MARKING SCHEME SET 55/1(Compartment)

Q. No.	Expected Answer / Value Points	Marks	Total
			Marks
	Section A		
Sot1 O1	If it ware not so, the presence of a component of the field along the surface	1	
Set1,Q1	in it were not so, the presence of a component of the field along the surface	1	
Set 2, QS	Would violate its equipotential flature.		1
Set5,Q4	[Accept any other correct explanation]	1	1
Set1,Q2	It would decrease.	1	
Set2,Q1	[NOTE: Also accept if the student just writes 'yes']		1
Set 3, Q3			1
Set1,Q3	A B Y	1/2 + 1/2	
Set 2, Q2 Set 3 $O1$		72 + 72	
5013,Q1			
			1
Set1.04			1
Set2.03			
Set3.02	X _c \triangle	1	
, (
	ω		1
Sot1 05	In amplitude, modulation, the amplitude, of the carrier wave, changes in	1	1
Set 204	in amplitude modulation, the amplitude, of the carrier wave, changes in	1	
Set 2, Q4	frequency of the carrier wave varies in accordance with the modulating		1
5013,Q3	signal		1
	[NOTE: Also accept if the student draws graphs for the two types of		
	modulation]		
	Section B		
Set1,Q6	Definition of electric flux		
Set2,Q10	S L unit 16		
Set3,Q9	S.1. unit 72 Calculation of flux 1		
	The 'electric flux' through an elemental area $d\vec{s}$ equals the dot product of	1/	
	$d\vec{s}$ with the electric field \vec{F}	1/2	
	[Alternatively: Electric flux is the number of electric field lines passing		
	through a given area]		
	[Also accept, $a\phi = E.as$ Or $\phi = \Phi_s E.as$]		
	$(N-m^2)$		
	S.I. units: $\begin{pmatrix} -c \\ c \end{pmatrix}$ or $(V-m)$	1/2	
	$\phi - \vec{F} \cdot \vec{S} - FS(ac \theta - 0^{\circ})$		
	$\varphi = E \cdot S = E S (us \theta = 0)$	1⁄2	

	$= 3 \times 10^{3} \times (10 \times 10^{-2})^{2} \frac{\text{N-m}^{2}}{\text{C}}$	1/2	
	$= 30 \frac{\text{N-m}^2}{\text{C}}$		2
Set1,Q7 Set2,Q6 Set3,Q10	Calculation of Equivalent Resistance of the network1½Calculation of current½		
	The given network has the form given below:		
	$A = \begin{bmatrix} 1\Omega \\ 1\Omega \\ 1\Omega \\ 1D \\ 1D \\ 2\Omega \end{bmatrix} = \begin{bmatrix} 1\Omega \\ 1D \\ 1D \\ 2\Omega \end{bmatrix} = \begin{bmatrix} 1\Omega \\ 1D \\$	1⁄2	
	D It is a balanced wheatstone Bridge.	1⁄2	
	Its equivalent resistance, R, is given by $\frac{1}{R} = \frac{1}{1+2} + \frac{1}{2+4} = \frac{1}{2}$ $R = 2\Omega$	1/2	
	$\therefore \text{ Current drawn} = \frac{4V}{2\Omega} = 2A$	1⁄2	2
Set1,Q8 Set2,Q7 Set3,Q6	Formula1/2Calculation of net force on the loop1Direction of the net force1/2		
	$\begin{array}{c} & & & & \\ & & & \\ & & & \\ 30 \text{ cm} & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$		
	Here $I_1=2A; I_2=1A$ $d_1 = 10 \text{ cm}; d_2=30 \text{ cm}$ $\mu_0=4\pi \times 10^{-7} \text{ Tm A}^{-1}$ We have		
	$F = \frac{\mu_o I_1 I_2}{2\pi d} l$	1⁄2	
	$ \therefore \text{ Net force on sides ab and cd} = \frac{\mu_0 2 \times 1}{2\pi} \times 20 \times 10^{-2} \left[\frac{1}{10 \times 10^{-2}} - \frac{1}{30 \times 10^{-2}} \right] \text{N} = 4 \times 10^{-7} \times 20 \left[\frac{20}{10 \times 30} \right] \text{N} = \frac{16}{3} \times 10^{-7} \text{N} = 5.33 \times 10^{-7} \text{N} $	1/2	
	This net force is directed towards the infinitely long straight wire.		

