Strictly Confidential (For Internal and Restricted Use only) Senior School Certificate Examination
 Marking Scheme - Physics (Code 55/1, Code 55/2, Code 55/3)

1. The marking scheme provides general guidelines to reduce subjectivity in the marking. The answers given in the marking scheme are suggested answers. The content is thus indicated. If a student has given any other answer, which is different from the one given in the marking scheme, but conveys the meaning correctly, such answers should be given full weightage.
2. In value based questions, any other individual response with suitable justification should also be accepted even if there is no reference to the text.
3. Evaluation is to be done as per instructions provided in the marking scheme. It should not be done according to one's own interpretation or any other consideration. Marking scheme should be adhered to and religiously followed.
4. If a question has parts, please award in the right hand side for each part. Marks awarded for different part of the question should then be totaled up and written in the left hand margin and circled.
5. If a question does not have any parts, marks are to be awarded in the left hand margin only.
6. If a candidate has attempted an extra question, marks obtained in the question attempted first should be retained and the other answer should be scored out.
7. No marks are to be deducted for the cumulative effect of an error. The student should be penalized only once.
8. Deduct $1 / 2$ mark for writing wrong units, missing units, in the final answer to numerical problems.
9. Formula can be taken as implied from the calculations even if not explicitly written.
10. In short answer type question, asking for two features / characteristics / properties if a candidate writes three features, characteristics / properties or more, only the correct two should be evaluated.
11. Full marks should be awarded to a candidate if his / her answer in a numerical problem is close to the value given in the scheme.
12. In compliance to the judgement of the Hon'ble Supreme Court of India, Board has decided to provide photocopy of the answer book(s) to the candidates who will apply for it along with the requisite fee. Therefore, it is all the more important that the evaluation is done strictly as per the value points given in the marking scheme so that the Board could be in a position to defend the evaluation at any forum.
13. The Examiner shall also have to certify in the answer book that they have evaluated the answer book strictly in accordance with the value points given in the marking scheme and correct set of question paper.
14. Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the title paper, correctly totaled and written in figures and words.
15. In the past it has been observed that the following are the common types of errors committed by the Examiners

- Leaving answer or part thereof unassessed in an answer script.
- Giving more marks for an answer than assigned to it or deviation from the marking scheme.
- Wrong transference of marks from the inside pages of the answer book to the title page.
- Wrong question wise totaling on the title page.
- Wrong totaling of marks of the two columns on the title page.
- Wrong grand total.
- Marks in words and figures not tallying.
- Wrong transference to marks from the answer book to award list.
- Answer marked as correct $(\sqrt{ })$ but marks not awarded.
- Half or part of answer marked correct $(\sqrt{ })$ and the rest as wrong (\times) but no marks awarded.

16. Any unassessed portion, non carrying over of marks to the title page or totaling error detected by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence in order to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously.

MARKING SCHEME

Q. No.	Expected Answer/ Value Points	Marks	Total Marks
Section A			
Q1	i. Nichrome ii. $\quad R_{N i}>R_{C u}$ (or Resistivity $y_{N i}>$ Resistivity $_{\mathrm{Cu}}$)	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$	1
Q2	Yes	1	1
Q3	i. Decreases ii. $\quad n_{\text {Violet }}>n_{\text {Red }}$ (Also accept if the student writes $\lambda_{V}<\lambda_{R}$)	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$	1
Q4	Photoelectric Effect (/Raman Effect/ Compton Effect)	1	1
Q5	A is positive and B is negative (Also accept: A is negative and B is positive)	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$	1
SECTION B			
Q6	Interference pattern $1 / 2$ Diffraction pattern $1 / 2$ Two Differences $1 / 2+1 / 2$	$1 / 2$	

Q7	(a) Identification $1 / 2+1 / 2$ (b) Uses $1 / 2+1 / 2$ (a) X - rays Used for medical purposes. (Also accept UV rays and gamma rays and Any one use of the e.m. wave named) (b) Microwaves Used in radar systems (Also accept short radio waves and Any one use of the e.m. wave named)	$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$	2
Q8	Condition i. For directions of $\vec{E}, \vec{B}, \vec{v} \quad 1$ ii. For magnitudes of $\vec{E}, \vec{B}, \vec{v} \quad 1$ (i) The velocity \vec{v}, of the charged particles, and the \vec{E} and \vec{B} vectors, should be mutually perpendicular. Also the forces on q, due to \vec{E} and \vec{B}, must be oppositely directed. (Also accept if the student draws a diagram to show the directions.) (ii) $q E=q v B$ $\text { or } v=\frac{E}{B}$ [Alternatively, The student may write: Force due to electric field $=q \vec{E}$ Force due to magnetic field $=q(\vec{v} \times \vec{B})$ The required condition is $\begin{gathered} q \vec{E}=-q(\vec{v} \times \vec{B}) \\ {[\text { or } \vec{E}=-(\vec{v} \times \vec{B})=(\vec{B} \times \vec{v})]} \end{gathered}$ (Note: Award 1 mark only if the student just writes: "The forces, on the charged particle, due to the electric and magnetic fields, must be equal and opposite to each other")]	$1 / 2$ $1 / 2$	2

	a) For making permanent magnet: (i) High retentivity (ii) High coercitivity (iii) High permeability (Any two) b) For making electromagnet: (i) High permeability (ii) Low retentivity (iii) Low coercivity (Any two)	$1 / 2+1 / 2$ $1 / 2+1 / 2$	2
SECTION C			
Q11	a) The factor by which the potential difference changes b) Voltmeter reading Ammeter Reading a) $H=\frac{V^{2}}{R}$ $\therefore V$ increases by a factor of $\sqrt{9}=3$ b) Ammeter Reading $I=\frac{V}{R+r}$ $=\frac{12}{4+2} \mathrm{~A}=2 \mathrm{~A}$ Voltmeter Reading $V=E-I r$ $=[12-(2 \times 2)] \mathrm{V}=8 \mathrm{~V}$ (Alternatively, $\mathrm{V}=\mathrm{iR}=2 \times 4 \mathrm{~V}=8 \mathrm{~V}$)	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \end{aligned}$	3
Q12	a) Achieving amplitude Modulation 1 b) Stating the formulae $1 / 2$ Calculation of v_{c} and v_{m} $1 / 2+1 / 2$ Calculation of bandwidth $1 / 2$ a) Amplitude modulation can be achieved by applying the message signal, and the carrier wave, to a non linear (square law device) followed by a band pass filter.		

