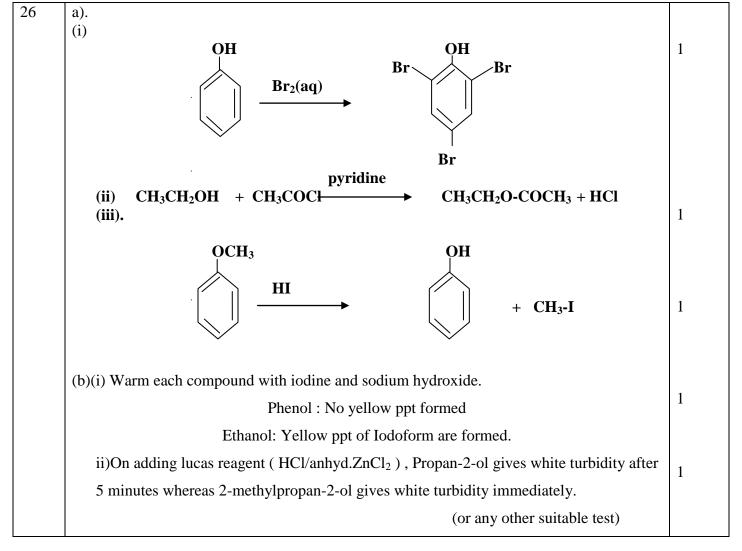
CHEMISTRY MARKING SCHEME FOREIGN-2016 SET -56/2/1/F

Q.no.	Answers	Marks
1	Like Charged particles cause repulsion/ Brownian motion/ solvation	1
2	Because of some crystallization.	1
3	Reaction (ii)	1
4	NO ₂ gas	1
5	N,N-dimethylbutanamide	1
6	i) [Co(NH ₃) ₄ Cl ₂]Cl	1
	ii) Tetraamminedichloridocobalt(III) chloride	1
7	When reaction is completed 99.9%, $[R]_n = [R]_0 - 0.999[R]_0$	
	$k = \frac{2.303}{t} \log \frac{[R]_0}{[R]}$	1/2
	$= \frac{2.303}{t} \log \frac{[R]_0}{[R]_0 - 0.999[R]_0} = \frac{2.303}{t} \log 10^3$	
	t = 6.909/k	1/2
	For half-life of the reaction	'-
	$t_{1/2} = 0.693/k$	
	$\frac{t}{t_{1/2}} = \frac{6.909}{k} \times \frac{k}{0.693} = 10$	
	-1/2 K 0.693	1
	OR	
7		
	$R \rightarrow P$ $Rate = \frac{dR}{dt} = kR$ $or \frac{dR}{R} = -kdt$ Integrating this equation, we get $ln [R] = -kt + I$ (4.8)	1/2
	Again, I is the constant of integration and its value can be determined	
	easily. When $t = 0$, $R = [R]_0$, where $[R]_0$ is the initial concentration of the reactant. Therefore, equation (4.8) can be written as $\ln [R]_0 = -k \times 0 + I$ $\ln [R]_0 = I$	
	Substituting the value of I in equation (4.8)	
	$\ln[R] = -kt + \ln[R]_0 \tag{4.9}$	
	Rearranging this equation	1/2
	$\ln \frac{R}{R_0} = kt$	
	or $k = \frac{1}{t} \ln \frac{[R]_0}{[R]}$	
	1	

	fee1	
	$k = \frac{2.303}{t} \log \frac{[R]_0}{[R]}$	1
8	Henry's law states that the mole fraction of gas in the solution is proportional to the partial pressure of the gas over the solution.	1
	Applications: solubility of CO ₂ gas in soft drinks /solubility of air diluted with helium in blood used by sea divers or any other	1/2
	Solubility of gas in liquid decreases with increase in temperature.	1/2
9	$X = CH_3-CO-CH_2-CH_3$ / Butan-2-one	1
	Y= CH ₃ -CH(OH)-CH ₂ -CH ₃ / Butan-2-ol	1
10	i) ii)	
	HO HO F	1+1
11		
	$k = 2.303 \log \frac{p_i}{2p_i - p_t}$	1
	$= \frac{2.303 \log}{300} \frac{0.3}{2 \times 0.3 - 0.5}$	1
	$= \frac{2.303}{300} \log 3$	
	$= \frac{2.303 \times 0.4771}{300}$	
	$= 0.0036 \text{ atm}^{-1} \text{ or } 0.004 \text{ atm}^{-1} \text{ (approx.)}$	1

