CHEMISTRY MARKING SCHEME

DELHI -2015

SET -56/1/1/D

\begin{tabular}{|c|c|c|}
\hline \[
\begin{aligned}
\& \text { Qu } \\
\& \text { es. }
\end{aligned}
\] \& Value points \& Marks \\
\hline 1 \& 3 \& 1 \\
\hline 2 \& 2,5-dinitrophenol \& 1 \\
\hline 3 \& \begin{tabular}{l}
\[
\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{Br}
\] \\
Because it is a primary halide / \(\left(1^{0}\right)\) halide
\end{tabular} \& \(1 / 2+1 / 2\) \\
\hline 4 \& \(\mathrm{BaCl}_{2}\) because it has greater charge / +2 charge \& \(1 / 2+1 / 2\) \\
\hline 5 \& \(\mathrm{X}_{2} \mathrm{Y}_{3}\) \& 1 \\
\hline 6. \& \begin{tabular}{l}
Elements which have partially filled d-orbital in its ground states or any one of its oxidation states. \\
1) Variable oxidation states \\
2) Form coloured ion Or any other two correct characteristics
\end{tabular} \& \[
\begin{aligned}
\& 1 \\
\& 1 / 2+1 / 2
\end{aligned}
\] \\
\hline 7. \& \begin{tabular}{l}
1) Diamminedichloridoethylenediaminechromium(III) chloride \\
2) \(\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}(\mathrm{ONO})\right]^{2+}\)
\end{tabular} \& \(1+1\) \\
\hline 8. \& \begin{tabular}{l}
(i) \(\mathrm{LiAlH}_{4} / \mathrm{NaBH}_{4} / \mathrm{H}_{2}, \mathrm{Pt}\) \\
(ii) \(\mathrm{KMnO}_{4}, \mathrm{KOH}\)
\end{tabular} \& \\
\hline 9

9. \& \begin{tabular}{l}
When vapour pressure of solution is higher than that predicted by Raoult's law / the intermolecular attractive forces between the solute-solvent/(A-B) molecules are weaker than those between the solute-solute and solvent-solvent molecules/A-A or B-B molecules. Eg. ethanol-acetone/ethanol-cyclohexane/ CS_{2}-acetone or any other correct example $\Delta_{\text {mix }} \mathrm{H}$ is positive

OR

(a)Azeotropes are binary mixtures having the same composition in the liquid and vapour phase and boil at a constant temperature.

(b) Minimum boiling azeotrope

eg - ethanol + water or any other example

 \&

1

$1 / 2$

$1 / 2$

1

$1 / 2$

$1 / 2$
\end{tabular}

\hline 10 \& | (i) $\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Ag}$ (s) |
| :--- |
| Reaction with higher E^{0} value / $\Delta \mathrm{G}^{0}$ negative |
| (ii) Molar conductivity of a solution at infinite dilution or when concentration approaches zero |
| Number of ions per unit volume decreases | \& \[

$$
\begin{aligned}
& 1 / 2 \\
& 1 / 2 \\
& 1 / 2 \\
& 1 / 2
\end{aligned}
$$
\]