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
Working: The diode \(\mathrm{D}_{1}\) is forward biased during one half cycle and current flows through the resistor, but diode \(\mathrm{D}_{2}\) is reverse biased and no current flows through it. During the other half of the signal, \(D_{1}\) gets reverse biased and no current passes through it, \(\mathrm{D}_{2}\) gets forward biased and current flows through it. In both half cycles current, through the resistor, flows in the same direction. \\
(Note: If the student just draws the following graphs (but does not draw the circuit diagram), award \(1 / 2\) mark only.
\end{tabular} \& 1 \& \\
\hline \multirow[t]{2}{*}{Q14} \& \& \& 3 \\
\hline \& \begin{tabular}{l}
Photon picture plus Einstein's photoelectric equation
\[
1 / 2+1^{1 / 2}
\] \\
Two features \\
In the photon picture, energy of the light is assumed to be in the form of photons, each carrying an energy \(h v\). \\
Einstein assumed that photoelectric emission occurs because of a single collision of a photon with a free electron. \\
The energy of the photon is used to \\
(i) free the electrons from the metal. \\
[For this, a minimum energy, called the work function \((=W)\) is needed]. \\
And \\
(ii) provide kinetic energy to the emitted electrons.
\end{tabular} \& \(1 / 2\)
\(1 / 2\)

$1 / 2$ \&

\hline
\end{tabular}

	Hence $\begin{gathered} (\mathrm{K} . \mathrm{E} .)_{\max }=\mathrm{h} v-\mathrm{W} \\ /\left(\frac{1}{2} m v_{\max }^{2}=h v-W\right) \end{gathered}$ This is Einstein's photoelectric equation Two features (which cannot be explained by wave theory): i) 'Instantaneous' emission of photoelectrons ii) Existence of a threshold frequency iii) 'Maximum kinetic energy' of the emitted photoelectrons, is independent of the intensity of incident light (Any two)	$1 / 2$ $1 / 2+1 / 2$	3
Q15	a. Calculation of wavelength, frequency and speed $1 / 2+1 / 2+1 / 2$ b. Lens Maker's Formula Calculation of R a) $\lambda=\frac{589 \mathrm{~nm}}{1.33}=442.8 \mathrm{~nm}$ Frequency $v=\frac{3 \times 10^{8} \mathrm{~ms}^{-1}}{589 \mathrm{~nm}}=5.09 \times 10^{12} \mathrm{~Hz}$ Speed $v=\frac{3 \times 10^{8}}{1.33} \mathrm{~m} / \mathrm{s}=2.25 \times 10^{8} \mathrm{~m} / \mathrm{s}$	$1 / 2$ $1 / 2$	3
Q16	Definition of mutual inductance Derivation of mutual inductance for two long solenoids 1		

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
(i) Self inductance, of a coil, is numerically equal to the emf induced in that coil when the current in it changes at a unit rate. \\
(Alternatively: The self inductance of a coil equals the flux linked with it when a unit current flows through it.) \\
(ii) The work done against back /induced emf is stored as magnetic potential energy. \\
The rate of work done, when a current \(i\) is passing through the coil, is
\[
\begin{aligned}
\& \frac{d W}{d t}=|\varepsilon| i=\left(L \frac{d i}{d t}\right) i \\
\& \begin{aligned}
\therefore W \& =\int d W=\int_{0}^{I} L i d i \\
\& =\frac{1}{2} L i^{2}
\end{aligned}
\end{aligned}
\]
\end{tabular} \& 1

$1 / 2$

$1 / 2$

$1 / 2$
$1 / 2$ \& 3

\hline Q17 \& | a) Principle of meter bridge |
| :--- |
| b) Relation between l_{l}, l_{2}, and S |
| a) The principle of working of a meter bridge is same as that of a balanced Wheatstone bridge. |
| (Alternatively: |
| When $\mathrm{i}_{\mathrm{g}}=0$, then $\frac{P}{Q}=\frac{R}{S}$) | \& 1 \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
(a) Ray diagram of astronomical telescope \\
(Note: Deduct \(1 / 2\) mark if the 'arrows' are not marked) \\
(b) Objective Lens: Lens \(\mathrm{L}_{1}\) \\
Eyepiece Lens: Lens L 2 \\
Reason: \\
The objective should have large aperture and large focal length while the eyepiece should have small aperture and small focal length.
\end{tabular} \& \(11 / 2\)

$1 / 2$
$1 / 2$
$1 / 2$ \& 3

\hline Q21 \& | (a) Statement of Biot Savart law 1
 \quad Expression in vector form $1 / 2$
 (b) Magnitude of magnetic field at centre 1
 Direction of magnetic field $1 / 2$ |
| :--- |
| (a) It states that magnetic field strength, $d \overrightarrow{\boldsymbol{B}}$, due to a current element, $I d \vec{l}$, at a point, having a position vector \mathbf{r} relative to the current element, is found to depend (i) directly on the current element, (ii) inversely on the square of the distance $\|\mathbf{r}\|$, (iii) directly on the sine of angle between the current element and the position vector \mathbf{r}. |
| In vector notation, $\overrightarrow{d \boldsymbol{B}}=\frac{\mu_{0}}{4 \pi} \frac{I \overrightarrow{d \boldsymbol{l}} \times \overrightarrow{\boldsymbol{r}}}{\|\overrightarrow{\boldsymbol{r}}\|^{3}}$ |
| Alternatively, $\left(d \overrightarrow{\boldsymbol{B}}=\frac{\mu_{0}}{4 \pi} \frac{I \vec{d} \overrightarrow{\boldsymbol{l}} \times \hat{r}}{\|\vec{r}\|^{2}}\right)$ | \& 1