	Net force on sides bc and da = zero. \therefore Net force on the loop = 5.33×10^{-7} N The force is directed towards the infinitely long straight wire. OR	1/2 1/2	2
	Formula $\frac{1}{2}$ Calculation of angle between $\overline{\mu_m}$ and \vec{B} $\frac{1}{2}$ Calculation of $ \overline{\mu_m} $ and torque $\frac{1}{2} + \frac{1}{2}$		
	Torque = $\overline{\mu_m} \times \vec{B}$ $ \overline{\mu_m} = nI \times A = 200 \times 5 \times 100 \times 10^{-4} A \cdot m^2$ = 10 A · m ²	1/2 1/2	
	Angle between $\overrightarrow{\mu_m}$ and $\overrightarrow{B} = 90^o - 60^o = 30^o$ $\therefore Torque = 10 \times 0.2 \times \sin 30^o$	1/2	2
	=1 N-m	1/2	2
Set1,Q9 Set2,Q10 Set3,Q7	Naming of the three waves $\frac{1}{2} + \frac{1}{2} + \frac{1}{2}$ Method of production (any one) $\frac{1}{2}$		
	 i. γ rays (or X-rays) ii. Ultraviolet rays iii. Infrared rays Production 	1/2 1/2 1/2	
	 γ rays : (radioactive decay of nuclei) X-rays : (x-ray tubes or inner shell electrons) UV- rays: (Movement from one inner energy level to another) Infrared rays: (vibration of atoms and molecules) (Any one) 	1/2	2
Set1,Q10 Set2,Q9 Set3,Q8	(a) Finding the transition1(b) Radiation of maximum wavelength1/2Justification1/2		
	(a) For hydrogen atom, $E_1 = -13.6 \text{ eV}$; $E_2 = -3.4 \text{ eV}$; $E_3 = -1.51 \text{ eV}$; $E_4 = -0.85 \text{ eV}$ $h = 6.63 \times 10^{-34} \text{ Js}$; $c = 3 \times 10^8 \text{ ms}^{-1}$ Photon Energy = $\frac{hc}{\lambda}$ $= \frac{6.63 \times 10^{-34} \times 3 \times 10^8}{496 \times 10^{-9} \times 1.6 \times 10^{-19}} \text{ eV}$	1/2	
	\approx 2.5 eV This equals (nearly) the difference (E ₄ -E ₂). Hence the required transition is (n=4) to (n=2) [Alternatively : If the candidate calculates by using Rydberg formula, and identifies correctly the required transition, full credit may be given.]	1⁄2	
	(b) The transition n=4 to n=3 corresponds to emission of radiation of maximum wavelength.	1⁄2	
	It is so because this transmission gives out the photon of least energy.	1⁄2	2

	Section C		
Set1,Q11 Set2,Q19 Set3,Q16	(a) Derivation of the relation between I and $ \overrightarrow{v_d} $ 2(b) Calculation of the charge flowing in 10 s1		
	(a) According to the figure, $\Delta x = v_d st$ Hence, amount of charge crossing area A in time Δt	1⁄2	
		1/2	
	$\therefore \Delta Q = I\Delta t = neA v_d \Delta t$	1⁄2	
		1⁄2	
	(b) Charge flowing = $\sum I\Delta t$ =area under the curve	1⁄2	
	$= \left[\frac{1}{2} \times 5 \times 5 + 5(10 - 5)\right]C$ =37.5 C	1⁄2	3
Set1,Q12 Set2,Q20 Set3,Q17	Circuit Diagram1Working Principle l_{2} Derivation of necessary formula1 l_{2} The circuit diagram , of the potentiometer, is as shown here: Working Principle: The potential drop, V , across a length l of a uniform wire, is proportional to the length l of the wire.(or $V \propto l$ (for a uniform wire)Derivation:Let the points 1 and 3 be connected together. Let the balance point be at the point N_1 where $AN_1=l_1$ Next let the points 2 and 3 be connected together. Let the balance point be at the point N_2 where $AN_2=l_2$.We then have $\varepsilon_1 = kl_1$ and $\varepsilon_2 = kl_2$	1 1/2 1/2 1/2	