		T T
12	i)Because of the resonance stabilization of the conjugate base i.e enolate anion or diagrammatic representation.	11/2
	iii)Because the carboxyl group gets bonded to the catalyst anhyd.AlCl ₃ (lewis acid). (note: part ii is deleted because of printing error and mark alloted in part i and part iii)	1½
	OR	
12	i) $C_6H_5CH_3$ $CrO_3/(CH_3CO)_2O$ $C_6H_5CH(OCOCH_3)_2$ H_2O C_6H_5CHO	
	ii)CH ₃ COOH Cl ₂ /P Cl-CH ₂ -COOH	
	iii)CH ₃ COCH ₃ Zn(Hg)/conc.HCl CH ₃ CH ₂ CH ₃	1x3=3
	(Or by any other correct method)	
13	$\mathbf{d} = \frac{\mathbf{z} \times \mathbf{M}}{\mathbf{N}_{\mathbf{A}} \times \mathbf{a}^3}$	
	Or	
	$d = \underbrace{z \times w}_{N \times a^3}$ Where w is weight and N is no. of atoms.	1
	$d = \frac{4 \times 200 \text{ g}}{2.5 \times 10^{24} \times (400 \times 10^{-10} \text{cm})^3}$	1
	$d = 5 g cm^{-3}$	1
	(or by any other correct method)	
14	i) It is a process in which both adsorption and absorption can take place simultaneously.	
	, and the place of the same pl	1
	ii) It is the potential difference between the fixed layer and the diffused/ double layer of opposite charges around the colloidal particles.	1
	iii) It is the temperature above which the formation of micelles takes place.	1
		1


15		
	$\Delta T_f = iK_f m$	
	$\Delta 1_{\mathrm{f}} - 1 \mathbf{K}_{\mathrm{f}} 1 1 1$	1/2
	For complete ionisation of Na ₂ SO ₄ i=3	1/
	$A T_{c} = T_{c}^{0} T_{c} = 3 \times 1.86 \text{ K kg mol}^{-1} \text{ y}$	1/2
	$\Delta T_f = T_f^0 - T_f = 3 \times 1.86 \text{ K kg mol}^{-1} \times \frac{2g}{142g \text{ mol}^{-1}} \times \frac{1000 \text{ g kg}^{-1}}{50 \text{ g}}$	1
	$\Delta T_{\mathrm{f}} = 1.57$	
	So, $T_f = -1.57^{\circ}C$ or 271.43K	1
16	i)Because of higher oxidation state (+5) / high charge to size ratio / high polarizing power.	
	ii)Because of high interelectronic repulsion.	
177	iii)Because of its low bond dissociation enthalpy and high hydration enthalpy of F.	1x3=3
17	i)A: $C_6H_5CONH_2$ B: $C_6H_5NH_2$ C: $C_6H_5NHCOCH_3$	11/2
	ii)A: $C_6H_5NO_2$ B: $C_6H_5NH_2$ C: C_6H_5 -NC	11/2
18		
	(i) Butadiene and acrylonitrile $CH_2 = CH - CH = CH_2$ and CH_2 = CH - CN	1/2+1/2
	(ii) Vinyl chloride CH ₂ =CH-Cl	1/2+1/2
	(iii) Chloroprene	
	Ç1	1/2+1/2
	$\mathbf{CH_2} = \mathbf{C} - \mathbf{CH} = \mathbf{CH_2}$	
19	6 CH ₂ OH	1
	H 5 OH	
	4 OH H 1 OH 3 12 H	
	i) OH 3 2 H	
	ii) Peptide linkage / -CO-NH- linkage	1
	iii) Water soluble-Vitamin B / C	1/2+1/2
	Fat soluble- Vitamin A /D /E /K	
	•	•

20	
-/	1 ½+½
ii) The energy used to split degenerate d-orbitals due to the presence of ligands in a definite geometry is called crystal field splitting energy.	1
i)Iodine is heated with Zr or Ti to form a volatile compound which on further heating decompose to give pure Zr or Ti . or	1
$Zr(impure) + 2I_2 \longrightarrow ZrI_4$ (volatile)	
ZrI_4 $1800K$ $Zr(pure) + 2I_2$	
ii)Cryolite lowers the m.p.of alumina mix / acts as a solvent / brings conductivity.	1
(iii) Role of NaCN in the extraction of Ag is to do the leaching of silver ore in the presence of air.	
or $4Ag(s) + 8CN^{-}(aq) + 2H_2O + O_2(g)$ $4[Ag(CN)_2]^{-} + 4OH^{-}$	1
i) CH ₂ Cl	
CH ₃	1 x 3=3
iii) CH ₃ CH ₂ ONO	

23	(i)Caring ,dutiful, Concerned, compassionate (or any other two values)	1/2+1/2
	ii)Because higher doses may have harmful effects and act as poison which cause even death.	1
	iii)Tranquilizers are a class of chemical compounds used for treatment of stress or even mental diseases.	1
	ex. chlordiazepoxide, equanil, veronal, serotonin, valium (or any other two examples)	1/2+1/2
24	a)	
	Given $E^{o}_{Cell} = +0.30V$; $F = 96500C \text{ mol}^{-1}$	
	n = 6 (from the given reaction)	
	$\Delta_{\rm r}G^{\rm O} = -n \times F \times E^{\rm o}_{\rm Cell}$	1/2
	$\Delta_{\rm r}G^{\rm O} = -6 \times 96500 \text{ C mol}^{-1} \times 0.30 \text{V}$	
	= -173,700 J/mol or $-173.7 kJ/mol$	1
	$log Kc = \underline{n E^{o}_{Cell}}$	
	0.059	1/2
	$\log \text{ Kc} = \frac{6 \times 0.30}{0.059}$	
	$\log Kc = 30.5$	1
	b)A Because E° value of A shows that on coating ,A acts as anode and Fe acts as a cathode	1
	and hence A oxidises in prefence to Fe and prevent corrosion / or E ^o _{cell} is positive and hence A oxidises itself to prevent corrosion of Fe/E ^o value is more negative. (or any other correct reason)	1
	OR	