\hline
\end{tabular}

11	$\begin{aligned} & \Delta \mathrm{T}_{\mathrm{f}}=\mathrm{i} \mathrm{~K} \mathrm{~K}_{\mathrm{f}} \mathrm{~m} \\ & \Delta \mathrm{~T}_{\mathrm{f}}=\mathrm{i} \mathrm{~K}_{\mathrm{f}} \frac{\mathrm{w}_{\mathrm{b}} \times 1000}{\mathrm{M}_{\mathrm{b}} \times \mathrm{W}_{\mathrm{a}}} \\ & 1.62 \mathrm{~K}=\mathrm{i} \times 4.9 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1} \times \frac{3.9 \mathrm{~g}}{122 \mathrm{gmol}^{-1}} \times \frac{1000}{49 \mathrm{~kg}} \\ & \quad \mathrm{i}=0.506 \end{aligned}$ Or by any other correct method As $i<1$, therefore solute gets associated.	1/2 1 $1 / 2$ 1
12	(i) Zinc being low boiling will distil first leaving behind impurities/ or on electrolysis the pure metal gets deposited on cathode from anode. (ii)Silica acts as flux to remove iron oxide which is an impurity as slag or $\mathrm{FeO}+\mathrm{SiO}_{2} \rightarrow \mathrm{FeSiO}_{3}$ (iii) Wrought iron	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \end{aligned}$
13	$\begin{aligned} & \mathrm{d}=\frac{\mathrm{z} \mathrm{x} \mathrm{M}}{\mathrm{a}^{3} \mathrm{~N}_{\mathrm{A}}} \\ & \mathrm{z}= \frac{\mathrm{d} \mathrm{a}^{3} \mathrm{~N}_{\mathrm{A}}}{\mathrm{M}} \\ & \mathbf{z}=\frac{\mathbf{2 . 7} \mathrm{g} \mathrm{~cm}^{-3} \times 6.022 \times 1 \mathbf{x 1}^{23} \mathbf{~ m o l}^{-1} \times\left(4.05 \times 10^{-8} \mathbf{c m}\right)^{3}}{\mathbf{2 7} \mathrm{~g} \mathrm{~mol}^{-1}} \\ &=3.999 \approx 4 \end{aligned}$ Face centered cubic cell/ fcc	$\begin{array}{\|l\|} \hline 1 / 2 \\ \\ 1 \\ 1 / 2 \\ 1 / 2 \\ 1 \end{array}$
14	(i) 5 f orbital electrons have poor shielding effect than 4 f (ii)due to d-d transition / or the energy of excitation of an electron from lower d orbital to higher d-orbital lies in the visible region /presence of unpaired electrons in the d-orbital. (iii) $2 \mathrm{MnO}_{4}^{-}+6 \mathrm{H}^{+}+5 \mathrm{NO}_{2}^{-} \rightarrow 2 \mathrm{Mn}^{2+}+3 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{NO}_{3}^{-}$	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \end{aligned}$
15	(i)	
	 (ii) $\mathrm{t}_{2 \mathrm{~g}}{ }^{3} \mathrm{e}_{\mathrm{g}}{ }^{1}$ (iii) sp^{3}, diamagnetic	$\begin{aligned} & 1 \\ & 1 \\ & 1 / 2+1 / 2 \end{aligned}$

\begin{tabular}{|c|c|c|}
\hline 16 \& The cell reaction : $\mathrm{Fe}(\mathrm{s})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
$$
\begin{aligned}
\mathrm{E}_{\text {cell }}^{\mathrm{o}} & =\mathrm{E}_{\mathrm{c}}^{\mathrm{o}}-\mathrm{E}_{\mathrm{a}}^{\mathrm{o}} \\
& =[0-(-0.44)] \mathrm{V}=0.44 \mathrm{~V} \\
\mathrm{E}_{\text {cell }} & =\mathrm{E}_{\text {cell }}^{\mathrm{o}}-\frac{0.059}{2} \log \frac{\left[\mathrm{Fe}^{2+}\right]}{\left[\mathrm{H}^{+}\right]^{2}}
\end{aligned}
$$
$$
\mathrm{E}_{\text {cell }}=0.44 \mathrm{~V}-\frac{0.059}{2} \log \frac{(0.001)}{(0.01)^{2}}
$$
$$
\begin{aligned}
& =0.44 \mathrm{~V}-\frac{0.059}{2} \log (10) \\
& =0.44 \mathrm{~V}-0.0295 \mathrm{~V} \\
& =\approx \mathbf{0 . 4 1 0} \mathbf{V}
\end{aligned}
$$ \& 1
1
1

1

\hline 17 \& | (i) mutual coagulation |
| :--- |
| (ii)strong interaction between dispersed phase and dispersion medium or solvated layer |
| (iii) CO acts as a poison for catalyst | \& \[

$$
\begin{array}{|l|}
\hline 1 \\
\hline 1 \\
1
\end{array}
$$
\]

\hline 18 \& | (i)Hexamethylene diamine $\mathrm{NH}_{2}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{NH}_{2}$ and adipic acid HOOC- $\left(\mathrm{CH}_{2}\right)_{4}-\mathrm{COOH}$ |
| :--- |
| (ii) 3 hydroxybutanoic acid $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{COOH}$ and 3 hydroxypentanoic acid $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{COOH}$ (iii) Chloroprene $\mathrm{H}_{2} \mathrm{C}=\mathrm{C}(\mathrm{Cl}) \mathrm{CH}=\mathrm{CH}_{2}$ IUPAC names are accepted |
| Note: $1 / 2$ mark for name $/ \mathrm{s}$ and $1 / 2$ mark for structure / s | \& \[

$$
\begin{gathered}
\hline 1 / 2 \\
1 / 2 \\
1 / 2 \\
1 / 2 \\
1 / 2 \\
1 / 2 \\
\hline
\end{gathered}
$$
\]