$1 ⁄ 2$ \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
(b)
\[
\begin{aligned}
\& B_{p}=\frac{\mu_{0} \times 1}{2 R}=\frac{\mu_{0}}{2 R}(\text { along } \mathrm{z}-\text { direction }) \\
\& B_{Q}=\frac{\mu_{0} \times \sqrt{3}}{2 R}=\frac{\mu_{0} \sqrt{3}}{2 R} \quad(\text { along } \mathrm{x}-\text { direction }) \\
\& \quad \therefore B=\sqrt{B_{p}{ }^{2}+B_{Q}{ }^{2}}=\frac{\mu_{0}}{R}
\end{aligned}
\] \\
This net magnetic field \(\mathbf{B}\), is inclined to the field \(\mathbf{B}_{\mathbf{p}}\), at an angle \(\Theta\), where
\[
\begin{gathered}
\tan \theta=\sqrt{3} \\
\left(/ \theta=\tan ^{-1} \sqrt{3}=60^{\circ}\right) \\
(\text { in XZ plane })
\end{gathered}
\]
\end{tabular} \& \(1 / 2\)

$1 / 2$

$1 / 2$ \& 3

\hline Q22 \& | Formula for energy stored $1 / 2$
 Energy stored before 1
 Energy stored after 1
 Ratio $1 / 2$ |
| :--- |
| Energy stored $=\frac{1}{2} C V^{2}\left(=\frac{1}{2} \frac{Q^{2}}{C}\right)$ |
| Net capacitance with switch S closed $=C+C=2 C$ |
| \therefore Energy stored $=\frac{1}{2} \times 2 C \times V^{2}=C V^{2}$ |
| After the switch S is opened, capacitance of each capacitor= $K C$ |
| \therefore Energy stored in capacitor $\mathrm{A}=\frac{1}{2} K C V^{2}$ |
| For capacitor B, |
| Energy stored $=\frac{1}{2} \frac{Q^{2}}{K C}=\frac{1}{2} \frac{C^{2} V^{2}}{K C}=\frac{1}{2} \frac{C V^{2}}{K}$ |
| \therefore Total Energy stored $=\frac{1}{2} K C V^{2}+\frac{1}{2} \frac{C V^{2}}{K}=\frac{1}{2} C V^{2}\left(K+\frac{1}{K}\right)$ $=\frac{1}{2} C V^{2}\left(\frac{K^{2}+1}{K}\right)$ | \& $1 / 2$

$1 / 2$
$1 / 2$
$1 / 2$

1 \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \& \[
\therefore \text { Required ratio }=\frac{2 C V^{2} \cdot K}{C V^{2}\left(K^{2}+1\right)}=\frac{2 K}{\left(K^{2}+1\right)}
\] \& 1/2 \& 3 \\
\hline \multicolumn{4}{|c|}{SECTION D} \\
\hline Q23 \& \begin{tabular}{l}
\begin{tabular}{|lll|}
\hline a) \& Name of the installation, the cause of disaster \& \(1 / 2+1 / 2\) \\
b) \& Energy release process \& 1 \\
c) \& Values shown by Asha and mother \& \(1+1\) \\
\hline
\end{tabular} \\
a) (i) Nuclear Power Plant:/‘Set-up’ for releasing Nuclear Energy/Energy Plant \\
(Also accept any other such term) \\
(ii)Leakage in the cooling unit/ Some defect in the set up. \\
b) Nuclear Fission/Nuclear Energy \\
Break up (/ Fission) of Uranium nucleus into fragments \\
c) Asha: Helpful, Considerate, Keen to Learn, Modest Mother: Curious, Sensitive, Eager to Learn, Has no airs (Any one such value in each case)
\end{tabular} \& \(1 / 2\)

$1 / 2$
1
1
1 \& 4

\hline \multicolumn{4}{|c|}{SECTION E}

\hline Q24 \& | (a) Derivation of E along the axial line of dipole 2 |
| :--- |
| (b) Graph between E vs $r \quad 1$ |
| (c) (i) Diagrams for stable and unstable $1 / 2+1 / 2$ equilibrium of dipole |
| (ii) Torque on the dipole in the two cases |
| (a) |
| Electric field at P due to charge $(+q)=E_{1}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{(r-a)^{2}}$ |
| Electric field at P due to charge $(-q)=E_{2}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{(r+a)^{2}}$ |
| Net electric Field at $\mathrm{P}=E_{1}-E_{2}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{(r-a)^{2}}-\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{(r+a)^{2}}$ $=\frac{1}{4 \pi \varepsilon_{0}} \frac{2 p r}{\left(r^{2}-a^{2}\right)^{2}} \quad(p=q .2 a)$ |
| Its direction is parallel to \vec{p}. | \& $1 / 2$

