = 5x 9. Show that f is invertible and hence find f⁻¹
- 12. Show that $f: R-\{0\} \rightarrow R-\{0\}$ given by $f(x) = \frac{2}{x}$ is invertible and it is inverse of itself.
- 13. Let a function f: $R \rightarrow R$ be defined by $f(x) = 1 + \alpha x$, $\alpha \neq 0$, for all $x \in R$. show that f is invertible and find its inverse function. Also find the value(s) of α for which inverse of f is itself
- 14. Let $f: N \cup \{0\} \rightarrow N \cup \{0\}$ be defined by $f(x) = \begin{cases} x + 1, & \text{if } x \text{ is } odd \\ x 1, & \text{if } x \text{ is } even \end{cases}$. Show that f is invertible and $f = f^{-1}$.
- 15. Let $f: N \rightarrow R$ be a function defined by $f(x) = 4x^2 + 12x + 15$. Show that $f: N \rightarrow R$ ange (f) is invertible. Find the inverse of f CBSE LOLYMPIADS LNTSE

ANSWERS

1.
$$gof = sin^2 x$$
, fog = sinx

- 3. i) $\frac{3x+2}{9x^2+12x+5}$ ii) $\frac{3x+2x^2+2}{x^2+1}$ iii) 9x+8 iv) $\frac{x(x^2+1)}{x^4+3x^2+1}$ 5. i) 2 ii) $-\frac{1}{2}$ iii) 0
- 7. fog = x , gof = x but domain of fog and gof are not equal so gof \neq fog
- 10. $f = \{(1,2), (2,4), (3,6), (4,8), (5,10), f^1 = \{(1,2), (4,2), (6,3), (8,4), (10,5)\}$

11.
$$f^{-1} = \frac{x+9}{5}$$

13.
$$f^{-1} = \frac{x-a}{\alpha}$$
, $\alpha = -1$
15. $f^{-1} = \frac{-3+\sqrt{x-6}}{2}$

(NCERT Exercise 1.4- Binary Operations)

- 1. let S = { a + $\sqrt{2}$ b : a , b \in Z } Then Prove that an operation on S defined by (a₁ + $\sqrt{2}$ b₁) $(a_2 + \sqrt{2} b_2) = (a_1 + a_2) + \sqrt{2} (b_1 + b_2)$ for all $a_1, b_1, a_2, b_2 \in Z$ is a binary operation on S
- 2. Show that the operation \vee and \wedge on R defined as

Assignment-4

- a V b = maximum of a and b
 - a ^ b = minimum of a and b are binary operation on R
- 3. On the set Q of all rational numbers an operation is defined by a * b = 1 + ab. Show that * is a binary operation on Q.
- 4. Let M be the set of all singular matrices of the form $\begin{bmatrix} x & x \\ x & x \end{bmatrix}$, where x is a non zero real number. On M, Let * be an operation defined by $A^* B = AB$ for all A, B $\in M$. prove that * is a binary operation
- 5. Let * be a binary operation on R the set of all real numbers, defined by a* b = $\sqrt{a^2 + b^2}$ for all a , b \in R. Show that * is commutative
- 6. If the operation * is defined on the set Q of all rational numbers by the rule a * b = $\frac{ab}{3}$ for all a , b \in Q
- 7. Discuss the commutativity and associativity of binary operation * defined on Q by the rule a * b = a - b + ab for all $a, b \in A$.
- 8. Let A be a non-empty set and S be the set of all functions from A to itself. Show that the composition of functions 'O' is a non- commutative binary operations on S. Also, prove that 'O' is an associative binary operation on S.
- 9. Let A = N X N and * be a binary operation on A defined by (a, b) *(c, d) = (ac, bd) for all a, b, c, d \in N Show that '*' is commutative and associative binary operation on A
- 10.Let S be a non-empty set and P(S) be the power set of set S. Find the identity element for the union (U) as a binary operation on P(S). Also find the identity element for intersection (\cap) as a binary operation on P(S)
- 11. Let * be a binary operation on set $Q \{1\}$ defined by a* b= a+ b- ab ; a , b $\in Q \{1\}$. find the identity element With respect to * on Q. prove that every element Q-{1} is invertible.
- 12.On the set R-{-1} a binary operation * is defined by a * b = a + b+ ab for all a, b \in R -{-1}. Prove that * is commutative as well as associative on R- {-1}. Find the identity element (if exist).
- 13.On the set S = M(x) = $\begin{cases} x & x \\ x & x \end{cases}$: x $\in \mathbb{R}$ of 2 X 2 matrices, find the identity element for the multiplication of matrices as a binary operation.
- 14.Let A = N X N and * be a binary operation on A defined by (a, b) * (c,d) = (a+c, b + d). Show that * is commutative and associative. Find the identity element for * on A, if any.
- 15. If A = N X N and '*' on A is defined by (a, b) * (c, d) = (ad + bc, bd) for all (a, b), (c,d) $\in A$, then show that
 - i. '*' is a binary operation on A
 - ii. '*' is commutative on A
 - iii. '*' is associative on A.
 - iv. A has no identity element with respect to the given operation.
- 16. If A = Q X Q and '*' on A is defined by $(a, b)^*(c,d) = (ac, b+ad)$ for all $(a,b),(c,d) \in A$, then
 - i. Show that '*' is a binary operation on A.
 - ii. Show that the operation '*' is non- commutative on A
 - iii. Show that operation '*' is associative on A
 - iv. Find the identity element in A
 - v. Find the invertible elements of A

CBSE Class 12 Mathematics Assignment Chapter 1 – Relation & Functions

ANSWERS

- 1. S is a binary operation
- 7. * is neither commutative nor associative
- 10. Φ is the identity element in P(S) for the operation 'U' and S is the identity element for intersection (\cap) on P(S)
- 12. 0 is the identity element
- 13. $\begin{bmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{bmatrix}$ is the identity element
- 14. There does not exist any identity element for * on A
- 16. Iv) (1,0) is the identity element in A v) (1/a b/a)

CBSE | OLYMPIADS | NTSE | NDA