\hline 19 \& | (i) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$ |
| :--- |
| (ii) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COONa}+\mathrm{CHI}_{3}$ |
| (iii) CH_{4} | \& \[

$$
\begin{aligned}
& \hline 1 \\
& 1 / 2,1 / 2 \\
& 1
\end{aligned}
$$
\]

\hline 20 \& \& 1
1

1

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline 20 \& \begin{tabular}{l}
OR \\
a) \\
(ii) \\
(iii) \(\mathrm{CH}_{3} \mathrm{CH}_{2} \overbrace{\mathrm{C}}^{+}-\mathrm{CH}_{2} \mathrm{CH}_{3} \longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2} \mathrm{CH}_{3}+\mathrm{H}^{+}\) \\
b) \\
(Acetyl chloride instead of acetic anhydride may be used)
\end{tabular} \& \(1 / 2\)
\(1 / 2\)

$1 / 2$
1

1

\hline 21 \& | (i)Maltose |
| :--- |
| (ii) fibrous proteins: parallel polypeptide chain, insoluble in water Globular proteins: spherical shape, soluble in water, (or any 1 suitable difference) (iii) Vitamin D | \& \[

$$
\begin{array}{|l|}
\hline 1 \\
1 \\
1
\end{array}
$$
\]

\hline 22 \& | (i)Larger surface area, higher van der Waals' forces, higher the boiling point |
| :--- |
| (ii)Rotation due to one enantiomer is cancelled by another enantiomer |
| (iii) - NO_{2} acts as Electron withdrawing group or -I effect | \& \[

$$
\begin{array}{|l|}
\hline 1 \\
1 \\
1
\end{array}
$$
\]

\hline 23 \& | (i) Concern for students health, Application of knowledge of chemistry to daily life, empathy, caring or any other |
| :--- |
| (ii)Through posters, nukkad natak in community, social media, play in assembly or any other (iii)Tranquilizers are drugs used for treatment of stress or mild and severe mental disorders .. Eg: equanil (or any other suitable example) |
| (iv) Aspartame is unstable at cooking temperature. | \& \[

$$
\begin{aligned}
& 1 / 2,1 / 2 \\
& 1 \\
& 1 / 2,1 / 2 \\
& 1
\end{aligned}
$$
\]

\hline 24 \& | (a) (i) Due to decrease in bond dissociation enthalpy from HF to HI , there is an increase in acidic character observed. |
| :--- |
| (ii)Oxygen exists as diatomic O_{2} molecule while sulphur as polyatomic S_{8} |
| (iii)Due to non availability of d orbitals | \& \[

$$
\begin{array}{|l|}
\hline 1 \\
1 \\
1
\end{array}
$$
\]

\hline
\end{tabular}

(a)
$\mathrm{k}=\underline{2.303} \log \left[\mathrm{~A}_{0}\right]$
$\mathrm{k}=\frac{2.303}{30} \log \frac{0.60}{0.30}$
$\mathrm{k}=\frac{2.303}{30} \times 0.301=0.023 \mathrm{~s}^{-1}$
$\mathrm{k}=\underline{2.303} \log \underline{0.60}$
$60 \quad 0.15$
$\mathrm{k}=\frac{2.303}{60} \times 0.6021=0.023 \mathrm{~s}^{-1}$

As k is constant in both the readings, hence it is a pseudofirst order reaction.
ii)

$$
\begin{aligned}
& \text { Rate }=-\Delta[\mathrm{R}] / \Delta \mathrm{t} \\
&=\frac{-[0.15-0.30]}{60-30} \\
&=0.005 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1} \\
& \mathrm{OR}
\end{aligned}
$$

a)
(i) Rate will increase 4 times of the actual rate of reaction.
(ii) Second order reaction
b) $\quad{ }_{1 / 2}^{\mathrm{t}}=\frac{0.693}{\mathrm{k}}$

$$
\begin{aligned}
& 30 \min =\frac{0.693}{\mathrm{k}} \\
& \mathrm{k}=0.0231 \mathrm{~min}^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{k}=\frac{2.303}{\mathrm{t}} \log \frac{\left[\mathrm{~A}_{0}\right]}{[\mathrm{A}]} \\
& \mathrm{t}=\frac{2.303}{0.0231} \log \frac{100}{10} \\
& \mathrm{t}=\frac{2.303}{0.0231} \mathrm{~min} \\
& \mathrm{t}=99.7 \mathrm{~min}
\end{aligned}
$$