	$\frac{R}{l_1} = \frac{l_1}{l_1}$		
	$S (100 - l_1)$		
	By choosing (at least three) different value of S , we calculate R each time. The average of these values of R gives the value of the unknown resistance.	1⁄2	
	 Precautions: (1) Make all contacts in a neat, clean and tight manner (2) Select those values of S for which the balancing length is close to the middle point of the wire.[Any one] 	1/2	3
Set1,Q13 Set2,Q21 Set3,Q18	(a) Need for having a radial Magnetic field1Achieving the radial field1/2(b) Formula1/2(c) Calculation of the required resistance1(a) Need for a radial magnetic field:1The relation between the current (i) flowing through the galvanometer coil, and the angular deflection (ϕ) of the coil (from its equilibrium position), is $\phi = \left(\frac{NABI \sin \theta}{k}\right)$ where θ is the angle between the magnetic field \vec{B} and the equivalent magnetic moment $\overline{\mu_m}$ of the current carrying coil.Thus I is not directly proportional to ϕ . We can ensure this proportionality by having $\theta = 90^{\circ}$. This is possible only when the magnetic field, \vec{B} , is a radial magnetic field, the plane of the rotating coil is always parallel to \vec{B} .To get a radial magnetic field, the pole pieces of the magnet, are made concave in shape. Also a soft iron cylinder is used as the core.[Alternatively : Accept if the candidate draws the following diagram to achieve the radial magnetic field.] N	1/2 1/2 1/2	
	$I_m = \frac{\left(\frac{\nu}{2}\right)}{R' + G}$	1⁄2	

	$v_m^2 = v_{PM}^2 + v_{cm}^2$	1/2	
	Substituting the values of v_{RM} and v_{cm} , into this equation, gives		
	$v_m^2 = (i_m R)^2 + (i_m X_c)^2 = i_m^2 (R^2 + X_c^2)$		
	ν		
	$\therefore i_m = \frac{v_m}{\sqrt{D^2 + V^2}}$	1/2	
	$\sqrt{R^2 + X_c^2}$	12	
	. The impedance of the circuit is given by:		
	$\Xi = \sqrt{R^2 + X_c^2} = \sqrt{R^2 + \frac{1}{\omega^2 C^2}}$		
	The phase angle ϕ is the angle between V _R and V. Hence		
	$\tan \phi = \frac{X_c}{1}$	1/2	
	$\tan \varphi = \frac{1}{R} = \frac{1}{\omega CR}$	/2	3
Set 1 015			0
Set 2 011	(i) Formula for magnetic moment ¹ / ₂		
Set3.020	Calculation of magnetic moment 1		
	(ii) Formula for torque $\frac{1}{2}$		
	(i) Associated magnetic moment		
	(1) Associated magnetic moment $\mu = miA$	1/2	
	$\mu_m = mA$ = 2000 × 4 × 1.6 × 10 ⁻⁴ A – m ²	$\frac{1}{2}$	
	$= 1.28 \text{ A} - \text{m}^2$	1/2	
	(ii) torque = $\mu_m B \sin \theta$	1/2	
	$= 1.28 \times 7.5 \times 10^{-2} \times \sin 30^{\circ}$	1/2	
	= 0.048 N - m	1⁄2	3
Set1 016			
Set 2 012	(a) Formula 1/2		
Set3,021	Calculation of the ratio 1		
, ((b) Answering about Conservation of Energy ¹ / ₂		
	Explanation 1		
	(a) $\frac{I_{max}}{a_1 + a_2} = \left \frac{a_1 + a_2}{a_1 + a_2} \right ^2$	1/2	
	I_{min} $\begin{bmatrix} a_1 - a_2 \end{bmatrix}$	1/2	
	Here $\frac{a_1}{a_2} = \sqrt{\frac{W_2}{W}} = \sqrt{\frac{4}{1}} = \frac{2}{1}$	/2	
	$L = \frac{12a}{12a} + \frac{1}{2a} + \frac{1}{2}$		
	$\therefore \frac{I_{max}}{I} = \left \frac{2u_2 + u_2}{2a - a} \right = 9:1$	1⁄2	
	$u_{min} 2u_2 - u_2 $		
	(b) There is NO violation of the conservation of energy.	1/2	
	The appearance of the bright and dark fringes is simply due to a	72	
	'redistribution of energy'.	1	3
Set1,Q17			
Set2,Q13	(a) Factors by which the resolving power can be increased.		
Set3,Q22	Estimation of angular separation 1 ¹ / ₂		
	(a) The resolving power of a telescope can be increased by		
	(a) The resolving power of a telescope can be increased by		