$1 / 2$
$1 / 2$

$1 / 2$ \&

\hline
\end{tabular}

MARKING SCHEME

Q. No.	Expected Answer/ Value Points	Marks	Total Marks
Section A			
Q1	Q to P through ammeter and D to C through ammeter (Alternatively: Anticlockwise as seen from left in coil PQ clockwise as seen from left in coil CD)	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$	1
Q2	Speed of electromagnetic wave, $c=\frac{E_{0}}{B_{0}}$.	1	1
Q3	i. Nichrome ii. $\quad \mathrm{R}_{\mathrm{Ni}}>\mathrm{R}_{\mathrm{Cu}}$ (or Resistivity $\mathrm{Ni}_{\mathrm{Ni}}>$ Resistivity $_{\mathrm{Cu}}$)	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$	1
Q4	i. Decreases ii. $\quad n_{\text {Violet }}>n_{\text {Red }}$ (Also accept if the student writes $\lambda_{V}<\lambda_{R}$)	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$	1
Q5	Photoelectric Effect (/Raman Effect/ Compton Effect)	1	1
SECTION B			
Q6	Condition i. For directions of $\vec{E}, \vec{B}, \vec{v} \quad 1$ ii. For magnitudes of $\vec{E}, \vec{B}, \vec{v}$ i. The velocity \vec{v}, of the charged particles, and the \vec{E} and \vec{B} vectors, should be mutually perpendicular. Also the forces on q, due to \vec{E} and \vec{B}, must be oppositely directed. (Also accept if the student draws a diagram to show the directions.)	$1 / 2$ $1 / 2$	

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
ii.
\[
\begin{aligned}
\& q E=q v B \\
\& \text { or } v=\frac{E}{B}
\end{aligned}
\] \\
[Alternatively, The student may write: \\
Force due to electric field \(=q \vec{E}\) \\
Force due to magnetic field \(=q(\vec{v} \times \vec{B})\) \\
The required condition is
\[
\begin{gathered}
q \vec{E}=-q(\vec{v} \times \vec{B}) \\
{[\text { or } \vec{E}=-(\vec{v} \times \vec{B})=(\vec{B} \times \vec{v})]}
\end{gathered}
\] \\
(Note: Award 1 mark only if the student just writes: "The forces, on the charged particle, due to the electric and magnetic fields, must be equal and opposite to each other")]
\end{tabular} \& \(1 / 2\)
\(1 / 2\)

$1 / 2$
$1 / 2$

$1 / 2$
$1 / 2$ \& 2

\hline Q7 \& | (a) Identification $1 / 2+1 / 2$
 (b) One use each $1 / 2+1 / 2$ |
| :--- |
| a) X-rays/ Gamma rays |
| One use of the name given |
| b) Infrared/Visible/Microwave |
| One use of the name given |
| (Note: Award $1 / 2$ mark for each correct use (relevant to the name chosen) even if the names chosen are incorrect.) | \& $1 / 2$

$1 / 2$
$1 / 2$
$1 / 2$ \& 2

\hline Q8 \& | Interference pattern |
| :--- |
| Diffraction pattern |
| Two Differences | \& 1/2 \&

\hline
\end{tabular}

Q9	Formula Calculation$\quad \frac{1}{\lambda}=R\left(\frac{1}{n_{1}{ }^{2}}-\frac{1}{n_{2}{ }^{2}}\right)$ \therefore For Balmer Series: $\left(\lambda_{B}\right)_{\text {short }}=4 / R$ and For Lyman Series: $\left(\lambda_{L}\right)_{\text {short }}=1 / R$ $\therefore \lambda_{B}=913.4 \times 4 \mathrm{~A}^{0}=3653.6 \mathrm{~A}^{0}$	$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$	2
Q10	a) Two properties for making permanent $1 / 2+1 / 2$ magnet b) Two properties for making an electromagnet a) For making permanent magnet: (i) High retentivity (ii) High coercitivity (iii) High permeability (Any two) b) For making electromagnet: (i) High permeability (ii) Low retentivity (iii) Low coercivity (Any two)	$1 / 2+1 / 2$ $1 / 2+1 / 2$	2
SECTION C			
Q11	a. Calculation of wavelength, frequency and speed $1 / 2+1 / 2+1 / 2$ b. Lens Maker's Formula Calculation of R		

	a) $\lambda=\frac{589 \mathrm{~nm}}{1.33}=442.8 \mathrm{~nm}$ Frequency $v=\frac{3 \times 10^{8} \mathrm{~ms}^{-1}}{589 \mathrm{~nm}}=5.09 \times 10^{12} \mathrm{~Hz}$ Speed $v=\frac{3 \times 10^{8}}{1.33} \mathrm{~m} / \mathrm{s}=2.25 \times 10^{8} \mathrm{~m} / \mathrm{s}$ b) $\frac{1}{f}=\left[\frac{\mu_{2}}{\mu_{1}}-1\right]\left[\frac{1}{R_{1}}-\frac{1}{R_{2}}\right]$ $\therefore \frac{1}{20}=\left[\frac{1.55}{1}-1\right] \frac{2}{R}$ $\therefore R=(20 \times 1.10) \mathrm{cm}=22 \mathrm{~cm}$	$1 / 2$ $1 / 2$	3
Q12	(a) Ray Diagram for reflecting Telescope (b) Two advantages of it over refracting type of $1 / 2+1 / 2$ telescope (a) Ray Diagram Arrow marking Labelling (b) Advantages (i) Spherical aberration is absent (ii) Chromatic aberration is absent (iii) Mounting is easier (iv) Polishing is done on only one side (v) Light gathering power is more (Any two)	1 $1 / 2$ $1 / 2$ $1 / 2+1 / 2$	

	when unit current flows through the other coil /primary coil. (ii) Let a current, i_{2}, flow in the secondary coil $\therefore B_{2}=\frac{\mu_{0} N_{2} i_{2}}{l}$ \therefore Flux linked with the primary coil $=N_{1} A_{1} B_{2}=\frac{\mu_{0} N_{2} N_{1} A_{1} i_{2}}{l}=M_{12} i_{2}$ Hence, $M_{12}=\frac{\mu_{0} N_{2} N_{1} A_{2}}{l}=\mu_{0} n_{2} n_{1} A_{1} l\left(n_{1}=\frac{N_{1}}{l} ; n_{2}=\frac{N_{2}}{l}\right)$ OR Definition of self inductance Expression for energy stored (i) Self inductance, of a coil, is numerically equal to the emf induced in that coil when the current in it changes at a unit rate. (Alternatively: The self inductance of a coil equals the flux linked with it when a unit current flows through it.)	1	3