CHEMISTRY MARKING SCHEME
 DELHI -2015
 SET -56/1/2/D

$\begin{array}{\|l} \hline \mathbf{Q u} \\ \text { es. } \end{array}$	Value points	Marks
1	$\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{Br}$ Because it is a primary halide $/\left(1^{0}\right)$ halide	$1 / 2+1 / 2$
2	BaCl_{2} because it has greater charge / +2 charge	$1 / 2+1 / 2$
3	$\mathrm{X}_{2} \mathrm{Y}_{3}$	1
4	3	1
5	2, 5 - dinitrophenol	1
6.	(i) $\mathrm{LiAlH}_{4} / \mathrm{NaBH}_{4} / \mathrm{H}_{2}, \mathrm{Pt}$ (ii) $\mathrm{KMnO}_{4}, \mathrm{KOH}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
7.	When vapour pressure of solution is higher than that predicted by Raoult's law / the intermolecular attractive forces between the solute-solvent/(A-B) molecules are weaker than those between the solute-solute and solvent-solvent molecules/A-A or B-B molecules. Eg. ethanol-acetone/ethanol-cyclohexane/ CS_{2}-acetone or any other correct example $\Delta_{\text {mix }} \mathrm{H}$ is positive OR (a)Azeotropes are binary mixtures having the same composition in the liquid and vapour phase and boil at a constant temperature. (b) Minimum boiling azeotrope eg - ethanol + water or any other example	1 $1 / 2$ $1 / 2$ 1 $1 / 2$ $1 / 2$
8.	(i) Ag^{+}(aq) $+\mathrm{e}^{-} \rightarrow \mathrm{Ag}$ (s) Reaction with higher E^{0} value / $\Delta \mathrm{G}^{0}$ negative (ii) Molar conductivity of a solution at infinite dilution or when concentration approaches zero Number of ions per unit volume decreases	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & \hline \end{aligned}$
9.	Elements which have partially filled d-orbital in its ground states or any one of its oxidation states. 1) Variable oxidation states 2) Form coloured ion Or any other two correct characteristics	$\begin{aligned} & 1 \\ & 1 / 2+1 / 2 \end{aligned}$
10	1) Diamminedichloridoethylenediaminechromium(III) chloride 2) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}(\mathrm{ONO})\right]^{2+}$	1+1

11	(i) (ii) $\mathrm{t}_{2}{ }^{3} \mathrm{e}_{\mathrm{g}}{ }^{1}$ (iii) sp^{3}, diamagnetic	1 1 $1 / 2+1 / 2$
12	The cell reaction: $\mathrm{Fe}(\mathrm{s})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$ $\begin{aligned} \mathrm{E}_{\text {cell }}^{\mathrm{o}} & =\mathrm{E}_{\mathrm{c}}^{\mathrm{o}}-\mathrm{E}_{\mathrm{a}}^{\mathrm{o}} \\ & =[0-(-0.44)] \mathrm{V}=0.44 \mathrm{~V} \\ \mathrm{E}_{\text {cell }} & =\mathrm{E}_{\text {cell }}^{\mathrm{o}} \frac{-0.059}{2} \log \frac{\left[\mathrm{Fe}^{2+}\right]}{\left[\mathrm{H}^{+}\right]^{2}} \end{aligned}$ $\mathrm{E}_{\text {cell }}=0.44 \mathrm{~V}-\frac{0.059}{2} \log \frac{(0.001)}{(0.01)^{2}}$ $=0.44 \mathrm{~V}-\frac{0.059}{2} \log (10)$ $=0.44 \mathrm{~V}-0.0295 \mathrm{~V}$ $=\approx \mathbf{0 . 4 1 0} \mathrm{V}$	1 1 1
13	(i) mutual coagulation (ii)strong interaction between dispersed phase and dispersion medium or solvated layer (iii) CO acts as a poison for catalyst.	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
14	(i)Hexamethylene diamine $\mathrm{NH}_{2}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{NH}_{2}$ and adipic acid HOOC- $\left(\mathrm{CH}_{2}\right)_{4}-\mathrm{COOH}$ (ii) 3 hydroxybutanoic acid $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{COOH}$ and 3 hydroxypentanoic acid $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{COOH}$ (iii)Chloroprene $\mathrm{H}_{2} \mathrm{C}=\mathrm{C}(\mathrm{Cl}) \mathrm{CH}=\mathrm{CH}_{2}$ IUPAC names are accepted Note : $1 / 2$ mark for name /s and $1 / 2$ mark for structure / s	$\begin{gathered} \hline 1 / 2 \\ 1 / 2 \\ 1 / 2 \\ 1 / 2 \\ 1 / 2 \\ 1 / 2 \end{gathered}$
15	(i) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$ (ii) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COONa}+\mathrm{CHI}_{3}$ (iii) CH_{4}	$\begin{aligned} & 1 \\ & 1 / 2,1 / 2 \\ & 1 \end{aligned}$