24	a) $\Lambda_{\rm m} = \frac{\kappa}{c}$	1/2
	$= \frac{3.905 \times 10^{-5} \text{ S cm}^{-1}}{0.001 \text{mol L}^{-1}} \times 1000 \text{cm}^{3}$ $\mathbf{A_m} = \mathbf{39.05 \text{ Scm}^2 \text{mol}^{-1}}$ $\mathbf{A_0} = \lambda^{0} (\text{H}^{+}) + \lambda^{0} (\text{CH}_{3}\text{COO}^{-})$	1
	$= (349.6 + 40.9) \text{ Scm}^2 \text{mol}^{-1}$ $\Lambda_0 = 390.5 \text{ Scm}^2 \text{mol}^{-1}$ $\alpha = \frac{\Lambda_m}{\Lambda_0}$ $= \frac{39.05 \text{ Scm}^2 \text{mol}^{-1}}{390.5 \text{ Scm}^2 \text{mol}^{-1}}$	1/2
	$\alpha = 0.1$	1
	b)Secondary battery or rechargeable battery	1
	$Pb(s) + PbO_2(s) + 2SO_4^{2-}(aq) + 4H^+(aq)$ \longrightarrow $2PbSO_4(s) + 2H_2O(l)$	1
25	 i)Because of higher oxidation state (+7) of Mn. ii)Because it has one unpaired electron in 3d orbital in its +2 oxidation state / or it has incompletely filled d-orbital in +2 oxidation state. iii)Because of comparable energies of 5f, 6d and 7s orbitals. b) 	1 1 1
	$2MnO_2 + 4KOH + O_2 \longrightarrow 2K_2MnO_4 + 2H_2O$ $3MnO_4^{2-} + 4H^+ \longrightarrow 2MnO_4^{-} + MnO_2 + 2H_2O$	1+1
	OR	

25	a) i)Cr. because of maximum no of unnained electrons cause strong motallic	
	 i)Cr, because of maximum no. of unpaired electrons cause strong metallic bonding. 	1/2 + 1/2
	ii)Mn, because it attains stable half -filled 3d ⁵ configuration in +2 oxidation state.	1/2 + 1/2
	iii)Zn, because of no unpaired electron in d-orbital. b)	1/2 + 1/2
	$2\mathrm{Na_2CrO_4} + 2~\mathrm{H^{\scriptscriptstyle +}} \rightarrow \mathrm{Na_2Cr_2O_7} + 2~\mathrm{Na^{\scriptscriptstyle +}} + \mathrm{H_2O}$	
	$Na_2Cr_2O_7 + 2 KCl \longrightarrow K_2Cr_2O_7 + 2 NaCl$	1+1
26	a)	
	i) (CH ₃) ₃ C-I + CH ₃ -OH	1
	i) CH ₃ -CH ₂ -C-CH ₃	1
	ii)	
	OH	1
	CHO	1
	b) .i)	
	OH ONA OH COOH	1
	ii). OCH ₃ + CH ₃ COCl Anhyd. AlCl ₃ COCH ₃ COCH ₃ COCH ₃	1
	OR	

Name	Signature	Name	Signature
Dr. (Mrs.) Sangeeta Bhatia		Sh. S.K. Munjal	
Dr. K.N. Uppadhya		Sh. D.A. Mishra	
Prof. R.D. Shukla		Sh. Rakesh Dhawan	
Dr. (Mrs.) Sunita Ramrakhiani		Ms. Nirmala Venkateswaran	
Sh. S. Vallabhan, Principal		Mrs. Deepika Arora	
Mr. K.M. Abdul Raheem		Ms. Minakshi Gupta	
Mrs. Sushma Sachdeva		Sh. Mukesh Kaushik	
Ms. Seema Bhatnagar		Mr. Roop Narayan	
Sh. Pawan Singh Meena		Ms. Garima Bhutani	
Sh. Praveen Kumar Agrawal			

