<u>CHEMISTRY MARKING SCHEME</u> <u>DELHI -2014</u> <u>SET -56/1/1</u>

Qn	Answers	Marks
1	2	1
2	Lyophillic sol are liquid loving and lyophobic are liquid hating	1
	(or any other suitable difference)	
3	E E	1
4	SiO ₂ removes impurtiy FeS, FeO in the form of slag.	1
5	Due to incomplete filling of d-orbitls	1
6	CH ₃ CH (Br) CH ₂ CH ₂ CH ₃	1
7	2-methylpropanal	1
8	CH ₃ NH ₂	1
9	Vapour pressure of a solvent decreases	1
	This is due to fraction of surface area gets covered by non-volatile solute particles.	1
10	a) IIIrd Order	1
	b) $s^{-1}/min^{-1}/time^{-1}$	1
11	a) In roasting, ore is heated in a regular supply of air.	1
	b) In calcination, ore is heated in the absence or limited supply of air.	1
12	i) $[PCl_4]^+ [PCl_6]^-$	1

13	i)	Due to strong metallic bonding / due to involvement of greater number of electrons	1
		from (n-1)d and ns electrons in the interatomic metallic bonding	
	ii)	Due to stability of d^0 , d^3 and d^5 orbitals	1
		OR	
13	i)	The successive decrease in the size of atoms due to filling of inner orbitals in elements	1
		of atomic numbers 57 to 71 (in lanthanoid series) is called lanthanoid contraction	
	ii)	It causes the radii (atomic sizes) of the third transition series to be very similar to those	1
		of the corresponding members of the second series.	
14	i)	Because of the ability of oxygen to form multiple bonding with metal.	1
	ii)	Due to increase in stability of their lower oxidation states	1
15	i)	R−X + R′- $\overset{\bullet}{O}$ Na> R− $\overset{\bullet}{O}$ -R′ + Na X	1
		OH ONa OH	
		NaOH (i) CO. COOH	1
	ii)	2-Hydroxybenzoic acid (Salicylic acid)	
16	>		
16	1)	$CH_3-CH=CH_2$ <u>H2O/H</u> $CH_3-CH(OH)-CH_3$	1
	ii)	CH ₃ -CH ₂ -Cl aq.NaOH CH ₃ - CH ₂ OH $\frac{[0]}{cro_{3}/PCC}$ CH ₃ - CHO	1
17	:)	(or any other suitable method)	14 14
17	1)	Because deficiency of vitamin A causes night bindness whereas deficiency of vitamin	72 +72
		C causes scurvy.	
	ii)	Nucleotide – base + sugar + phosphate whereas nucleoside is combiation of base and	1
		sugar.	
18	Glucose d	loes not form the hydrogensulphite addition product with NaHSO3.	1
	The penta	acetate of glucose does not react with hydroxylamine indicating the absence of free —	1
	CHO grou	ıp.	
19	Mass per	unit cell = $\frac{63.55 \text{g mol}^{-1}}{6.023 \times 10^{23} \text{mol}^{-1}} \times 4 = 4.22 \times 10^{-22} \text{g}$	1⁄2
	Volume o	of unit cell = $\frac{mass}{density}$ = 4.22x10 ⁻²² g / 8.95g cm ⁻³ = 4.71x10 ⁻²³ cm ³	1/2
	Edge = (v	$\text{rolume})^{1/3} = (4.71 \text{x} 10^{-23} \text{ cm}^3)^{1/3}$	1
		$= 3.61 \times 10^{-8} \text{ cm} = 361 \text{ pm}$	
	$r = \frac{a}{2\sqrt{2}}$		1⁄2
	2γ2 361 pm	100	1⁄2
	$=\frac{1}{2x1.41}$	= 128 pm	