19	$\begin{aligned} & \Delta \mathrm{T}_{\mathrm{f}}=\mathrm{i} \mathrm{~K}_{\mathrm{f}} \mathrm{~m} \\ & \Delta \mathrm{~T}_{\mathrm{f}}=\mathrm{i} \mathrm{~K}_{\mathrm{f}} \frac{\mathrm{~m}_{\mathrm{b}} \times 1000}{\mathrm{M}_{\mathrm{b}} \times \mathrm{m}_{\mathrm{a}}} \\ & 1.62 \mathrm{~K}=\mathrm{i} \times 4.9 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1} \mathrm{x} \frac{3.9 \mathrm{~g}}{122 \mathrm{gmol}^{-1}} \mathrm{x} \frac{1000}{49 \mathrm{~kg}} \\ & \quad \mathrm{i}=0.506 \end{aligned}$ Or by any other correct method As $\mathrm{i}<1$, therefore solute gets associated.	$1 / 2$ 1 $1 / 2$ 1
20	(i) Zinc being low boiling will distil first leaving behind impurities/ or on electrolysis the pure metal gets deposited on cathode from anode. (ii) Silica acts as flux to remove iron oxide which is an impurity as slag or $\mathrm{FeO}+\mathrm{SiO}_{2} \rightarrow \mathrm{FeSiO}_{3}$ (iii)Wrought iron	$\begin{array}{\|l} \hline 1 \\ 1 \\ 1 \\ \hline \end{array}$
21	$\begin{aligned} & \mathrm{d}=\frac{\mathrm{zxM}}{\mathrm{a}^{3} \mathrm{~N}_{\mathrm{A}}} \\ & \mathrm{z}= \frac{\mathrm{d} \mathrm{a}^{3} \mathrm{~N}_{\mathrm{A}}}{\mathrm{M}} \\ & \mathrm{z}=\frac{\mathbf{2 . 7} \mathbf{~ g ~ c m}^{-3} \times \mathbf{6 . 0 2 2} \times \mathbf{1 0}^{23} \mathbf{~ m o l}^{-1} \mathbf{x}\left(\mathbf{4 . 0 5} \times \mathbf{1 0}^{-8} \mathbf{c m}\right)^{3}}{\mathbf{2 7} \mathbf{g ~ m o l}^{-1}} \\ &=3.999 \approx 4 \end{aligned}$ Face centered cubic cell/ fcc	$1 / 2$ 1 $1 / 2$ 1
22	(i) 5 f orbital electrons have poor shielding effect than 4 f (ii)due to d-d transition / or the energy of excitation of an electron from lower d orbital to higher d-orbital lies in the visible region /presence of unpaired electrons in the d-orbital. (iii) $2 \mathrm{MnO}_{4}^{-}+6 \mathrm{H}^{+}+5 \mathrm{NO}_{2}^{-} \rightarrow 2 \mathrm{Mn}^{2+}+3 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{NO}_{3}^{-}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
23	(i) Concern for students health, Application of knowledge of chemistry to daily life, empathy, caring or any other (ii)Through posters, nukkad natak in community, social media, play in assembly or any other (iii)Tranquilizers are drugs used for treatment of stress or mild and severe mental disorders .. Eg: equanil (or any other suitable example) (iv) Aspartame is unstable at cooking temperature.	$\begin{aligned} & 1 / 2,1 / 2 \\ & 1 \\ & 1 / 2,1 / 2 \\ & 1 \end{aligned}$

\begin{tabular}{|c|c|c|}
\hline 24. \& \begin{tabular}{l}
\[
\mathrm{A}=
\] \\
\(\mathrm{C}=\) \\
OR \\
a. i) \\
ii) \\
iii) \\
b. \(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}<\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}<\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\) \\
c. By Hinsberg test secondary amines \(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}\) shows ppt formation which is insoluble in KOH , tertiary amines \(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}\) do not react with benzene sulphonyl choride
\end{tabular} \& \begin{tabular}{l}
1 \\
1 \\
1 \\
1 \\
1
\end{tabular} \\
\hline 25 \& \[
\begin{aligned}
\& \text { (a) } \\
\& k=\frac{2.303}{\mathrm{t}} \log \frac{\left[\mathrm{~A}_{0}\right]}{[\mathrm{A}]} \\
\& \mathrm{k}=\frac{2.303}{30} \log \frac{0.60}{0.30} \\
\& \mathrm{k}=\frac{2.303}{30} \times \quad \mathrm{x} \quad 0.301=0.023 \mathrm{~s}^{-1} \\
\& \mathrm{k}=\frac{2.303}{60} \log \underline{0.60} \\
\& 0.15
\end{aligned} \mathrm{k=} \mathrm{\frac{2.303}{60}} \mathrm{\times 0.6021=0.023s}^{-1} \mathrm{k}
\] \& 1