	Energy stored $=\frac{1}{2} C V^{2}\left(=\frac{1}{2} \frac{Q^{2}}{C}\right)$ Net capacitance with switch S closed $=C+C=2 C$ \therefore Energy stored $=\frac{1}{2} \times 2 C \times V^{2}=C V^{2}$ After the switch S is opened, capacitance of each capacitor $=K C$ \therefore Energy stored in capacitor $\mathrm{A}=\frac{1}{2} K C V^{2}$ For capacitor B, $\begin{aligned} & \text { Energy stored }=\frac{1}{2} \frac{Q^{2}}{K C}=\frac{1}{2} \frac{C^{2} V^{2}}{K C}=\frac{1}{2} \frac{C V^{2}}{K} \\ & \begin{aligned} & \therefore \text { Total Energy stored }=\frac{1}{2} K C V^{2}+\frac{1}{2} \frac{C V^{2}}{K}=\frac{1}{2} C V^{2}\left(K+\frac{1}{K}\right) \\ &=\frac{1}{2} C V^{2}\left(\frac{K^{2}+1}{K}\right) \\ & \therefore \text { Required ratio }=\frac{2 C V^{2} \cdot K}{C V^{2}\left(K^{2}+1\right)}=\frac{2 K}{\left(K^{2}+1\right)} \end{aligned} \end{aligned}$	1/2	3
Q18	a) Achieving amplitude Modulation 1 b) Stating the formulae $1 / 2$ Calculation of v_{c} and v_{m} $1 / 2+1 / 2$ Calculation of bandwidth $11 / 2$ a) Amplitude modulation can be achieved by applying the message signal, and the carrier wave, to a non linear (square law device) followed by a band pass filter. (Alternatively, The student may just draw the block diagram.)		

	(Alternatively, Amplitude modulation is achieved by superposing a message signal on a carrier wave in a way that causes the amplitude of the carrier wave to change in accordance with the message signal.) b) Frequencies of side bands are: $\begin{gathered} \left(v_{c}+v_{m}\right) \text { and }\left(v_{c}-v_{m}\right) \\ \therefore v_{c}+v_{m}=660 \mathrm{kHz} \\ \text { and } v_{c}-v_{m}=640 \mathrm{kHz} \\ \therefore v_{c}=650 \mathrm{kHz} \\ \therefore v_{m}=10 \mathrm{kHz} \\ \text { Bandwidth }=(660-640) \mathrm{kHz}=20 \mathrm{kHz} \end{gathered}$	1 $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$	3
Q19	a) Circuit diagram Input characteristics 1 Output characteristics b) Output pulse wave form Truth table/Logic symbol$\frac{1122}{1 / 2} 1 / 1 / 2$.	1	

	Field at the centre of a circular coil $=\frac{\mu_{0} I}{2 R}$ Field due to coil $P=\frac{\mu_{0} \times 3}{2 \times 5 \times 10^{-2}}$ tesla $=12 \pi \times 10^{-6} \text { tesla }$ Field due to coil $\mathrm{Q}=\frac{\mu_{0} \times 4}{2 \times 5 \times 10^{-2}}$ tesla $\begin{gathered} =16 \pi \times 10^{-6} \text { tesla } \\ \therefore \text { Resultant Field }=\left(\pi \sqrt{\left.12^{2}+16^{2}\right)} \mu \mathrm{T}\right. \\ =(20 \pi) \mu \mathrm{T} \end{gathered}$ Let the field make an angle θ with the vertical $\begin{gathered} \tan \theta=\frac{12 \pi \times 10^{-6}}{16 \pi \times 10^{-6}}=\frac{3}{4} \\ \theta=\tan ^{-1} \frac{3}{4} \end{gathered}$ (Alternatively: $\theta^{\prime}=\tan ^{-1} \frac{4}{3}, \theta^{\prime}=$ angle with the horizontal) [Note1: Award 2 marks if the student directly calculates B without calculating B_{P} and B_{Q} separately.] [Note 2: Some students may calculate the field B_{Q} and state that it also represents the resultant magnetic field (as coil P has been shown 'broken' and, therefore, cannot produce a magnetic field); They may be given $21 / 2$ marks for their (correct) calculation of B_{Q}]	1/2	3
Q21	Diagram of generalized communication system $11 / 2$ Function of (a) transmitter (b) channel (c) receiver $1 / 2+1 / 2+1 / 2$		

	[Also accept the following diagram (a) Transmitter: A transmitter processes the incoming message signal so as to make it suitable for transmission through a channel and subsequent reception. (b) Channel: It carries the message signal from a transmitter to a receiver. (c) Receiver: A receiver extracts the desired message signals from the received signals at the channel output.	$11 / 2$ $1 / 2$ $1 / 2$ $1 / 2$	3
Q22	a) The factor by which the potential difference changes b) Voltmeter reading Ammeter Reading a) $H=\frac{V^{2}}{R}$ $\therefore V$ increases by a factor of $\sqrt{9}=3$ b) Ammeter Reading $I=\frac{V}{R+r}$ $=\frac{12}{4+2} \mathrm{~A}=2 \mathrm{~A}$ Voltmeter Reading $V=E-I r$ $=[12-(2 \times 2)] \mathrm{V}=8 \mathrm{~V}$ (Alternatively, $\mathrm{V}=\mathrm{iR}=2 \times 4 \mathrm{~V}=8 \mathrm{~V}$)	$1 / 2$ $1 / 2$	3

