MARKING SCHEME
SET 55/1(Compartment)

Q. No.	Expected Answer / Value Points	Marks	Total Marks
Section A			
$\begin{aligned} & \text { Set1,Q1 } \\ & \text { Set2,Q5 } \\ & \text { Set3,Q4 } \end{aligned}$	If it were not so, the presence of a component of the field along the surface would violate its equipotential nature. [Accept any other correct explanation)	1	1
$\begin{aligned} & \hline \text { Set1,Q2 } \\ & \text { Set2,Q1 } \\ & \text { Set3,Q5 } \end{aligned}$	It would decrease. [NOTE: Also accept if the student just writes 'yes']	1	1
$\begin{aligned} & \hline \text { Set1,Q3 } \\ & \text { Set2,Q2 } \\ & \text { Set3,Q1 } \end{aligned}$	A B Y 0 0 1 0 1 1 1 0 1 1 1 0	$1 / 2+1 / 2$	1
$\begin{aligned} & \hline \text { Set1,Q4 } \\ & \text { Set2,Q3 } \\ & \text { Set3,Q2 } \end{aligned}$		1	¢
$\begin{aligned} & \hline \text { Set1,Q5 } \\ & \text { Set2,Q4 } \\ & \text { Set3,Q3 } \end{aligned}$	In amplitude modulation, the amplitude, of the carrier wave, changes in accordance with the modulating signal, while in frequency modulation, frequency of the carrier wave varies in accordance with the modulating signal. [NOTE: Also accept if the student draws graphs for the two types of modulation]	1	1
Section B			
$\begin{aligned} & \text { Set1,Q6 } \\ & \text { Set2,Q10 } \\ & \text { Set3,Q9 } \end{aligned}$	Definition of electric flux $1 / 2$ S.I. unit $1 / 2$ Calculation of flux 1 The 'electric flux', through an elemental area $d \vec{s}$, equals the dot product of $d \vec{s}$, with the electric field, \vec{E}. [Alternatively: Electric flux is the number of electric field lines passing through a given area.] [Also accept, $d \phi=\vec{E} \cdot d \vec{s}$ Or $\phi=\oint_{s} \vec{E} \cdot d \vec{s}$] S.I. units: $\left(\frac{N-m^{2}}{C}\right)$ or (V-m) $\phi=\vec{E} \cdot \vec{S}=E S\left(\text { as } \theta=0^{\circ}\right)$	1/2	

\begin{tabular}{|c|c|c|c|}
\hline \& \[
\begin{aligned}
\& =3 \times 10^{3} \times\left(10 \times 10^{-2}\right)^{2} \frac{\mathrm{~N}-\mathrm{m}^{2}}{\mathrm{C}} \\
\& =30 \frac{\mathrm{~N}-\mathrm{m}^{2}}{\mathrm{C}}
\end{aligned}
\] \& \(1 / 2\) \& 2 \\
\hline \[
\begin{aligned}
\& \hline \text { Set1,Q7 } \\
\& \text { Set2,Q6 } \\
\& \text { Set3,Q10 }
\end{aligned}
\] \& \begin{tabular}{l}
Calculation of Equivalent Resistance of the network Calculation of current \\
The given network has the form given below: \\
It is a balanced wheatstone Bridge. \\
Its equivalent resistance, \(R\), is given by
\[
\begin{aligned}
\& \frac{1}{R}=\frac{1}{1+2}+\frac{1}{2+4}=\frac{1}{2} \\
\& R=2 \Omega \\
\& \therefore \text { Current drawn }=\frac{4 \mathrm{~V}}{2 \Omega}=2 \mathrm{~A}
\end{aligned}
\]
\end{tabular} \& \(1 / 2\)

$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$ \& 2 \\

\hline \[
$$
\begin{aligned}
& \hline \text { Set1,Q8 } \\
& \text { Set2,Q7 } \\
& \text { Set3,Q6 }
\end{aligned}
$$