$11 / 2$

$1 / 2$
$1 / 2$
1

\hline
\end{tabular}

As k is constant in both the readings, hence it is a pseudofirst order reaction.
ii)

$$
\begin{aligned}
\text { Rate } & =-\Delta[\mathrm{R}] / \Delta \mathrm{t} \\
& =\frac{-[0.15-0.30]}{60-30} \\
& =0.005 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1} \\
& \mathrm{OR}
\end{aligned}
$$

a)
25. (i) Rate will increase 4 times of the actual rate of reaction.
(ii) Second order reaction
b) ${ }_{1 / 2}^{\mathrm{t}}=\frac{0.693}{\mathrm{k}}$
$30 \min =\frac{0.693}{\mathrm{k}}$
$\mathrm{k}=0.0231 \mathrm{~min}^{-1}$
$\mathrm{k}=\underline{2.303} \log \left[\mathrm{~A}_{0}\right]$
t
[A]
$\mathrm{t}=\frac{2.303}{0.0231} \log \frac{100}{10}$
$\mathrm{t}=\frac{2.303}{0.0231} \mathrm{~min}$
$\mathrm{t}=99.7 \mathrm{~min}$

CHEMISTRY MARKING SCHEME
 DELHI -2015
 SET -56/1/3/D

$\begin{aligned} & \text { Qu } \\ & \text { es. } \end{aligned}$	Answers	Marks
1	BaCl_{2} because it has greater charge / +2 charge	$1 / 2+1 / 2$
2	$\mathrm{X}_{2} \mathrm{Y}_{3}$	1
3	3	1
4	2, 5 - dinitrophenol	1
5	$\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{Br}$ Because it is a primary halide $/\left(1^{0}\right)$ halide	$1 / 2+1 / 2$
6.	When vapour pressure of solution is higher than that predicted by Raoult's law / the intermolecular attractive forces between the solute-solvent/(A-B) molecules are weaker than those between the solute-solute and solvent-solvent molecules/A-A or B-B molecules. Eg. ethanol-acetone/ethanol-cyclohexane/ CS_{2}-acetone or any other correct example $\Delta_{\text {mix }} \mathrm{H}$ is positive OR (a)Azeotropes are binary mixtures having the same composition in the liquid and vapour phase and boil at a constant temperature. (b) Minimum boiling azeotrope eg - ethanol + water or any other example	1 $1 / 2$ $1 / 2$ 1 $1 / 2$ $1 / 2$
7.	(i) Ag^{+}(aq) $+\mathrm{e}^{-} \rightarrow \mathrm{Ag}$ (s) Reaction with higher E^{0} value / $\Delta \mathrm{G}^{0}$ negative (ii) Molar conductivity of a solution at infinite dilution or when concentration approaches zero Number of ions per unit volume decreases	$\begin{array}{\|l} \hline 1 / 2 \\ 1 / 2 \\ 1 / 2 \\ \\ 1 / 2 \end{array}$
8.	Elements which have partially filled d-orbital in its ground states or any one of its oxidation states. 1) Variable oxidation states 2) Form coloured ion Or any other two correct characteristics	$\begin{aligned} & 1 \\ & 1 / 2+1 / 2 \end{aligned}$
9.	1) Diamminedichloridoethylenediaminechromium(III) chloride 2) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}(\mathrm{ONO})\right]^{2+}$	1+1