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{SECTION D} \\
\hline Q23 \& \begin{tabular}{l}
a) Name of the installation, the cause of disaster \\
b) Energy release process \\
c) Values shown by Asha and mother \\
a) (i) Nuclear Power Plant:/‘Set-up’ for releasing Nuclear Energy/Energy Plant \\
(Also accept any other such term) \\
(ii)Leakage in the cooling unit/ Some defect in the set up. \\
b) Nuclear Fission/Nuclear Energy \\
Break up (/ Fission) of Uranium nucleus into fragments \\
c) Asha: Helpful, Considerate, Keen to Learn, Modest Mother: Curious, Sensitive, Eager to Learn, Has no airs (Any one such value in each case)
\end{tabular} \& \(1 / 2\)

$1 / 2$
1
1
1 \&

\hline \multicolumn{4}{|c|}{SECTION E}

\hline Q24 \& | a) Definition of wavefront $1 / 2$
 Verifying laws of refraction by Huygen's 3
 principle
 b) Polarisation by scattering $1 / 2$
 Calculation of Brewster's angle 1 |
| :--- |
| a) The wavefront is the common locus of all points which are in phase(/surface of constant phase) |
| Let a plane wavefront be incident on a surface separating two media as shown. Let v_{1} and v_{2} be the velocities of light in the rarer medium and denser medium respectively. From the diagram $B C=v_{1} t \text { and } A D=v_{2} t$ | \& 1/2 \&

\hline
\end{tabular}

	$\begin{gathered} \sin i=\frac{\mathrm{BC}}{\mathrm{AC}} \text { and } \sin r=\frac{\mathrm{AD}}{\mathrm{AC}} \\ \therefore \frac{\sin i}{\sin r}=\frac{\mathrm{BC}}{\mathrm{AD}}=\frac{v_{1} t}{v_{2} t} \\ =\frac{v_{1}}{v_{2}}=\text { a constant } \end{gathered}$ This proves Snell's law of refraction. b) When unpolarised light gets scattered by molecules, the scattered light has only one of its two components in it. (Also accept diagrammatic representation We have, $\mu=\tan i_{B}$ $\therefore \tan i_{B}=1.5$ $\therefore i_{B}=\tan ^{-1} 1.5$ (156.3°) OR	1/2	5

	The electric field E points outwards normal to the sheet. The field lines are parallel to the Gaussian surface except for surfaces 1 and 2. Hence the net flux $=\oint E . d s=E A+E A$ where A is the area of each of the surface 1 and 2 . $\begin{aligned} & \therefore \oint E . d s=\frac{q}{\varepsilon_{0}}=\frac{\sigma A}{\varepsilon_{0}}=2 E A \\ & E=\frac{\sigma}{2 \varepsilon_{0}} \end{aligned}$ b) $\begin{gathered} W=q \int_{\infty}^{r} \vec{E} \cdot d \vec{r} \\ =q \int_{\infty}^{r}(-E d r) \\ =-q \int_{\infty}^{r}\left(\frac{\sigma}{2 \epsilon_{0}}\right) d r \\ =\frac{q \sigma}{2 \epsilon}\|\infty-r\| \\ \Rightarrow(\infty) \end{gathered}$	1	5
Q26	a) Identification $1 / 2$ b) Identifying the curves 1 Justification c) $1 / 2$ Variation of Impedance Graph $1 / 2$ d) Expression for current $1 / 2$ Phase relation $11 / 2$ a) The device X is a capacitor b) Curve $\mathrm{B} \longrightarrow$ voltage Curve $\mathrm{C} \longrightarrow$ current Curve $\mathrm{A} \longrightarrow$ power	$1 / 2$ $1 / 2$ $1 / 2$	

MARKING SCHEME

Q. No.	Expected Answer/ Value Points	Marks	Total Marks
Section A			
Q1	i. Decreases ii. $\quad n_{\text {Violet }}>n_{\text {Red }}$ (Also accept if the student writes $\lambda_{V}<\lambda_{R}$)	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$	1
Q2	Photoelectric Effect (/Raman Effect/ Compton Effect)	1	1
Q3	Clockwise in loop 1 Anticlockwise in loop 2	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$	1
Q4	\vec{E} along y- axis and \vec{B} along z-axis (Alternatively : \vec{E} along z-axis and \vec{B} along y-axis)	$1 / 2+1 / 2$	1
Q5	i. Nichrome ii. $\quad R_{\mathrm{Ni}}>\mathrm{R}_{\mathrm{Cu}}$ (or Resistivity $\mathrm{Ni}_{\mathrm{Ni}}>$ Resistivity $_{\mathrm{Cu}}$)	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$	1
SECTION B			
Q6	a) Two properties for making permanent $1 / 2+1 / 2$ magnet b) Two properties for making an electromagnet a) For making permanent magnet: (i) High retentivity (ii) High coercitivity (iii) High permeability (Any two)	$1 / 2+1 / 2$	

	$\begin{aligned} & \text { Energy difference }=3.4 \mathrm{eV}-1.51 \mathrm{eV}=1.89 \mathrm{eV}=3.024 \times 10^{-19} \mathrm{~J} \\ & \text { Energy }=\frac{h c}{\lambda}=3.024 \times 10^{-19} \mathrm{~J} \end{aligned}$ Wavelength $=6.57 \times 10^{-7} \mathrm{~m}$ Series is Balmer series	$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$	2
Q10	Condition i. For directions of $\vec{E}, \vec{B}, \vec{v} \quad 1$ ii. For magnitudes of $\vec{E}, \vec{B}, \vec{v}$ (i) The velocity \vec{v}, of the charged particles, and the \vec{E} and \vec{B} vectors, should be mutually perpendicular. Also the forces on q, due to \vec{E} and \vec{B}, must be oppositely directed. (Also accept if the student draws a diagram to show the directions.) (ii) $q E=q v B$ $\text { or } v=\frac{E}{B}$ [Alternatively, The student may write: Force due to electric field $=q \vec{E}$ Force due to magnetic field $=q(\vec{v} \times \vec{B})$ The required condition is $\begin{gathered} q \vec{E}=-q(\vec{v} \times \vec{B}) \\ {[\text { or } \vec{E}=-(\vec{v} \times \vec{B})=(\vec{B} \times \vec{v})]} \end{gathered}$ (Note: Award 1 mark only if the student just writes: "The forces, on the charged particle, due to the electric and magnetic fields, must be equal and opposite to each other")]	1/2	