CHEMISTRY MARKING SCHEME FOREIGN-2016 SET -56/2/2/F

Q.no.	Answers	Marks
1	Reaction (ii)	1
2	NO ₂ gas	1
3	N,N-dimethylbutanamide	1
4	Like Charged particles cause repulsion/ Brownian motion/ solvation	1
5	Because of some crystallization.	1
6	Henry's law states that the mole fraction of gas in the solution is proportional to the partial pressure of the gas over the solution.	1
	Applications: solubility of CO ₂ gas in soft drinks /solubility of air diluted with helium in blood used by sea divers or any other	1/2
	Solubility of gas in liquid decreases with increase in temperature.	1/2
7	$X = CH_3-CO-CH_2-CH_3$ / Butan-2-one	1
	Y= CH ₃ -CH(OH)-CH ₂ -CH ₃ / Butan-2-ol	1
8	i) ii) F	1+1
9	i) [Co(NH ₃) ₄ Cl ₂]Cl	1
	ii) Tetraamminedichloridocobalt(III) chloride When reaction is completed 99.9%, [R] _n = [R] ₀ - 0.999[R] ₀	1
10	When reaction is completed 99.9%, $[R]_n = [R]_0 - 0.999[R]_0$ $k = \frac{2.303}{t} \log \frac{[R]_0}{[R]}$	1/2
	$= \frac{2.303}{t} \log \frac{[R]_0}{[R]_0 - 0.999[R]_0} = \frac{2.303}{t} \log 10^3$	
	t = 6.909/k	1/2
	For half-life of the reaction	
	$t_{1/2} = 0.693/k$	
	$\frac{t}{t_{1/2}} = \frac{6.909}{k} \times \frac{k}{0.693} = 10$	
	$t_{1/2} - k = 0.693$	1

10		
10	$R \rightarrow P$	
	Rate = $\frac{dR}{dt} = kR$	
	or $\frac{dR}{R} = -kdt$	17
	or $R = -k\alpha t$	1/2
	Integrating this equation, we get	
	$\ln [R] = -kt + I \tag{4.8}$	
	Again, I is the constant of integration and its value can be determined easily.	
	When $t = 0$, $R = [R]_0$, where $[R]_0$ is the initial concentration of the reactant.	
	Therefore, equation (4.8) can be written as	
	$\ln \left[R \right]_0 = -k \times 0 + I$	
	$ln [R]_0 = I$	
	Substituting the value of I in equation (4.8)	
	$ln[R] = -kt + ln[R]_0 \tag{4.9}$	
	Rearranging this equation	1/2
	$\ln \frac{R}{R_0} = kt$	
	or $k = \frac{1}{t} \ln \frac{[R]_0}{[R]}$	
	$k = \frac{2.303}{t} \log \frac{[R]_0}{[R]}$	1
11	$\Delta T_{\rm f} = i K_{\rm f} m$	1/2
	For complete ionisation of Na ₂ SO ₄ i=3	1/2
	$\Delta T_f = T_f^0 - T_f = 3 \times 1.86 \text{ K kg mol}^{-1} \times \frac{2g}{142g \text{ mol}^{-1}} \times \frac{1000 \text{ g kg}^{-1}}{50 \text{ g}}$	1
	$\Delta T_{\rm f} = 1.57$	
	•	1
	So, $T_f = -1.57^{\circ}C$ or 271.43K	
12	i)Because of higher oxidation state (+5) / high charge to size ratio /	
	high polarizing power.	
	ii)Because of high interelectronic repulsion.	1.00
	iii)Because of its low bond dissociation enthalpy and high hydration	1x3=3
12	enthalpy of F.	11/
13	i)A: $C_6H_5CONH_2$ B: $C_6H_5NH_2$ C: $C_6H_5NHCOCH_3$	11/2
	ii)A: $C_6H_5NO_2$ B: $C_6H_5NH_2$ C: C_6H_5 - NC	1½

14		
	(i) Butadiene and acrylonitrile $CH_2 = CH - CH = CH_2$ and CH_2 = CH - CN	1/2+1/2
	(ii) Vinyl chloride CH ₂ =CH-Cl	1/2+1/2
	(iii) Chloroprene	1/2+1/2
	CI $CH_2 = C - CH = CH_2$	72+72
15	6 CH ₂ OH H OH H OH H OH H OH H OH H OH H OH	1
	i) Peptide linkage / -CO-NH- linkage Water soluble-Vitamin B / C Fat soluble- Vitamin A /D /E /K	1 1/2+1/2
16	i) dsp ³ , Diamagnetic, low spin	1 1/2+1/2
	ii) The energy used to split degenerate d-orbitals due to the presence of ligands in a definite geometry is called crystal field splitting energy.	1
17	i)Iodine is heated with Zr or Ti to form a volatile compound which on further heating decompose to give pure Zr or Ti . or	1
	$Zr(impure) + 2I_2 \longrightarrow ZrI_4$ (volatile)	
	ZrI_4 <u>1800K</u> $Zr(pure) + 2I_2$	
	ii)Cryolite lowers the m.p.of alumina mix / acts as a solvent / brings conductivity.	1

	(iii) Role of NaCN in the extraction of Ag is to do the leaching of silver ore in the presence of air. or	1
	$4Ag(s) + 8CN^{-}(aq) + 2H_2O + O_2(g)$ $4OH^{-}$ $4[Ag(CN)_2]^{-} + 4OH^{-}$	
18	i) CH ₂ Cl	
	ii) Br CH ₃	
	iii) CH ₃ CH ₂ ONO	1 x 3=3
19	$k = 2.303 \log \frac{p_i}{2p_i - p_t}$	1
	$= \frac{2.303}{300} \log \frac{0.3}{2 \times 0.3 - 0.5}$	1
	$= \frac{2.303}{300} \log 3$	
	$= \frac{2.303 \times 0.4771}{300}$	
	= 0.0036 atm ⁻¹ or 0.004 atm ⁻¹ (approx.)	1
20	i)Because of the resonance stabilization of the conjugate base i.e enolate anion or diagrammatic representation. iii)Because the carboxyl group gets bonded to the catalyst	1½
	anhyd.AlCl ₃ (lewis acid). (note: part ii is deleted because of printing error and mark alloted in part i and part iii)	1½
	OR	
20	i)C ₆ H ₅ CH ₃ CrO ₃ /(CH ₃ CO) ₂ O C ₆ H ₅ CH(OCOCH ₃) ₂ H ₂ O C ₆ H ₅ CHO	