20	m HOCH ₂ CH ₂ OH = $\frac{\Delta T_f}{K_f} = \frac{15.0^{\circ}\text{C}}{1.86^{\circ}\text{O}\text{C/m}} = 8.06\text{m}$	1
	$\Delta T_b = K_b \text{ m HOCH}_2 \text{CH}_2 \text{OH} = (0.52^{\circ} \text{C/m}) (8.06 \text{m}) = 4.19^{\circ} \text{C}$	1
	$T_b = 100.00^0 C + 4.19^0 C$	
	$=104.19^{0}$ C	1
21	i) $k = \frac{2.303}{t} \log \frac{[R]_0}{[R]}$	1⁄2
	$Log \frac{100}{05} = -(1.06 \times 10^{-3}) \min^{-1} \frac{t}{2000}$	1⁄2
	0.1635	
	$t = \frac{1000}{1.06 \times 10^{-3} \text{ min}^{-1}} = 153 \text{ min}$	1⁄2
	ii) $\log \frac{100}{15} = -(1.06 \times 10^{-3}) \min^{-1} \frac{t}{2.303}$	1
	$t = \frac{0.824x2.303}{1.06x10^{-3}min^{-1}}$	1⁄2
	$t = 1790 \min$	
22	a) The accumulation of molecular species at the surface rather than in the bulk of a solid or	1
	liquid is termed adsorption.	
	b) Peptization may be defined as the process of converting a precipitate into colloidal sol by	1
	shaking it with dispersion medium in the presence of a small amount of electrolyte.	
	c) Sol is solid dispersed in liquid medium	1
23	i) Pentaamminechloridocobalt (III) chloride	1
	ii) Potassium hexacyanidoferate (III)	1
	iii) Tetrachloridonickelate (II)	1
	OR	

	iii)	Because of electron donating CH ₃ group, electron density on 'N' increases whereas in	1
		aniline electron desnity on 'N' decreases due to resonance.	
26	i)	Ethene	1
	ii)	Vinyl chloride	1
	iii)	Phenol & formaldehyde	1
27	i)	Disinfectants are the chemicals applied to inanimate objects which either kill or	1/2+1/2
		prevent the growth of microorganisms. For example: 1 per cent solution of phenol	
		(or any other suitable example)	
	ii)	Antacides are the drugs which neutralise acid in the stomach. For example: sodium	1/2+1/2
		hydrogencarbonate. (or any other suitable example)	
	iii)	Food preservatives prevent spoilage of food due to microbial growth. For example:	1/2+1/2
		table salt (or any other suitable example)	
28	a) Conductivity of solution is inverse of resistivity		
	k = G l/A		
	Limiting	molar conductivity – when concentration approches zero the conductivity is known as	1
	limiting molar conductivity		1
	b) Sj	pecific conductance $=\frac{1}{R}x$ cell constant	1⁄2
		$=\frac{1}{100\Omega} \times 1.25 \text{ cm}^{-1}$	1⁄2
		$= 1.244 \times 10^{-3} \Omega^{-1} \text{ cm}^{-1}$	1
	Λ	$m = \frac{k}{c} = \frac{1.244x10^{-3}\Omega^{-1}cm^{-1}}{c}$	1
		OR	
28	a) i)	At cathode : $Ag^+ + e^- \rightarrow Ag$	1/2
	А	t Anode : $2H_2O \rightarrow O_2 + 4H^+ + 4e^-$	1/2
	ii)At cathode : $H_2O + e^- \rightarrow \frac{1}{2}H_2 + OH^-$	1⁄2
	At Anode : $2H_2O \rightarrow O_2 + 4H^+ + 4e^-$		
	b) n=	=4	1⁄2

	$\Delta G = -nFE^0$	1/2
	$-960 \text{ kJ} = -4 \text{ x} 96500 \text{J} \text{x} \text{E}^0$	1
	$E^{0} = \frac{960000J}{4x96500J}$	1⁄2
	= 2.48V≈2.5V	1⁄2
29	a) i) $P_4 + 3NaOH + 3H_2O \rightarrow PH_3 + 3NaH_2PO_2$	1
	$ii) XeF_4 + O_2F_2 \rightarrow XeF_6 + O_2$	1
	b) i) Because of increase in electrongativity from Phorphorous to Chlorine	1
	ii) Because of decrease in oxidation state of Chlorine from HClO ₄ to HClO.	1
	iii) Because in vapour form, sulphur exists as S ₂ molecules and contains unpaired	1
	electrons.	
	OR	
29	a) i) P P P P P P P P	1
	ii)	1
	b) i) $SbH_3 < AsH_3 < PH_3 < NH_3$	1
	ii) Te <se<o<s< td=""><td>1</td></se<o<s<>	1
	iii) I ₂ <br<sub>2<f<sub>2<cl<sub>2</cl<sub></f<sub></br<sub>	1