10	(i) $\mathrm{LiAlH}_{4} / \mathrm{NaBH}_{4} / \mathrm{H}_{2}, \mathrm{Pt}$ (ii) $\mathrm{KMnO}_{4}, \mathrm{KOH}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
11	(i)Hexamethylene diamine $\mathrm{NH}_{2}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{NH}_{2}$ and adipic acid $\mathrm{HOOC}-\left(\mathrm{CH}_{2}\right)_{4}-\mathrm{COOH}$ (ii) 3 hydroxybutanoic acid $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{COOH}$ and 3 hydroxypentanoic acid $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{COOH}$ (iii)Chloroprene $\mathrm{H}_{2} \mathrm{C}=\mathrm{C}(\mathrm{Cl}) \mathrm{CH}=\mathrm{CH}_{2}$ IUPAC names are accepted Note: $1 / 2$ mark for name $/ \mathrm{s}$ and $1 / 2$ mark for structure / s	$\begin{gathered} 1 / 2 \\ 1 / 2 \\ 1 / 2 \\ 1 / 2 \\ 1 / 2 \\ 1 / 2 \end{gathered}$
12	(i) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$ (ii) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COONa}+\mathrm{CHI}_{3}$ (iii) CH_{4}	$\begin{aligned} & \hline 1 \\ & 1 / 2,1 / 2 \\ & 1 \\ & \hline \end{aligned}$
13	(i) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}+\mathrm{NaOH} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{ONa} \xrightarrow{\mathrm{CH}_{3} \mathrm{X}} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OCH}_{3}$ Or	
		1
	$\text { (ii) } \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3} \xrightarrow{\mathrm{CrO}_{3} \text { or } \mathrm{Cu} / 573 \mathrm{~K} \mathrm{CH}_{3} \mathrm{COCH}_{3} \xrightarrow[(\mathrm{ii}) \mathrm{H}_{2} \mathrm{O}]{(\mathrm{CH} \mathrm{MgX}}}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}(\mathrm{OH}) \mathrm{CH}_{3}$	1
	(iii) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2} \xrightarrow[273 \mathrm{~K}]{\mathrm{NaNO}_{2}+\mathrm{HCl} \mathrm{C}_{6}} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{Cl} \xrightarrow{\mathrm{H}_{2} \mathrm{O} \text { warm }} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$	1
	OR	
13	a)	
	(i)	1/2
	(ii)	1/2
	(iii) b)	1
		1

	(Acetyl chloride instead of acetic anhydride may be used)	
14	(i)Maltose (ii) fibrous proteins: parallel polypeptide chain, insoluble in water Globular proteins: spherical shape, soluble in water, (or any 1 suitable difference) (iii) Vitamin D	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
15	(i)Larger surface area, higher van der Waals' forces, higher the boiling point (ii)Rotation due to one enantiomer is cancelled by another enantiomer (iii) $-\mathrm{NO}_{2}$ acts as Electron withdrawing group or -I effect	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \end{aligned}$
16.	$\begin{aligned} & \Delta \mathrm{T}_{\mathrm{f}}=\mathrm{i} \mathrm{~K}_{\mathrm{f}} \mathrm{~m} \\ & \Delta \mathrm{~T}_{\mathrm{f}}=\mathrm{i} \mathrm{~K}_{\mathrm{f}} \frac{\mathrm{~m}_{\mathrm{b}} \times 1000}{\mathrm{M}_{\mathrm{b}} \times \mathrm{m}_{\mathrm{a}}} \\ & 1.62 \mathrm{~K}=\mathrm{i} \times 4.9 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1} \mathrm{x} \frac{3.9 \mathrm{~g}}{122 \mathrm{gmol}^{-1}} \mathrm{x} \frac{1000}{49 \mathrm{~kg}} \\ & \quad \mathrm{i}=0.506 \end{aligned}$ Or by any other correct method As $\mathrm{i}<1$, therefore solute gets associated.	$1 / 2$ 1 $1 / 2$ 1
17	(i) Zinc being low boiling will distil first leaving behind impurities/ or on electrolysis the pure metal gets deposited on cathode from anode. (ii)Silica acts as flux to remove iron oxide which is an impurity as slag or $\mathrm{FeO}+\mathrm{SiO}_{2} \rightarrow \mathrm{FeSiO}_{3}$ (iii)Wrought iron	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$
18	$\begin{aligned} & \mathrm{d}=\frac{\mathrm{z} \mathrm{\times M}}{\mathrm{a}^{3} \mathrm{~N}_{\mathrm{A}}} \\ & \mathrm{z}= \frac{\mathrm{d} \mathrm{a}^{3} \mathrm{~N}_{\mathrm{A}}}{\mathrm{M}} \\ & \mathrm{z}=\frac{\mathbf{2 . 7} \mathbf{~ g ~ c m}^{-3} \times \mathbf{6 . 0 2 2} \times \mathbf{1 0}^{\mathbf{2 3} \mathbf{~ m o l}^{-1} \mathbf{x}\left(\mathbf{4 . 0 5} \times \mathbf{1 0}^{-8} \mathbf{c m}\right)^{\mathbf{3}}}}{\mathbf{2 7} \mathbf{g ~ m o l}^{-1}} \\ &=3.999 \approx 4 \end{aligned}$ Face centered cubic cell/ fcc	$1 / 2$ 1 $1 / 2$ 1
19	(i) 5 f orbital electrons have poor shielding effect than 4 f (ii)due to d-d transition / or the energy of excitation of an electron from lower d orbital to higher d-orbital lies in the visible region /presence of unpaired electrons in the d-orbital. (iii) $2 \mathrm{MnO}_{4}^{-}+6 \mathrm{H}^{+}+5 \mathrm{NO}_{2}^{-} \rightarrow 2 \mathrm{Mn}^{2+}+3 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{NO}_{3}^{-}$	1 1 1