	 (i) increasing the diameter of its objective (ii) using light of short wavelength [Note: Give full credit even if a student writes just the first of these two	1	
	factors.] (b) Position of Maxima: $\theta \approx (n + \frac{1}{2})^{\frac{\lambda}{2}}$: position of minima = $\frac{n\lambda}{2}$	1⁄2	
	For first order maxima, $\theta = \frac{3\lambda}{2a}$	1⁄2	
	and for third order minima, $\theta = \frac{3\lambda}{a}$		
	∴ Required angular separation $3\lambda = 3 \times 600 \times 10^{-9}$	1⁄2	
	$= \frac{1}{2a} = \frac{1}{2 \times 1 \times 10^{-3}}$ radian = 9 × 10 ⁻⁴ radian	1⁄2	3
Set1,Q18 Set2,Q14 Set3,Q11	(a) Reason for preferring sun glasses made up of polaroids1(b) Formula for intensity of light transmitted through P2 $1\frac{1}{2}$ Plot of I vs θ $\frac{1}{2}$		
	(a) Polaroid sunglasses are preferred because they can be much more effective than coloured sunglasses in cutting off the harmful (UV) rays of the sun.	1	
	 [Alternatively : Poloroid sun glasses are prefered over coloured sun glasses because they are more effective in reducing the glare due to reflections from horizontal surfaces.] [Alternatively : Poloroid sun glasses are prefered over coloured sun glasses because they provide a better protection to our eyes.] 		
	(b) $P_1 \xrightarrow{P_3} P_2 \xrightarrow{P_2} I_1$		
	Let θ be the angle between the pass axis of P ₁ and P ₃ . The angle between the pass axis of P ₃ and P ₂ would then be $\left(\frac{\pi}{2} - \theta\right)$. By Malus' law,	1⁄2	
	$I_3 = I_1 cos^2 \theta$	1/2	
	and $I_2 = I_3 \cos^2\left(\frac{\pi}{2} - \theta\right) = I_3 \sin^2\theta$		
	$\therefore I_2 = I_1 \cos^2 \theta \sin^2 \theta = \frac{I_1 (\sin 2\theta)^2}{4}$	1/2	
	The plot of I_2 vs θ , therefore, has the form shown below:		

	 Working: The sinusoidal voltage, superposed on the dc base bias, causes the base current to have sinusoidal variations. As a result the collector current, also has similar sinusoidal variations present in it. The output, between the collector and the ground, is an amplified version of the input sinusoidal voltage. (Also accept 'other forms' for explanation of 'working' 	1	3
Set1,Q22 Set2 018	Explanation of each of three terms 1+1+1		
Set3,Q15			
	(i) Internet Surfing	1	
	(ii) Social networking	1	
	Social networking implies using site like		
	(a) Facebook, Twitter, etc, to share ideas and information with a large	1	
	(b) Using internet for chatting, video sharing, etc. among friends and		
	acquaintances.		
	(Any one) (iii) E-mail		
	Using internet(rather than the post office) for exchanging (multimedia)	1	
	communication between different persons and organizations.		3
	Section D		
Set1,Q23	(1) Value displayed by		
Set 2, Q23	Dr. Kapoor		
5015,Q25	Bimla's parents 1+1		
	(2) Reason for safety 1		
	(3) Definition and Significance $\frac{1}{2} + \frac{1}{2}$		
	(1) Dr. Kapoor : Helpful & Considerate	1	
	Bimla's Parents: Gratefulness	1	
	(2) It is considered safe to be inside a car during lightening and thunderstorm	1	
	as the electric field inside a conductor is zero.	1	
	(3) Dielectric strength of a dielectric indicates the strength of the electric field	1/2	
	that a dielectric can withstand without breaking down.	72	
	This signifies the maximum electric field up to which the dielectric can safely play its role	1⁄2	
	Section E		4
Set1,Q24			
Set2,Q26	(a) Statement of Lefiz S law 1 Predicting the polarity 1		
Set3,Q25	(b) (i) Formula $\frac{1}{2}$		
	Substitution and Calculation 1 ¹ / ₂		
	(ii) Effect on voltage 1		
	(a) Lenz's law: The polarity of induced emf is such that it tends to produce a	1	
	current which opposes the change in magnetic flux that produced it.	-	