-		
30	2 CH_{3} -CHO $\stackrel{\text{dil. NaOH}}{\longleftrightarrow}$ CH ₃ -CH-CH ₂ -CHO	1
	Ethanal OH	
	3-Hydroxybutanal	
	a) i) (Aldol)	
	$\begin{array}{c} H \\ H \\ H \\ H \end{array} + \begin{array}{c} H \\ H \end{array} + \begin{array}{c} C = O \\ H \end{array} + \begin{array}{c} C = O \\ H \end{array} + \begin{array}{c} C = O \\ H \\ H \end{array} + \begin{array}{c} H \\ H \\ H \end{array} + \begin{array}{c} H \\ H \\ H \end{array} + \begin{array}{c} H \\ H \\ H \end{array} + \begin{array}{c} O \\ H \\ H \end{array} + \begin{array}{c} O \\ O \\ K \end{array}$	1
	b) i) On heating with NaOH + I_2 , ethanal forms yellow ppt of iodoform whereas propanal	1
	does not.	
	ii) Acetophenone- On heating with NaOH $+I_2$, forms yellow ppt of iodoform whereas	1
	Benzaldehyde does not (or any other test)	
	iii)As there is a misprint in the question, award 1 mark for any attempt.	1
	OR	
30	a) i) CH ₃ COCH ₂ CH(Cl)CH ₃	1
	ii)CH ₃ CH=CH-CHO	1
	b) i) CH ₂ (Br)COOH	1
	ii) CH ₃ CH ₂ OH	1
	iii)CH ₃ CH ₂ CH ₃	1
		1

Sr. No.	Name	Sr. No.	Name
1	Dr. (Mrs.) Sangeeta Bhatia	4	Sh. S.K. Munjal
2	Dr. K.N. Uppadhya	5	Sh. Rakesh Dhawan
3	Sh. D.A. Mishra	6	Ms. Garima Bhutani

CHEMISTRY MARKING SCHEME DELHI -2014 SET -56/1/2

Qn	Answers	Marks
1	Schottky defect	1
2	Emulsions are liquid dispersed in liquid medium	1
3	F Ke F	1
4	The aluminate in solution is neutralized by CO ₂ gas and hydrated Al ₂ O ₃ is precipitated	1
5	H ₃ C-CH(Br)-CH ₂ -CH ₂ -CH ₃	1
6	Due to incomplete filling of d-orbitls	1
7	CH ₃ NH ₂	1
8	2-methylpropanal	1
9	Molality - It is defined as the number of moles of the solute per kg of the solvent.	1
	<i>Molarity</i> : Molarity (M) is defined as number of moles of solute dissolved in one litre (or one cubic decimetre) of solution	1
	By converting weight of solvent into volume of solution using density	
10	a) IIIrd Order	1
	b) $s^{-1}/\min^{-1}/time^{-1}$	1
11	i) In froth floatation, sulphide ore is wetted by oil and gangue particles by water	1
	ii) Vapour phase refining – in this metal is converted into its volatile compound which is	1
	then decomposed to give pure metal	