	ii)CH ₃ COOH Cl ₂ /P Cl-CH ₂ -COOH	
	iii)CH ₃ COCH ₃ Zn(Hg)/conc.HCl CH ₃ CH ₂ CH ₃	1x3=3
	(Or by any other correct method)	
21	$d = \frac{z \times M}{N_A \times a^3}$	
	Or $d = \underbrace{z \times w}_{N \times a^{3}}$ Where w is weight and N is no. of atoms.	1
	$d = \frac{4 \times 200 \text{ g}}{2.5 \times 10^{24} \times (400 \times 10^{-10} \text{cm})^3}$	1
	$d = 5 g cm^{-3}$	1
	(or by any other correct method)	
22	i) It is a process in which both adsorption and absorption can take place simultaneously.	1
	ii) It is the potential difference between the fixed layer and the diffused/ double layer of opposite charges around the colloidal particles.	1
	iii) It is the temperature above which the formation of micelles takes place.	1
23	(i)Caring ,dutiful, Concerned, compassionate values) (or any other two	1/2+1/2
	ii)Because higher doses may have harmful effects and act as poison which cause even death.	1
	iii)Tranquilizers are a class of chemical compounds used for treatment of stress or even mental diseases. ex. chlordiazepoxide, equanil, veronal, serotonin, valium (or any other two examples)	1 1/2+1/2
24	a) i)Because of higher oxidation state (+7) of Mn. ii)Because it has one unpaired electron in 3d orbital in its +2 oxidation state / or it has incompletely filled d-orbital in +2 oxidation state.	1 1
	iii)Because of comparable energies of 5f, 6d and 7s orbitals.	1

	b) $2MnO_2 + 4KOH + O_2 \longrightarrow 2K_2MnO_4 + 2H_2O$ $3MnO_4^{2-} + 4H^+ \longrightarrow 2MnO_4^{-} + MnO_2 + 2H_2O$	1+1
	OR	
24	 a) i)Cr, because of maximum no. of unpaired electrons cause strong metallic bonding. ii)Mn, because it attains stable half -filled 3d⁵ configuration in +2 oxidation state. iii)Zn, because of no unpaired electron in d-orbital. b) 	$\frac{1}{2} + \frac{1}{2}$ $\frac{1}{2} + \frac{1}{2}$ $\frac{1}{2} + \frac{1}{2}$
	$2Na_{2}CrO_{4} + 2 H^{+} \rightarrow Na_{2}Cr_{2}O_{7} + 2 Na^{+} + H_{2}O$ $Na_{2}Cr_{2}O_{7} + 2 KCl \longrightarrow K_{2}Cr_{2}O_{7} + 2 NaCl$	1+1

	OR	
25	a).	
	$\begin{array}{c c} OH & OH \\ \hline & Br \\ \hline & Br_2(aq) \end{array}$	1
	Br	
	(ii) CH ₃ CH ₂ OH + CH ₃ COCl → CH ₃ CH ₂ O-COCH ₃ + HCl (iii).	1
	OCH ₃ HI + CH ₃ -I	1
	(b)(i) Warm each compound with iodine and sodium hydroxide. Phenol: No yellow ppt formed	1
	Ethanol: Yellow ppt of Iodoform are formed.	
	ii)On adding lucas reagent (HCl/anhyd.ZnCl ₂), Propan-2-ol gives	1
	white turbidity after 5 minutes whereas 2-methylpropan-2-ol gives	
	white turbidity immediately.	
2.5	(or any other suitable test)	
26	a) Given $E^{o}_{Cell} = +0.30V$; $F = 96500C \text{ mol}^{-1}$	
	n = 6 (from the given reaction)	1/
	$\Delta_{r}G^{O} = -n \times F \times E^{O}_{Cell}$	1/2
	$\Delta_{\rm r}G^{\rm O} = -6 \times 96500 \text{C mol}^{-1} \times 0.30 \text{V}$	1
	= -173,700 J/mol or -173.7 kJ/mol	1
	$\log Kc = \underbrace{n E^{o}_{Cell}}_{0.050}$	1/2
	0.059 $\log Kc = \underline{6 \times 0.30}$	
	0.059	1
	$\log Kc = 30.5$	1