\] \& | Here $\begin{aligned} & I_{1}=2 \mathrm{~A} ; I_{2}=1 \mathrm{~A} \\ & d_{1}=10 \mathrm{~cm} ; d_{2}=30 \mathrm{~cm} \\ & \mu_{0}=4 \pi \times 10^{-7} \mathrm{Tm} \mathrm{~A}^{-1} \end{aligned}$ |
| :--- |
| We have $\begin{aligned} & F=\frac{\mu_{o} I_{1} I_{2}}{2 \pi d} l \\ & \therefore \text { Net force on sides ab and cd } \\ & =\frac{\mu_{o} 2 \times 1}{2 \pi} \times 20 \times 10^{-2}\left[\frac{1}{10 \times 10^{-2}}-\frac{1}{30 \times 10^{-2}}\right] \mathrm{N} \\ & =4 \times 10^{-7} \times 20\left[\frac{20}{10 \times 30}\right] \mathrm{N} \\ & =\frac{16}{3} \times 10^{-7} \mathrm{~N}=5.33 \times 10^{-7} \mathrm{~N} \end{aligned}$ |
| This net force is directed towards the infinitely long straight wire. | \& $1 / 2$

$1 / 2$ \& \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
Net force on sides bc and da \(=\) zero. \\
\(\therefore\) Net force on the loop \(=5.33 \times 10^{-7} \mathrm{~N}\) \\
The force is directed towards the infinitely long straight wire. \\
OR
\[
\begin{aligned}
\& \text { Torque }=\overrightarrow{\mu_{m}} \times \vec{B} \\
\& \left|\overrightarrow{\mu_{m}}\right|=n I \times A=200 \times 5 \times 100 \times 10^{-4} \mathrm{~A}-\mathrm{m}^{2} \\
\& \quad=10 \mathrm{~A}-\mathrm{m}^{2}
\end{aligned}
\] \\
Angle between \(\overrightarrow{\mu_{m}}\) and \(\vec{B}=90^{\circ}-60^{\circ}=30^{\circ}\) \\
\(\therefore \mid\) Torque \(\mid=10 \times 0.2 \times \sin 30^{\circ}\)
\[
=1 \mathrm{~N}-\mathrm{m}
\]
\end{tabular} \& \(1 / 2\)
\(1 / 2\)

$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$ \& 2

2 \\

\hline | Set1,Q9 |
| :--- |
| Set2,Q10 |
| Set3,Q7 | \& | Naming of the three waves
 Method of production (any one) $1 / 2+1 / 2+1 / 2$
 $1 / 2$ |
| :--- |
| i. $\quad \gamma$ rays (or X-rays) |
| ii. Ultraviolet rays |
| iii. Infrared rays |
| Production |
| γ rays: (radioactive decay of nuclei) |
| X-rays : (x-ray tubes or inner shell electrons) |
| UV- rays: (Movement from one inner energy level to another) |
| Infrared rays: (vibration of atoms and molecules) |
| (Any one) | \& \[

$$
\begin{aligned}
& 1 / 2 \\
& 1 / 2 \\
& 1 / 2
\end{aligned}
$$
\]

$$
1 / 2
$$ \& 2 \\

\hline | Set1,Q10 |
| :--- |
| Set2,Q9 |
| Set3,Q8 | \& | (a) Finding the transition 1
 (b) Radiation of maximum wavelength $1 / 2$
 Justification $1 / 2$ |
| :--- |
| (a) For hydrogen atom, $\mathrm{E}_{1}=-13.6 \mathrm{eV} ; \mathrm{E}_{2}=-3.4 \mathrm{eV} ; \mathrm{E}_{3}=-1.51 \mathrm{eV} ; \mathrm{E}_{4}=-0.85 \mathrm{eV}$ |
| $\mathrm{h}=6.63 \times 10^{-34} \mathrm{JS} ; \mathrm{c}=3 \times 10^{8} \mathrm{~ms}^{-1}$ |
| Photon Energy $=\frac{h c}{\lambda}$ $\begin{aligned} & =\frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{496 \times 10^{-9} \times 1.6 \times 10^{-19}} \mathrm{eV} \\ & \cong 2.5 \mathrm{eV} \end{aligned}$ |
| This equals (nearly) the difference $\left(\mathrm{E}_{4}-\mathrm{E}_{2}\right)$. |
| Hence the required transition is ($\mathrm{n}=4$) to $(\mathrm{n}=2)$ |
| [Alternatively : If the candidate calculates by using Rydberg formula, and identifies correctly the required transition, full credit may be given.] |
| (b) The transition $\mathrm{n}=4$ to $\mathrm{n}=3$ corresponds to emission of radiation of maximum wavelength. |
| It is so because this transmission gives out the photon of least energy. | \& $1 / 2$