12	i)	HO HO	1
	ii)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1
13	i)	Due to strong metallic bonding / due to involvement of greater number of electrons	1
		from (n-1)d and ns electrons in the interatomic metallic bonding	
	ii)	Due to stability of d^0 , d^3 and d^5 orbitals	1
		OR	
13	i)	The successive decrease in the size of atoms due to filling of inner orbitals in elements	1
		of atomic numbers 57 to 71 (in lanthanoid series) is called lanthanoid contraction	
	ii)	It causes the radii (atomic sizes) of the third transition series to be very similar to those	1
		of the corresponding members of the second series.	
14	i)	Because of the presence of unpaired electrons in d-orbital	1
	ii)	Because energy released in the formation of bond between Co(III) and ligand is more	1
		than the energy required for the conversion of Co(II) to Co(III).	
15	Glucose d	loes not form the hydrogensulphite addition product with NaHSO3.	1
	The penta	acetate of glucose does not react with hydroxylamine indicating the absence of free —	1
	CHO grou	ıp.	
16	i)	R-X + R′- $\overset{\textbf{O}}{\text{O}}$ Na → R- $\overset{\textbf{O}}{\text{O}}$ -R′ + Na X	1
	ii)	$\overset{OH}{\longmapsto} \overset{ONa}{\longleftarrow} \overset{OH}{\underset{(ii) CO_2}{(ii) H^+}} \overset{OH}{\underset{(ii) H^+}{\longleftarrow}} \overset{OH}{\underset{(ii) CO_2}{\longleftarrow}} \overset{OH}{\underset{(ii) CO_2}{\longleftarrow} \overset{OH}{\underset{(ii) CO_2}{\longleftarrow}} \overset{OH}{\underset{(ii) CO_2}{\longleftarrow} \overset{OH}{\underset{(ii) CO_2}{\longleftarrow}} \overset{OH}{\underset{(ii) CO_2}{\longleftarrow} \overset{OH}{(ii$	1
17	i)	Because deficiency of vitamin A causes night blindness whereas deficiency of vitamin	1/2 +1/2
		C causes scurvy.	
	ii)	Nucleotide – base + sugar + phosphate whereas nucleoside is combiation of base and	1
		sugar.	
18	i)	$CH_3-CH=CH_2$ H2O/H ⁺ CH ₃ -CH(OH)-CH ₃	1

	ii)	CH ₃ -CH ₂ -Cl aq.NaOH CH ₃ - CH ₂ OH $\frac{[0]}{cm_0}$ CH ₃ - CHO	1
		(or any other suitable method)	
19	i)	$k = \frac{2.303}{t} \log \frac{[R]_0}{[R]}$	1⁄2
		ι [٨]	1/2
		$\log \frac{100}{85} = -(1.06 \times 10^{-3}) \min^{-1} \frac{t}{2.303}$	/2
		0 1625	
		$t = \frac{0.1033}{1.06 \times 10^{-3} \min^{-1}} = 153 \min^{-1} t = 153 \min^{-1}$	1⁄2
	ii)	$Log \frac{100}{15} = -(1.06 \times 10^{-3}) \min^{-1} \frac{t}{2.303}$	1
		$t = \frac{0.824x2.303}{1.00x10^{-3}min^{-1}}$	1⁄2
		1.06x10 ³ min ¹	
		$t = 1790 \min$	
20	m HOCH	$I_2 CH_2 OH = \frac{\Delta T_f}{T} = \frac{15.0^{\circ} C}{1.05 + 0.05} = 8.06 m$	1
		K_f 1.86 °C/m	1
	$\Delta T_b = K_b$	m HOCH ₂ CH ₂ OH = $(0.52^{\circ}$ C/m) (8.06m) = 4.19° C	1
	$T_{b}=100.0$	$0^{0}C + 4.19^{0}C$	
	104.400		1
	=104.19°		
21	Mass per	unit cell = $\frac{63.55 \text{g mol}^{-1}}{1000 \text{ mol}^{-1}} \times 4 = 4.22 \times 10^{-22} \text{g}$	1⁄2
	Valuma	$6.023 \times 10^{-3} mol^{-1}$	1⁄2
	volume (of unit cell = $\frac{1}{density}$ = 4.22x10 g/8.93g cm = 4.71x10 cm	1
	Edge = (v	$(1/3)^{1/3} = (4.71 \times 10^{-23} \text{ cm}^3)^{1/3}$	1
		$= 3.61 \times 10^{-8} \text{ cm} = 361 \text{ pm}$	
	$r = \frac{a}{2\sqrt{2}}$		1/2
	_ 361 pm	- 128 pm	1⁄2
	$=\frac{1}{2x1.41}$		
22	i)	Sorption- the process in which adsorption and absorption are taking place simultaneously	1
	ii)	Tyndall effect- scattering of light by the colloidal particles due to which the path of	1
	iii)	light becomes visible Electrophoresis, the process of movement of colloidal particles towards the	1
		oppositively charged electrodes when current is passed through it.	1
23	i)	Because of salt formation by -NH ₂ group with anhyd. AlCl ₃	1
	ii)	Because of hydrogen bonding of ethylamine with H ₂ O whereas aniline does not form	1
		hydrogen bond with H ₂ O.	