	b)A	1
	Because E ^o value of A shows that on coating ,A acts as anode and Fe	
	acts as a cathode and hence A oxidises in prefence to Fe and prevent corrosion / or E ^o _{cell} is positive and hence A oxidises itself to prevent	1
	corrosion of Fe/E° value is more negative.	1
	(or any other correct reason)	
	OR	
26	a) $\Lambda_{\rm m} = \underline{\kappa}$	1/2
	$\frac{\text{C}}{\text{C}} = 2.005 \text{ m}^{-1} \text{ m}^{-1} \text{ m}^{-1} \text{ m}^{-1} \text{ m}^{-1} \text{ m}^{-1}$	
	$= \frac{3.905 \times 10^{-5} \text{ S cm}^{-1}}{0.001 \text{ mol } \text{L}^{-1}} \times 1000 \text{ cm}^{3}$	
	$\Lambda_{\rm m} = 39.05 {\rm Scm}^2 {\rm mol}^{-1}$	1
	$\Lambda_{\rm o} = \lambda^{\rm o}({\rm H}^+) + \lambda^{\rm o}({\rm CH_3COO}^-)$	
	$= (349.6 + 40.9) \text{ Scm}^2 \text{mol}^{-1}$	
	$\Lambda_{\rm o} = 390.5 \mathrm{Scm}^2 \mathrm{mol}^{-1}$	1/2
	$\alpha = \frac{\Lambda_{\rm m}}{\Lambda_{\rm o}}$	
	$= \frac{39.05 \text{ Scm}^2 \text{mol}^{-1}}{390.5 \text{ Scm}^2 \text{mol}^{-1}}$	
	$\alpha = 0.1$	1
	b)Secondary battery or rechargeable battery	1
	$Pb(s) + PbO_2(s) + 2SO_4^{2-}(aq) + 4H^+(aq) \longrightarrow 2PbSO_4(s) + 2H_2O(l)$	
		1

CHEMISTRY MARKING SCHEME FOREIGN-2016 SET -56/2/3/F

Q.no.	Answers	Marks
1	NO ₂ gas	1
2	N,N-dimethylbutanamide	1
3	Like Charged particles cause repulsion/ Brownian motion/ solvation	1
4	Because of some crystallization.	1
5	Reaction (ii)	1
6	$X = CH_3 - CO - CH_2 - CH_3$ / Butan-2-one	1
	$Y = CH_3 + CH_2 + CH_3 + Butan 2 - ol$ $Y = CH_3 - CH(OH) - CH_2 - CH_3 + Butan 2 - ol$	1
7		1
	i) ii)	
	BO P	1+1
8	i) [Co(NH ₃) ₄ Cl ₂]Cl	1
	ii) Tetraamminedichloridocobalt(III) chloride When reaction is completed 99.9%, [R] _n = [R] ₀ - 0.999[R] ₀	1
9		
	$k = \frac{2.303}{t} \log \frac{[R]_0}{[R]}$	1/2
	$= \frac{2.303}{t} \log \frac{[R]_0}{[R]_0 - 0.999[R]_0} = \frac{2.303}{t} \log 10^3$ $t = 6.909/k$	1/2
	For half-life of the reaction	
	$t_{1/2} = 0.693/k$	
	$\frac{t}{t_{1/2}} = \frac{6.909}{k} \times \frac{k}{0.693} = 10$	1
	OR	
9	$R \rightarrow P$	
	Rate = $\frac{dR}{dt} = kR$ or $\frac{dR}{R} = -kdt$	1/2
	Integrating this equation, we get	
	$\ln \left[R \right] = -kt + I \tag{4.8}$	
	Again, I is the constant of integration and its value can be determined easily. When $t = 0$, $R = [R]_0$, where $[R]_0$ is the initial concentration of the reactant.	
	Therefore, equation (4.8) can be written as $ \ln [R]_0 = -k \times 0 + I $ $ \ln [R]_0 = I $	
	Substituting the value of I in equation (4.8) $ln[R] = -kt + ln[R]_0$ (4.9)	1/2
	Rearranging this equation $\ln \frac{R}{R_0} = kt$	
	or $k = \frac{1}{t} \ln \frac{[R]_0}{[R]}$ $k = \frac{2.303}{t} \log \frac{[R]_0}{[R]}$	1

10	Henry's law states that the mole fraction of gas in the solution is	1
	proportional to the partial pressure of the gas over the solution.	
	Applications: solubility of CO ₂ gas in soft drinks /solubility of air	1/2
	diluted with helium in blood used by sea divers or any other	-
	Solubility of gas in liquid decreases with increase in temperature.	1/2
11	(i) Butadiene and acrylonitrile	1/2+1/2
11	CH ₂ = CH – CH = CH ₂ and CH ₂ =CH-CN	/2-/2
	(ii) Vinyl chloride	1/ .1/
	CH ₂ =CH-Cl	1/2+1/2
	(iii) Chloroprene	
	$\mathbf{CH_2} = \mathbf{C} - \mathbf{CH} = \mathbf{CH_2}$	1/2+1/2
12	CH₂OH	1
	H 5 OH	
	4 OH H 1	
	OH 3 2 H	
	i) H OH	
	Dantida linkaga / CO NH linkaga	1
	ii) Peptide linkage / -CO-NH- linkage	
	Water soluble-Vitamin B / C	1/2+1/2
10	Fat soluble- Vitamin A /D /E /K	
13		
	i) dsp^3 ,	1
	Diamagnetic, low spin	1/2+1/2
	ii) The energy used to split degenerate d-orbitals due to the	
	presence of ligands in a definite geometry is called crystal	
	field splitting energy.	1
14	i)Iodine is heated with Zr or Ti to form a volatile compound which on	
	further heating decompose to give pure Zr or Ti.	
	or	1
	$Zr(impure) + 2I_2 \longrightarrow ZrI_4$	
	(volatile)	
	ZrI_4 1800K $Zr(pure) + 2I_2$	
	ii)Cryolite lowers the m.p.of alumina mix / acts as a solvent / brings	
	conductivity.	1
	(iii) Role of NaCN in the extraction of Ag is to do the leaching of silver	
	ore in the presence of air.	
	or or	
	$1.4\Delta g(s) + 8CN^{2}(ag) + 2H_{0}O + O_{0}(g)$ $1.4\Delta g(CN) \cdot 1^{2} + 1$	
	$4Ag(s) + 8CN^{-}(aq) + 2H_2O + O_2(g)$ $4OH^{-}$	1