Polarity $A \rightarrow (+ve)$; $B \rightarrow (-ve)$	16 + 16	
(b) (i) $V = Bl\vartheta$	72 + 72	
Here B = vertical component of Earth's magnetic field	1⁄2	
$B = (5 \times 10^{-4} \sin 30^{\circ})T = 2.5 \times 10^{-4} T$	1/	
$\therefore V = \left[2.5 \times 10^{-4} \times 25 \times \frac{1800 \times 10^{3}}{60 \times 10^{3}} \right] \text{ volt}$	1/2	
$\begin{bmatrix} 60 \times 60 \end{bmatrix}$	1/2	
(ii) Now B =horizontal component of Earth's magnetic field	1⁄2	
$-B\cos 30^{\circ} - \frac{B\sqrt{3}}{2}$		
$L_{2} = L_{2} = \frac{1}{2}$	1/2	
$\therefore V = \sqrt{3V} = 1.732 \times 3.125$ Volt $= 5.4$ Volt	1/2	5
OR		
Definition of mutual inductance 1		
Factors affecting mutual inductance1		
Formulae for the three cases ¹ / ₂		
Calculations for plotting the graphs 1		
Plots of three graphs $\frac{1}{2} + \frac{1}{2} + \frac{1}{2}$		
Mutual Inductance:		
The mutual inductance, of a pair of coils, equals the magnetic flux linked		
with one of them due to a unit current in the other.		
Alternatively, The mutual inductance, of a pair of coils, equals the emf		
induced in one of them when the rate of change of current in the other is	1	
unity.		
Factors affecting the mutual inductance of a pair of coils		
(i) The sizes of the two coils		
(ii) The shape of the two coils		
(iii) the distance of separation between the two coils		
(1) The nature of the medium between the two coils (x) The relative orientation of the two coils		
[NOTE: Any two]	$\frac{1}{2} + \frac{1}{2}$	
[NOTE: They two] From $t = 0$ to $t = 2c$ $\left(= \frac{30 \text{ cm}}{2} \right)$ the flux through the soil is zero.		
From $t = 0$ to $t = 3s \left(=\frac{10 \text{ cm/s}}{10 \text{ cm/s}}\right)$, the flux through the con is zero.		
From $t = 3s$ to $t = 5s$, the flux through the coil increases from 0 to		
$0.1 \times \left(\frac{20}{100}\right)^{-1}$ Wb, ie 0.004 Wb.		
From $t = 5$ s to $t = 11$ s, the flux remains constant at the value 0.004 Wb.		
From $t = 11$ s to $t = 13$ s, the flux through the coil remains zero.		
(i) The plot of ϕ against t is, therefore, as shown:		
b 0.004		
	1	
(In Wb)		
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15		
t (in ms)		
(ii) $s = -\frac{d\phi}{d\phi}$		
$(n) c = -\frac{1}{dt}$		

	When the final image is formed at infinity, the angular magnification due to	1/2	
	the eye piece equals $\frac{D}{t}$. (D=least distance of distinct vision)	1/	
	$\therefore \text{ Total magnification when the final image is formed at infinity} = \left(\frac{L}{f_o}, \frac{D}{f_e}\right)$	1/2	
	(c) (i) Resolving power increases when the focal length of the objective is decreased.	1/2 1/2	
	(d) This is because the minimum separation, $d_{min} \left(=\frac{1.22 \ f\lambda}{D}\right)$ decreases when f is decreased.		
		1⁄2	
	(ii) Resolving power decreases when the wavelength of light is increased.	14	5
	This is because the minimum separation, $a_{min} \left(= \frac{1}{d} \right)$	72	5
Set1 026	Increases when λ is increased.		
Set1,Q25 Set2,Q25 Set3,Q24	(a) Writing three features $\frac{1}{2} + \frac{1}{2} + \frac{1}{2}$ Explanation on the basis of Einstein's photoelectric equation $\frac{1}{2} + \frac{1}{2} + \frac{1}{2}$ (b) (i) Reason for equality of the two slopes1(ii) Identification of material1		
	(a) Three features, of photoelectric effect, which cannot be explained by the wave theory of light, are:		
	(i) Maximum kinetic energy of emitted electrons is independent of the intensity of incident light	1/2	
	(ii) There exists a 'threshold frequency' for each photosensitive material.	1⁄2	
	(iii) 'Photoelectric effect' is instantaneous in nature.	1⁄2	
	Einstein's photoelectric equation $K_{max} = hy - \phi_{x}$		
	[Alternatively: $eV_o = hv - \phi_o$] can be used to explain these features as follows.		
	(i) Einstein's equation shows that $K_{max} \propto \nu$. However, K_{max} does not depend on the intensity of light.	1/2	
	(ii) Einstein's equation shows that for $\nu < \frac{\phi_0}{h}$, K_{max} becomes negative, i.e,	1⁄2	
	there cannot be any photoemission for $\nu < \nu_o(\nu_o = \frac{\tau_0}{h})$	17	
	(iii) The free electrons in the metal, that absorb completely the energy of the incident photons, get emitted instantaneously.	1/2	
	(b)		
	(i) Slope of the graph between V_o and ν (from Einstein's equation) equals (<i>h/e</i>). Hence it does not depend on the nature of the material.	1	
	(ii) Emitted electrons have greater energy for material M ₁ . This is because $\phi_o (= hv_{o})$ has a lower value for material M ₁ .	1	5
	OR		