	iii) Because of electron donating CH ₃ group, electron density on 'N' increases whereas in	1
	aniline electron desnity on 'N' decreases due to resonance.	
24	a) i) CH ₃ I ii) CH ₃ Cl	1/2+1/2
	b) i) CH ₃ CN	1
	ii) $\overset{\text{Cl}}{\leftarrow}_{H_3}$ $\overset{\text{Cl}}{\leftarrow}_{H_3}$	1/2 +1/2
25	i) Pentaamminechloridocobalt (III) chloride	1
	ii) Potassium hexacyanidoferate (III)	1
	iii) Tetrachloridonickelate (II)	1
	OR	

25		
23	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}{}\\ \end{array}{}\\ \end{array}{}\\ \end{array}{}\\ \end{array}{}\\ \end{array}{}\\ \end{array}{}\\ \end{array}{}$	1
	en Pt ce ce pt en 72+	1
	$\frac{NH3}{en} \begin{bmatrix} ce \\ ca \\ NH3 \end{bmatrix} \begin{bmatrix} ce \\ ca \\ ca \\ NH3 \end{bmatrix} \begin{bmatrix} ce \\ nH$	1
26	 a) Sweetening agents : the substances which when added to any matter gives sweet taste. For example : Sugar (or any other suitable example) b) Food preservatives : Food preservatives prevent spoilage of food due to microbial growth. For example : Table salt (or any other suitable example) c) Antibiotics which in low concentration inhibit the growth or destroy the micro organism For example : Chloramphenicol (or any other suitable example) 	1 1 1
27	 i) Chloroprene / 2-chloro-1,3-butadiene ii) Styrene iii) Propene 	1 1 1

-		
2	a) Conductivity of solution is inverse of resistivity	1
	k = G l/A	
	Limiting molar conductivity – when concentration approches zero the conductivity is known as	
	limiting molar conductivity	1
	b) Specific conductance $=\frac{1}{R}x$ cell constant	1⁄2
	$=\frac{1}{100\Omega} \times 1.25 \text{ cm}^{-1}$	1⁄2
	$= 1.244 \times 10^{-3} \Omega^{-1} \mathrm{cm}^{-1}$	1
	$\Lambda m = \frac{k}{c} = \frac{1.244 \times 10^{-3} \Omega^{-1} c m^{-1}}{c}$	1
	OR	
	a) i) At cathode : $Ag^+ + e^- \rightarrow Ag$	1/2
	At Anode : $2H_2O \rightarrow O_2 + 4H^+ + 4e^-$	1/2
	ii)At cathode : $H_2O + e^- \rightarrow \frac{1}{2}H_2 + OH^-$	1⁄2
	At Anode : $2H_2O \rightarrow O_2 + 4H^+ + 4e^-$	1⁄2
	b) n=4	1⁄2
	$\Delta G = -\mathrm{nFE}^0$	1⁄2
	$-960 \text{ kJ} = -4 \text{ x} 96500 \text{J} \text{x} \text{E}^0$	1
	$E^{0} = \frac{960000J}{4x96500J}$	1⁄2
	= 2.48V≈2.5V	1⁄2
-	dil. NaOH	1
	$2 \text{ CH}_3\text{-CHO} \longleftrightarrow \text{CH}_3\text{-CH-CH}_2\text{-CHO}$	
	3-Hydroxybutanal	
	a) i) (Aldol)	
	н н н н	
	$C=0 + C=0 + Conc. KOH \longrightarrow H-C-OH + H-C$	1
	ii) H H K K K K K K K K K K K K K K K K K	
	b) i) On heating with NaOH + I_2 , ethanal forms yellow ppt of iodoform whereas propanal	1
		1