15	i)	
13	CH ₂ Cl	
	но т	
	ii)	
	Br	
	CH ₃	
	iii) CH ₃ CH ₂ ONO	1 x 3=3
16	$k = 2.303 \log \frac{p_i}{2p_i - p_t}$	1
	$= \frac{2.303}{300} \log \frac{0.3}{2 \times 0.3 - 0.5}$	1
	$= \frac{2.303}{300} \log 3$	
	$= \frac{2.303 \times 0.4771}{300}$	
	$= 0.0036 \text{ atm}^{-1} \text{ or } 0.004 \text{ atm}^{-1} \text{ (approx.)}$	1
17	i)Because of the resonance stabilization of the conjugate base i.e enolate anion or diagrammatic representation.	11/2
	iii)Because the carboxyl group gets bonded to the catalyst anhyd.AlCl ₃ (lewis acid).	11/2
	(note: part ii is deleted because of printing error and mark alloted in part i and part iii)	
	OR	
17	i)C ₆ H ₅ CH ₃ CrO ₃ /(CH ₃ CO) ₂ O C ₆ H ₅ CH(OCOCH ₃) ₂ H ₂ O C ₆ H ₅ CHO	
	ii)CH ₃ COOH Cl ₂ /P Cl-CH ₂ -COOH	
	iii)CH ₃ COCH ₃ Zn(Hg)/conc.HCl CH ₃ CH ₂ CH ₃	1x3=3
	(Or by any other correct method)	

		1
18	$d = \frac{z \times M}{N_A \times a^3}$	1
	Or	
	$d = \underline{z \times w}$ Where w is weight and N is no. of atoms.	
	= 1 == ++	
	$d = \frac{4 \times 200 \text{ g}}{2.5 \times 10^{24} \times (400 \times 10^{-10} \text{cm})^3}$	1
	$d = 5 g cm^{-3}$	1
	(or by any other correct method)	
19	i) It is a process in which both adsorption and absorption can take place simultaneously.	1
	ii) It is the potential difference between the fixed layer and the	1
	diffused/ double layer of opposite charges around the colloidal particles.	
	iii) It is the temperature above which the formation of micelles takes	1
20	place. $\Delta T_f = iK_f m$	1/2
20	$\Delta \Gamma_{\mathrm{f}} = i \mathbf{K}_{\mathrm{f}} \Pi i$	/2
	For complete ionisation of Na ₂ SO ₄ i=3	1/2
	$\Delta T_f = T_f^0 - T_f = 3 \times 1.86 \text{ K kg mol}^{-1} \times \frac{2g}{142g \text{ mol}^{-1}} \times \frac{1000 \text{ g kg}^{-1}}{50 \text{ g}}$	1
	$\Delta T_{\mathrm{f}} = 1.57$	
	So, $T_f = -1.57^{\circ}C$ or 271.43K	1
21	i)Because of higher oxidation state (+5) / high charge to size ratio /	
	high polarizing power.	
	ii)Because of high interelectronic repulsion.	
	iii)Because of its low bond dissociation enthalpy and high hydration	1x3=3
	enthalpy of F.	41/
22	i)A : C ₆ H ₅ CONH ₂ B : C ₆ H ₅ NH ₂ C : C ₆ H ₅ NHCOCH ₃ ii)A: C ₆ H ₅ NO ₂ B : C ₆ H ₅ NH ₂ C: C ₆ H ₅ -NC	$1\frac{1}{2}$ $1\frac{1}{2}$
23	(i)Caring ,dutiful, Concerned, compassionate (or any other two	1/2+1/2
	values)	
	ii)Because higher doses may have harmful effects and act as poison which cause even death.	1
	iii)Tranquilizers are a class of chemical compounds used for treatment	1
	of stress or even mental diseases.	14 : 17
	ex. chlordiazepoxide, equanil, veronal, serotonin, valium (or any other two examples)	1/2+1/2