20	(i) (ii) $t_{2}{ }^{3} \mathrm{e}_{\mathrm{g}}{ }^{1}$ (iii) sp^{3}, diamagnetic	1 1 $1 / 2+1 / 2$
21	The cell reaction : $\mathrm{Fe}(\mathrm{s})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$ $\begin{aligned} \mathrm{E}_{\text {cell }}^{\mathrm{o}} & =\mathrm{E}_{\mathrm{c}}^{\mathrm{o}}-\mathrm{E}_{\mathrm{a}}^{\mathrm{o}} \\ & =[0-(-0.44)] \mathrm{V}=0.44 \mathrm{~V} \\ \mathrm{E}_{\text {cell }} & =\mathrm{E}_{\text {cell }}^{\mathrm{o}} \frac{0.059}{2} \log \frac{\left[\mathrm{Fe}^{2+}\right]}{\left[\mathrm{H}^{+}\right]^{2}} \end{aligned}$ $\mathrm{E}_{\text {cell }}=0.44 \mathrm{~V}-\frac{0.059}{2} \log \frac{(0.001)}{(0.01)^{2}}$ $=0.44 \mathrm{~V}-\frac{0.059}{2} \log (10)$ $=0.44 \mathrm{~V}-0.0295 \mathrm{~V}$ $=\approx 0.410 \mathrm{~V}$	1 1 1
22	(i) mutual coagulation (ii)strong interaction between dispersed phase and dispersion medium or solvated layer (iii)CO acts as a poison for catalyst or iron	$\begin{array}{\|l} \hline 1 \\ 1 \\ 1 \end{array}$
23	(i) Concern for students health, Application of knowledge of chemistry to daily life, empathy, caring or any other (ii)Through posters, nukkad natak in community, social media, play in assembly or any other (iii)Tranquilizers are drugs used for treatment of stress or mild and severe mental disorders .. Eg: equanil (or any other suitable example) (iv) Aspartame is unstable at cooking temperature.	$\begin{aligned} & 1 / 2,1 / 2 \\ & 1 \\ & 1 / 2,1 / 2 \\ & 1 \end{aligned}$

24
(a)

$$
\begin{aligned}
& \mathrm{k}=\frac{2.303}{\mathrm{t}} \log \frac{\left[\mathrm{~A}_{0}\right]}{[\mathrm{A}]} \\
& \mathrm{k}=\frac{2.303}{30} \log \frac{0.60}{0.30}
\end{aligned}
$$

$\mathrm{k}=\frac{2.303}{30} \times 0.301=0.023 \mathrm{~s}^{-1}$
$\mathrm{k}=\frac{2.303}{60} \log \frac{0.60}{0.15}$
$\mathrm{k}=\frac{2.303}{60} \times 0.6021=0.023 \mathrm{~s}^{-1}$
$\mathrm{k}=\frac{2.303}{30} \times 0.301=0.023 \mathrm{~s}^{-1}$
$\mathrm{k}=\frac{2.303}{60} \log \frac{0.60}{0.15}$
$\mathrm{k}=\frac{2.303}{60} \times 0.6021=0.023 \mathrm{~s}^{-1}$
As k is constant in both the readings, hence it is a pseudofirst order reaction.
ii)

$$
\begin{aligned}
\text { Rate } & =-\Delta[\mathrm{R}] / \Delta \mathrm{t} \\
& =\frac{-[0.15-0.30]}{60-30} \\
& =0.005 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1} \\
& \mathrm{OR}
\end{aligned}
$$

24.

a) Rate will increase 4 times of the actual rate of reaction.
(ii) Second order reaction
b) $\quad{ }_{1 / 2}^{\mathrm{t}}=\frac{0.693}{\mathrm{k}}$

$$
30 \min =\frac{0.693}{\mathrm{k}}
$$