	does not.	
	ii) Acetophenone- On heating with NaOH +I2, forms yellow ppt of iodoform whereas	1
	Benzaldehyde does not (or any other test)	
	iii)As there is a misprint in the question, award 1 mark for any attempt.	1
	OR	
29	a) i) CH ₃ COCH ₂ CH(Cl)CH ₃	1
	ii)CH ₃ CH=CH-CHO	1
	b) i) CH ₂ (Br)COOH	1
	ii) CH ₃ CH ₂ OH	1
	iii)CH ₃ CH ₂ CH ₃	1
30	a) i) $P_4 + 3NaOH + 3H_2O \rightarrow PH_3 + 3NaH_2PO_2$	1
	$(ii) XeF_4 + O_2F_2 \rightarrow XeF_6 + O_2$	1
	b) i) Because of increase in electrongativity from Phorphorous to Chlorine	1
	ii) Because of decrease in oxidation state of Chlorine from HClO ₄ to HClO.	1
	iii) Because in vapour form, sulphur exists as S ₂ molecules and contains unpaired	1
	electrons.	
	OR	
30	a) i) $-\frac{105^{\circ}}{136}$ N $\frac{0}{130^{\circ}}$ 130° 117° O 121 pm	1
	ii)	1

b) i) $SbH_3 < AsH_3 < PH_3 < NH_3$	1
ii) Te <se<o<s< td=""><td>1</td></se<o<s<>	1
iii) I ₂ <br<sub>2<f<sub>2<cl<sub>2</cl<sub></f<sub></br<sub>	1

Sr.	Name	Sr.	Name	
No.		No.		
1	Dr. (Mrs.) Sangeeta Bhatia	4	Sh. S.K. Munjal	
2	Dr. K.N. Uppadhya	5	Sh. Rakesh Dhawan	
3	Sh. D.A. Mishra	6	Ms. Garima Bhutani	

<u>CHEMISTRY MARKING SCHEME</u> <u>DELHI -2014</u> <u>SET -56/1/3</u>

Qn	Answers	Marks
1	Conductance in metallic solid is through electrons whereas in ionic solid is through ions in molten	1
	state or aqueous state. (or any other)	
2	Shape selective catalyst have specific pore size	1
3	It is used for leaching Al_2O_3 as sodium aluminates.	1
4	F F F	1
5	CH ₃ CH (Br) CH ₂ CH ₂ CH ₃	1
6	Due to incomplete filling of d-orbitls	1
7	CH ₃ NH ₂	1
8	2-methylpropanal	1
9	Vapour pressure of a solvent decreases	1
	This is due to fraction of surface area gets covered by non-volatile solute particles.	1
10	a) Rate constant : is defined as rate of a reaction when concentration of reactants becomes unity.	1
	b) The energy required to form an intermediate, called as activated complex, is known as energy of activation.	1
11	i) In zone refining, impurities are more soluble in melt than in solid state of the metal	1
	ii) Vapour phase refining – in this metal is converted into its volatile compound which is	1
	then decomposed to give pure metal	
12	a) $PCl_5 heat PCl_3 + Cl_2$	1
	b) NaHCO ₃ + HCl \longrightarrow NaCl + H ₂ O + CO ₂	1

13	i) I	Due to strong metallic bonding / due to involvement of greater number of electrons	1			
	f	rom (n-1)d and ns electrons in the interatomic metallic bonding				
	ii) I	Due to stability of d^0 , d^3 and d^5 orbitals	1			
		OR				
13	i) 7	The successive decrease in the size of atoms due to filling of inner orbitals in elements	1			
10		of atomic numbers 57 to 71 (in lanthanoid series) is called lanthanoid contraction	1			
	ii) I	t causes the radii (atomic sizes) of the third transition series to be very similar to those	1			
	II) I	of the corresponding members of the second series	1			
14	a) Oxid	ation states first increases from Sc to Mn and then decreases	1			
11	b) Oxor	metal ion formation tendency increases from V to Mn and then decreases	1			
15	i) (The CH-CH ₂ H2O/H ⁺ CH ₂ CH(OH) CH ₂	1			
15	I) C		1			
	ii) C	CH ₃ -CH ₂ -Cl aq.NaOH CH ₃ - CH ₂ OH $\frac{[0]}{CrO_3/PCC}$ CH ₃ - CHO	1			
	(or any other suitable method)				
16	i) ¹	$R-X + R'-O' Na \longrightarrow R-O' - R' + Na X$	1			
		OH ONa OH				
		NaOH (i) CO. COOH	1			
	ii)	(Salicylic acid)				
17	Glucose doe	es not form the hydrogensulphite addition product with NaHSO3.	1			
	The pentaac	etate of glucose does not react with hydroxylamine indicating the absence of free —	1			
	CHO group.					
18	i) E	Because deficiency of vitamin A causes night blindness whereas deficiency of vitamin	$\frac{1}{2} + \frac{1}{2}$			
	, (C causes scurvy.				
	ii) N	Nucleotide $-$ base + sugar + phosphate whereas nucleoside is combination of base and	1			
	Ś	ugar.				
19	$N_{\star} - \frac{Z \times M}{Z \times M}$		1			
	$a^3 x d$	2 5 (c c) = 1	1			
	$=\frac{1}{(2.866 \times 10^{-3})}$	$\frac{2 \times 56 \text{ mot}^{-1}}{(10^{-1})^{-3} \text{ cm} \times 7.874 \text{ g cm}^{-3}}$	1			
	$= 6.04 \times 10^{-10}$	$^{23} \text{ mol}^{-1}$	1			
	Or					
	286.65x10 ⁻¹⁰	0 cm = 2.866x10 ⁻⁸ cm	11/			
	Mass of Fe atom = $(2.866 \times 10^{-8} \text{ cm})^3 \times 7.874 \text{ g} \text{ cm}^{-3} \times 1/2 = 23.54 \times 10^{-24} \times 3.94 \text{ g} = 92.59 \times 10^{-24} \text{ g}$					