SECTION C			
Q11	a. Calculation of wavelength, frequency and speed $1 / 2+1 / 2+1 / 2$ b. Lens Maker's Formula Calculation of R a) $\lambda=\frac{589 \mathrm{~nm}}{1.33}=442.8 \mathrm{~nm}$ Frequency $v=\frac{3 \times 10^{8} \mathrm{~ms}^{-1}}{589 \mathrm{~nm}}=5.09 \times 10^{12} \mathrm{~Hz}$ Speed $v=\frac{3 \times 10^{8}}{1.33} \mathrm{~m} / \mathrm{s}=2.25 \times 10^{8} \mathrm{~m} / \mathrm{s}$ $\begin{aligned} & \text { b) } \frac{1}{f}=\left[\frac{\mu_{2}}{\mu_{1}}-1\right]\left[\frac{1}{R_{1}}-\frac{1}{R_{2}}\right] \\ & \therefore \frac{1}{20}=\left[\frac{1.55}{1}-1\right] \frac{2}{R} \\ & \therefore R=(20 \times 1.10) \mathrm{cm}=22 \mathrm{~cm} \end{aligned}$	$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$	3
Q12	Definition of mutual inductance Derivation of mutual inductance for two long solenoids 1 (i) Mutual inductance is numerically equal to the induced emf in the secondary coil when the current in the primary coil changes by unity. Alternatively: Mutual inductance is numerically equal to the magnetic flux linked with one coil/secondary coil when unit current flows through the other coil /primary coil.	1	

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
(ii) The work done against back /induced emf is stored as magnetic potential energy. \\
The rate of work done, when a current \(i\) is passing through the coil, is
\[
\begin{aligned}
\& \frac{d W}{d t}=|\varepsilon| i=\left(L \frac{d i}{d t}\right) i \\
\& \begin{aligned}
\therefore W \& =\int d W=\int_{0}^{I} L i d i \\
\& =\frac{1}{2} L i^{2}
\end{aligned}
\end{aligned}
\]
\end{tabular} \& \(1 / 2\)
\(1 / 2\)

$1 / 2$
$1 / 2$ \& 3

\hline Q13 \& | a) Principle of meter bridge |
| :--- |
| b) Relation between l_{1}, l_{2}, and S |
| a) The principle of working of a meter bridge is same as that of a balanced Wheatstone bridge. |
| (Alternatively: |
| When $\mathrm{i}_{\mathrm{g}}=0$, then $\frac{P}{Q}=\frac{R}{S}$) |
| b) $\frac{R}{S}=\frac{l_{1}}{100-l_{1}}$ |
| When X is connected in parallel: $\frac{R}{\left(\frac{X S}{X+S}\right)}=\frac{l_{2}}{100-l_{2}}$ |
| On solving, we get $X=\frac{l_{1} S\left(100-l_{2}\right)}{100\left(l_{2}-l_{1}\right)}$ | \& 1

$11 / 2$

$1 / 2$
1 \& 3

\hline
\end{tabular}

	Voltmeter Reading $V=E-I r$ $\begin{aligned} & \qquad=[12-(2 \times 2)] \mathrm{V}=8 \mathrm{~V} \\ & \text { (Alternatively, } \mathrm{V}=\mathrm{iR}=2 \times 4 \mathrm{~V}=8 \mathrm{~V} \text {) } \end{aligned}$	$1 / 2$ $1 / 2$	3
Q16	Diagram of generalized communication system $\quad 11 / 2$ Function of (a) transmitter (b) channel (c) receiver $1 / 2+1 / 2+1 / 2$ [Also accept the following diagram (a) Transmitter: A transmitter processes the incoming message signal so as to make it suitable for transmission through a channel and subsequent reception. (b) Channel: It carries the message signal from a transmitter to a receiver. (c) Receiver: A receiver extracts the desired message signals from the received signals at the channel output.	$11 / 2$ $1 / 2$ $1 / 2$ $1 / 2$	3

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
\(\therefore\) Energy stored in capacitor \(\mathrm{A}=\frac{1}{2} K C V^{2}\) \\
For capacitor B,
\[
\begin{aligned}
\& \text { Energy stored }=\frac{1}{2} \frac{Q^{2}}{K C}=\frac{1}{2} \frac{C^{2} V^{2}}{K C}=\frac{1}{2} \frac{C V^{2}}{K} \\
\& \begin{aligned}
\therefore \text { Total Energy stored } \& =\frac{1}{2} K C V^{2}+\frac{1}{2} \frac{C V^{2}}{K}=\frac{1}{2} C V^{2}\left(K+\frac{1}{K}\right) \\
\& =\frac{1}{2} C V^{2}\left(\frac{K^{2}+1}{K}\right) \\
\therefore \text { Required ratio } \& =\frac{2 C V^{2} \cdot K}{C V^{2}\left(K^{2}+1\right)}=\frac{2 K}{\left(K^{2}+1\right)}
\end{aligned}
\end{aligned}
\]
\end{tabular} \& \(1 / 2\)

$1 / 2$

$1 / 2$ \& 3

\hline Q21 \& | a) Correct Choice of R $1 / 2$
 Reason $1 / 2$
 b) Circuit Diagram $\mathbf{1}$
 Working $1 / 2$
 $I-V$ characteristics $1 / 2$ |
| :--- |
| a) R would be increased. |
| Resistance of S (a semi conductor) decreases on heating. |
| b) Photodiode diagram |
| When the photodiode is illuminated with light (photons) (with energy ($h v$) greater than the energy gap $\left(E_{g}\right)$ of the semiconductor), then electron-hole pairs are generated due to the | \& $1 / 2$