24	a)	
2 '	i) $(CH_3)_3 C-I + CH_3-OH$	
	ii) CH ₃ -CH ₂ -C-CH ₃	1
	11) C113-C112-C-C113 	
	O	1
	iii)	
	OH L	
	СНО	1
	b) .i)	
	OH OH	
	OH ONa OH	
	NaOH (i) CO ₂ (ii) H ⁺	1
	×	
	ii).	
	OCH ₃ OCH ₃ OCH ₃	
	+ CH ₃ COCl Anhyd. AlCl ₃ +	1
		1
	COCH	
	OR	
24	a).	
	OH OH	1
	$Br \searrow Br$	1
	Br ₂ (aq)	
	Br	
	pyridine	
	(ii) CH ₃ CH ₂ OH + CH ₃ COCl → CH ₃ CH ₂ O-COCH ₃ + HCl	
	(iii).	1
	OCH OH	
	OCH ₃ OH	
	н	
	$ \longrightarrow +CH_3-I$	1
	, variable of the second of th	

(b)(i) Warm each compound with iodine and sodium hydroxide.	1
Phenol: No yellow ppt formed	
Ethanol: Yellow ppt of Iodoform are formed.	
ii)On adding lucas reagent (HCl/anhyd.ZnCl2) , Propan-2-ol gives	1
white turbidity after 5 minutes whereas 2-methylpropan-2-ol gives	
white turbidity immediately.	
(or any other suitable test)	

1		
25	a) Given $E^{o}_{Cell} = +0.30V$; $F = 96500C \text{ mol}^{-1}$	
	n = 6 (from the given reaction)	
	$\Delta_{\rm r} {\rm G}^{\rm O} = - {\rm n} \ {\rm x} \ {\rm F} \ {\rm x} \ {\rm E^{o}}_{\rm Cell}$	1/2
	$\Delta_{\rm r} {\rm G}^{\rm O} = -6 \times 96500 {\rm C \ mol^{-1}} \times 0.30 {\rm V}$	1
	= - 173,700 J / mol or - 173.7 kJ / mol	1
	$\log Kc = n E^{o}_{Cell}$	1/2
	0.059	72
	$\log Kc = \underline{6 \times 0.30}$ 0.059	
	$\log Kc = 30.5$	1
	b)A	1
	Because E ^o value of A shows that on coating ,A acts as anode and Fe	1
	acts as a cathode and hence A oxidises in prefence to Fe and prevent	
	corrosion / or E_{cell}^0 is positive and hence A oxidises itself to prevent	
	corrosion of E/E^0 value is more negative.	1
	(or any other correct reason)	
	OR	
25	a) $\Lambda_{\rm m} = \underline{\kappa}$	1/2
	c	
	$= \frac{3.905 \times 10^{-5} \text{ S cm}^{-1}}{0.001 \text{mol L}^{-1}} \times 1000 \text{cm}^{3}$	
	0.001mol L ⁻¹ L	
	$A_{\rm m} = 39.05 {\rm Scm}^2 {\rm mol}^{-1}$	1
	$\Lambda_0 = \lambda^0(H^+) + \lambda^0(CH_3COO^-)$	
	$= (349.6 + 40.9) \text{ Scm}^2 \text{mol}^{-1}$	
	$\Lambda_{\rm o} = 390.5 \mathrm{Scm}^2 \mathrm{mol}^{-1}$	1/2
	$\alpha = \frac{\Lambda_{\rm m}}{\Lambda_{\rm m}}$	72
	$= 39.05 \text{ Scm}^2 \text{mol}^{-1}$	
	$= \frac{39.05 \text{ Scm}^2 \text{mol}^{-1}}{390.5 \text{ Scm}^2 \text{mol}^{-1}}$	
	$\alpha = 0.1$	1

	b)Secondary battery or rechargeable battery	1
	$Pb(s) + PbO_2(s) + 2SO_4^{2-}(aq) + 4H^+ (aq)$ 2PbSO ₄ (s) + 2H ₂ O(l)	1

26	a)	
	i)Because of higher oxidation state (+7) of Mn.	1
	ii)Because it has one unpaired electron in 3d orbital in its +2 oxidation	1
	state / or it has incompletely filled d-orbital in +2 oxidation state.	
	iii)Because of comparable energies of 5f, 6d and 7s orbitals.	1
	b)	
	$2MnO_2 + 4KOH + O_2 \longrightarrow 2K_2MnO_4 + 2H_2O$	
	$3MnO_4^{2-} + 4 H^+ \longrightarrow 2MnO_4^- + MnO_2 + 2H_2O$	1+1
	OR	
26	a)	
	i)Cr, because of maximum no. of unpaired electrons cause strong	
	metallic bonding.	$\frac{1}{2} + \frac{1}{2}$
	ii)Mn, because it attains stable half -filled 3d ⁵ configuration in +2	
	oxidation state.	$\frac{1}{2} + \frac{1}{2}$
	iii)Zn, because of no unpaired electron in d-orbital.	1/ 1/
	b)	$\frac{1}{2} + \frac{1}{2}$
	$2\mathrm{Na_2CrO_4} + 2~\mathrm{H^{\scriptscriptstyle +}} \rightarrow \mathrm{Na_2Cr_2O_7} + 2~\mathrm{Na^{\scriptscriptstyle +}} + \mathrm{H_2O}$	
	$Na_2Cr_2O_7 + 2 KCl \longrightarrow K_2Cr_2O_7 + 2 NaCl$	
		1+1