	$N_A = 56g$	mol ⁻¹ /92.59x10 ⁻²⁴ g	11/2
	= 6.04x	10^{23} mol^{-1}	
20	i)	$k = \frac{2.303}{t} \log \frac{[R]_0}{[R]}$	1⁄2
		$\log \frac{100}{85} = -(1.06 \times 10^{-3}) \min^{-1} \frac{t}{2.303}$	1⁄2
		$t = \frac{0.1635}{1.06x10^{-3} \min^{-1}} = 153 \min$	1⁄2
	ii)	$\log \frac{100}{15} = -(1.06 \times 10^{-3}) \min^{-1} \frac{t}{2.303}$	1
		$t = \frac{0.824x2.303}{1.06x10^{-3}min^{-1}}$	1⁄2
		$t = 1790 \min$	
21	m HOCH	$_{2}$ CH ₂ OH = $\frac{\Delta T_{f}}{K_{f}} = \frac{15.0^{\circ}C}{1.86^{\circ}C/m} = 8.06m$	1
	$\Delta T_b = K_b$ i	n HOCH ₂ CH ₂ OH = $(0.52^{\circ}C/m)$ (8.06m) = $4.19^{\circ}C$	1
	T _b =100.0	$0^{0}C + 4.19^{0}C$	
	=104.19%	2	1
22	i)	Pentaamminechloridocobalt (III) chloride	1
	ii)	Potassium hexacyanidoferate (III)	1
	iii)	Tetrachloridonickelate (II)	1
		OR	

22		
	$\begin{bmatrix} 0x \\ -C_{x} \\ 0x \end{bmatrix} \begin{bmatrix} -3^{-1} \\ 0x \\ 0x \end{bmatrix} \begin{bmatrix} 0x \\ -C_{x} \end{bmatrix} \begin{bmatrix} -3^{-1} \\ 0x \\ -C_{x} \end{bmatrix} \begin{bmatrix} 0x \\ -C_{x} \end{bmatrix} \begin{bmatrix} -3^{-1} \\ 0x \\ -C_{x} \end{bmatrix} \end{bmatrix} \begin{bmatrix} -3^{-1} \\ 0x \\ -C_{x} \end{bmatrix} \begin{bmatrix} -3^{-1} \\ 0x \\ -C_{x} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} -3^{-1} \\ 0x \\ -C_{x} \end{bmatrix} \end{bmatrix} \begin{bmatrix} -3^{-1} \\ 0x \\ -C_{x} \end{bmatrix} \end{bmatrix} \begin{bmatrix} -3^{-1} \\ 0x \\ -C_{x} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} -3^{-1} \\ 0x \\ -C_{x} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} -3^{-1} \\ 0x \\ $	1
	e^{n} e^{2t} e^{2t} e^{2t} e^{2t}	1
	en Pt ce Pt en NM3 7 ⁺ ce Pt en t	
	en Crice 1 crice en NH3 ce 1 crice en NH3 NH3	1
23	a). The accumulation of molecular species at the surface rather than in the bulk of a solid or	1
23	liquid is termed adsorption.	1
	 b) Peptization may be defined as the process of converting a precipitate into colloidal sol by shaking it with dispersion medium in the presence of a small amount of electrolyte. 	1
	c) Sol is solid dispersed in liquid medium	1
24	i) Because of salt formation by $-NH_2$ group with anhyd. AlCl ₃	1
	ii) Because of hydrogen bonding of ethylamine with H ₂ O whereas aniline does not form	1
	hydrogen bond with H ₂ O.	
	iii) Because of electron donating CH_3 group, electron density on 'N' increases whereas in	1