$1 / 2$

1 \&

\hline
\end{tabular}

$\left.\begin{array}{|l|l|l|l|}\hline & \begin{array}{l}\text { absorption of photons. Due to junction field, electrons and holes } \\ \text { are separated before they recombine. Electrons are collected on } \\ \text { n-side and holes are collected on p-side giving rise to an emf. } \\ \text { When an external load is connected, current flows. }\end{array} & 1 / 2\end{array}\right]$

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
(b) \(B_{p}=\frac{\mu_{0} \times 1}{2 R}=\frac{\mu_{0}}{2 R} \quad(\) along \(\mathrm{z}-\) direction \()\)
\[
\begin{gathered}
B_{Q}=\frac{\mu_{0} \times \sqrt{3}}{2 R}=\frac{\mu_{0} \sqrt{3}}{2 R}(\text { along } \mathrm{x}-\text { direction }) \\
\therefore B=\sqrt{{B_{p}^{2}}^{2}+B_{Q}^{2}}=\frac{\mu_{0}}{R}
\end{gathered}
\] \\
This net magnetic field \(\mathbf{B}\), is inclined to the field \(\mathbf{B}_{\mathbf{p}}\), at an angle \(\Theta\), where
\[
\begin{gathered}
\tan \theta=\sqrt{3} \\
\left(/ \theta=\tan ^{-1} \sqrt{3}=60^{\circ}\right) \\
(\text { in XZ plane })
\end{gathered}
\]
\end{tabular} \& \(1 / 2\)

$1 / 2$

$1 / 2$ \& 3

\hline \multicolumn{4}{|c|}{SECTION D}

\hline Q23 \& | a) Name of the installation, the cause of disaster |
| :--- |
| b) Energy release process |
| c) Values shown by Asha and mother |
| a) (i) Nuclear Power Plant:/‘Set-up’ for releasing Nuclear Energy/Energy Plant |
| (Also accept any other such term) |
| (ii)Leakage in the cooling unit/ Some defect in the set up. |
| b) Nuclear Fission/Nuclear Energy Break up (/Fission) of Uranium nucleus into fragments |
| c) Asha: Helpful, Considerate, Keen to Learn, Modest Mother: Curious, Sensitive, Eager to Learn, Has no airs (Any one such value in each case) | \& $1 / 2$

$1 / 2$
1
1
1 \& 4

\hline \multicolumn{4}{|c|}{SECTION E}

\hline Q24 \& | a) Identification $1 / 2$
 b) Identifying the curves 1
 Justification
 c) Variation of Impedance $1 / 2$
 with frequency
 Graph
 d) Expression for current $1 / 2$
 Phase relation
 $1 / 2$ |
| :--- |
| a) The device X is a capacitor | \& 1/2 \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
b) Curve \(\mathrm{B} \longrightarrow\) voltage \\
Curve \(\mathrm{C} \longrightarrow\) current \\
Curve \(\mathrm{A} \longrightarrow\) power \\
Reason: The current leads the voltage in phase, by \(\pi / 2\), for a capacitor. \\
c) \(X_{c}=\frac{1}{\omega C} \quad\left(\begin{array}{ll}X_{c} \& \propto \frac{1}{\omega}\end{array}\right)\) \\
d) \(V=V_{o} \sin \omega t\)
\[
\begin{aligned}
\& Q=C V=C V_{O} \sin \omega t \\
\& I=\frac{d q}{d t}=\omega c V_{O} \cos \omega t \\
\& =I_{O} \sin (\omega t+\pi / 2)
\end{aligned}
\] \\
Current leads the voltage, in phase, by \(\pi / 2\) \\
(Note : If the student identifies the device X as an Inductor but writes correct answers to parts (c) and (d) (in terms of an inductor), the student be given full marks for (only) these two parts)
\end{tabular} \& \(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\)

$1 / 2$
$1 / 2$

$1 / 2$
$1 / 2$
$1 / 2$ \& 5

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
b) At minimum deviation
\[
r=A / 2=30^{\circ}
\] \\
We are given that
\[
\begin{aligned}
i \& =\frac{3}{4} A=45^{\circ} \\
\therefore \mu \& =\frac{\sin 45^{\circ}}{\sin 30^{\circ}}=\sqrt{2}
\end{aligned}
\] \\
\(\therefore\) Speed of light in the prism \(=\frac{c}{\sqrt{2}}\)
\[
\left(\cong 2.1 \times 10^{8} \mathrm{~ms}^{-1}\right)
\] \\
[Award \(1 / 2\) mark if the student writes the formula:
\[
\mu=\frac{\sin \left(A+D_{m}\right) / 2}{\sin (A / 2)}
\] \\
but does not do any calculations.]
\end{tabular} \& \(1 / 2\)
\(1 / 2\)
\(1 / 2\)

$1 / 2$ \& 5

\hline Q26 \& | (a) Derivation of E along the axial line of dipole 2 |
| :--- |
| (b) Graph between E vs r |
| (c) (i) Diagrams for stable and unstable equilibrium of dipole |
| (ii) Torque on the dipole in the two cases |
| $1 / 2+1 / 2$ |
| (a) |
| Electric field at P due to charge $(+q)=E_{1}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{(r-a)^{2}}$ |
| Electric field at P due to charge $(-q)=E_{2}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{(r+a)^{2}}$ |
| Net electric Field at $\mathrm{P}=E_{1}-E_{2}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{(r-a)^{2}}-\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{(r+a)^{2}}$ $=\frac{1}{4 \pi \varepsilon_{0}} \frac{2 p r}{\left(r^{2}-a^{2}\right)^{2}} \quad(p=q .2 a)$ |
| Its direction is parallel to \vec{p}. | \& $1 / 2$

$1 / 2$
$1 / 2$

$1 / 2$ \&

\hline
\end{tabular}