$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$ \& 2 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Section C} \\
\hline \[
\begin{aligned}
\& \hline \text { Set1,Q11 } \\
\& \text { Set2,Q19 } \\
\& \text { Set3,Q16 }
\end{aligned}
\] \& \begin{tabular}{l}
(a) Derivation of the relation between \(I\) and \(\left|\overrightarrow{v_{d}}\right|\) \\
(b) Calculation of the charge flowing in 10 s \\
(a) According to the figure,
\[
\Delta x=v_{d} s t
\] \\
Hence, amount of charge crossing area A in time \(\Delta t\)
\[
\begin{aligned}
\& \therefore \Delta Q=I \Delta t=n e A\left|v_{d}\right| \Delta t \\
\& \therefore I=n e A v_{d}
\end{aligned}
\] \\
(b)
\[
\begin{aligned}
\text { Charge flowing } \& =\sum I \Delta t \\
\& =\text { area under the curve } \\
\& =\left[\frac{1}{2} \times 5 \times 5+5(10-5)\right] C \\
\& =37.5 \mathrm{C}
\end{aligned}
\]
\end{tabular} \& 1/2 \& 3 \\
\hline \[
\begin{aligned}
\& \hline \text { Set1,Q12 } \\
\& \text { Set2,Q20 } \\
\& \text { Set3,Q17 }
\end{aligned}
\] \& \begin{tabular}{l}
\begin{tabular}{|ll|}
\hline Circuit Diagram \& 1 \\
Working Principle \& \(1 / 2\) \\
Derivation of necessary formula \& \(11 / 2\) \\
\hline
\end{tabular} \\
The circuit diagram , of the potentiometer, is as shown here: \\
Working Principle: \\
The potential drop, \(V\), across a length \(l\) of a uniform wire, is proportional to the length \(l\) of the wire. \\
(or \(V \propto l\) (for a uniform wire) \\
Derivation: \\
Let the points 1 and 3 be connected together. Let the balance point be at the point \(\mathrm{N}_{1}\) where \(\mathrm{AN}_{1}=l_{1}\) \\
Next let the points 2 and 3 be connected together. Let the balance point be at the point \(\mathrm{N}_{2}\) where \(\mathrm{AN}_{2}=l_{2}\). \\
We then have
\[
\varepsilon_{1}=k l_{1}
\] \\
and \(\varepsilon_{2}=k l_{2}\)
\end{tabular} \& 1

$1 / 2$

$1 / 2$
$1 / 2$
$1 / 2$ \& \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
\[
\frac{R}{S}=\frac{l_{1}}{\left(100-l_{1}\right)}
\] \\
to calculate \(R\). \\
By choosing (at least three) different value of \(S\), we calculate \(R\) each time. The average of these values of \(R\) gives the value of the unknown resistance. \\
Precautions: \\
(1) Make all contacts in a neat, clean and tight manner \\
(2) Select those values of \(S\) for which the balancing length is close to the middle point of the wire.[Any one]
\end{tabular} \& \(1 / 2\)
\(1 / 2\) \& 3 \\
\hline \[
\begin{aligned}
\& \hline \text { Set1,Q13 } \\
\& \text { Set2,Q21 } \\
\& \text { Set3,Q18 }
\end{aligned}
\] \& \begin{tabular}{l}
\begin{tabular}{|cc|}
\hline (a) Need for having a radial Magnetic field \& 1 \\
Achieving the radial field \& \(1 / 2\) \\
(b) Formula \& \(1 / 2\) \\
Calculation of the required resistance \& 1 \\
\hline
\end{tabular} \\
(a) Need for a radial magnetic field: \\
The relation between the current (i) flowing through the galvanometer coil, and the angular deflection \((\phi)\) of the coil (from its equilibrium position), is
\[
\phi=\left(\frac{N A B I \sin \theta}{k}\right)
\] \\
where \(\theta\) is the angle between the magnetic field \(\vec{B}\) and the equivalent magnetic moment \(\overrightarrow{\mu_{m}}\) of the current carrying coil. \\
Thus \(I\) is not directly proportional to \(\phi\). We can ensure this proportionality by having \(\theta=90^{\circ}\). This is possible only when the magnetic field, \(\vec{B}\), is a radial magnetic field. In such a field, the plane of the rotating coil is always parallel to \(\vec{B}\). \\
To get a radial magnetic field, the pole pieces of the magnet, are made concave in shape. Also a soft iron cylinder is used as the core. \\
[Alternatively : Accept if the candidate draws the following diagram to achieve the radial magnetic field.] \\
(b) We have \(R=\left[\frac{\mathrm{V}}{I_{m}}-G\right]\) \\
We must also have
\[
\therefore I_{m}=\frac{V}{R+G}
\]
\[
I_{m}=\frac{\left(\frac{V}{2}\right)}{R^{\prime}+G}
\]
\end{tabular} \& \(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\)