	aniline electron desnity on 'N' decreases due to resonance.	
25	a) i) CH ₃ I ii) CH ₃ Cl	1/2+1/2
	b) i) CH ₃ CN	1
	ii) $\overset{\text{Cl}}{\underset{+}{\overset{+}{\overset{+}}}} \overset{\text{Cl}}{\underset{+}{\overset{+}{\overset{+}}}} \overset{\text{Cl}}{\underset{+}{\overset{+}{\overset{+}}}}$	¹ / ₂ + ¹ / ₂
26	Biodegradable detergents : unbranched hydrocarbon chain which can be easily degraded by	1+1/2
	bacteria. For example: Sodium lauryl sulphate (or any other suitable example)	
	Non-Biodegradable detergents : highly branched hydrocarbon chain which can not be degraded	1+1/2
	by bacteria. For example: Sodium-4-(1,3,5,7-tetramethyl octyl) benzene sulphonate	
	(or any other suitable example)	
27	a) Tetrafluoroethene	1
	b) Phenol & formaldehyde	1
	c) Chloroprene / 2-chloro-1,3-butadiene	1
28	a) Conductivity of solution is inverse of resistivity	1
	k = G I/A	
	Limiting molar conductivity – when concentration approches zero the conductivity is known as	1
	limiting molar conductivity	1/2
	b) Specific conductance $= \frac{1}{R}x$ cell constant	72
	$=\frac{1}{100\Omega} \times 1.25 \text{ cm}^{-1}$	1/2
	$= 1.244 \times 10^{-3} \Omega^{-1} \mathrm{cm}^{-1}$	1
	$\Lambda m = \frac{k}{c} = \frac{1.244 \times 10^{-3} \Omega^{-1} c m^{-1}}{c}$	1
	OR	
28	a) i) At cathode : $Ag^+ + e^- \rightarrow Ag$	1⁄2
	At Anode : $2H_2O \rightarrow O_2 + 4H^+ + 4e^-$	1⁄2

30	a)	i) $P_4 + 3NaOH + 3H_2O \rightarrow PH_3 + 3NaH_2PO_2$	1
		ii) $XeF_4 + O_2F_2 \rightarrow XeF_6 + O_2$	1
	b)	i) Because of increase in electrongativity from Phorphorous to Chlorine	1
		ii) Because of decrease in oxidation state of Chlorine from HClO ₄ to HClO.	1
		iii) Because in vapour form, sulphur exists as S2 molecules and contains unpaired	1
		electrons.	
		OR	
20			
30		$\begin{array}{c} O \\ 105^{\circ} \\ 13 \\ 000 \end{array} \\ \begin{array}{c} N \\ 186 \\ 117^{\circ} \end{array} \\ \begin{array}{c} O \\ 130^{\circ} \\ 0 \end{array} \end{array}$	1
	a) i)	121 pm	
		F Br F	
	ii)		1
	b) i)	SbH ₃ <ash<sub>3<ph<sub>3<nh<sub>3</nh<sub></ph<sub></ash<sub>	1
	ii)) Te <se<o<s< th=""><th>1</th></se<o<s<>	1
	iii	i) $I_2 < Br_2 < F_2 < Cl_2$	1

Sr. No.	Name	Sr. No.	Name	
1	Dr. (Mrs.) Sangeeta Bhatia	4	Sh. S.K. Munjal	
2	Dr. K.N. Uppadhya	5	Sh. Rakesh Dhawan	
3	Sh. D.A. Mishra	6	Ms. Garima Bhutani	