$1 / 2$
$1 / 2$
$1 / 2$ \& \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \& where \(R^{\prime}=\) Resistance required to change the range from) 0 to \(V / 2\)
\[
\begin{aligned}
\therefore 1 \& =\frac{2\left(R^{\prime}+G\right)}{R+G} \\
\& \therefore R^{\prime}=\frac{R-G}{2}
\end{aligned}
\] \& 1/2 \& 3 \\
\hline \[
\begin{aligned}
\& \hline \text { Set1,Q14 } \\
\& \text { Set2,Q22 } \\
\& \text { Set3,Q19 }
\end{aligned}
\] \& \begin{tabular}{l}
\begin{tabular}{|lc|}
\hline Circuit diagram \& \(1 / 2\) \\
Phasor Diagram \& \(1 / 2\) \\
Obtaining the expression for: \& \(11 / 2\) \\
(i) Impedence \& \(1 / 2\) \\
\hline (ii) Phase angle \& \\
\hline
\end{tabular} \\
The circuit diagram and the phasor diagram, for the given circuit, are as shown. \\
Derivation: \\
The voltage equation, for the circuit, can be written as:
\[
v_{r}+v_{c}=v
\] \\
The phasor relation, whose vertical component gives the above equation, is
\[
V_{R}+V_{C}=V
\] \\
The Pythagoras theorem gives
\end{tabular} \& \(1 / 2\)

$1 / 2$

$1 / 2$ \& \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
\[
v_{m}^{2}=v_{R M}^{2}+v_{c m}^{2}
\] \\
Substituting the values of \(v_{R M}\) and \(v_{c m}\), into this equation, gives
\[
\begin{gathered}
v_{m}^{2}=\left(i_{m} R\right)^{2}+\left(i_{m} X_{C}\right)^{2}=i_{m}^{2}\left(R^{2}+X_{c}^{2}\right) \\
\therefore i_{m}=\frac{v_{m}}{\sqrt{R^{2}+X_{c}^{2}}}
\end{gathered}
\] \\
\(\therefore\) The impedance of the circuit is given by:
\[
Z=\sqrt{R^{2}+X_{c}^{2}}=\sqrt{R^{2}+\frac{1}{\omega^{2} C^{2}}}
\] \\
The phase angle \(\phi\) is the angle between \(\mathrm{V}_{\mathrm{R}}\) and V . Hence
\[
\tan \phi=\frac{X_{C}}{R}=\frac{1}{\omega C R}
\]
\end{tabular} \& \(1 / 2\)

$1 / 2$
$1 / 2$

$1 / 2$ \& 3 \\

\hline \[
$$
\begin{aligned}
& \hline \text { Set1,Q15 } \\
& \text { Set2,Q11 } \\
& \text { Set3,Q20 }
\end{aligned}
$$

\] \& | (i) Formula for magnetic moment $1 / 2$
 Calculation of magnetic moment 1
 (ii) Formula for torque $1 / 2$
 Calculation of torque 1 |
| :--- |
| (i) Associated magnetic moment $\begin{aligned} & \mu_{m}=n i A \\ & =2000 \times 4 \times 1.6 \times 10^{-4} \mathrm{~A}-\mathrm{m}^{2} \\ & =1.28 \mathrm{~A}-\mathrm{m}^{2} \end{aligned}$ $\begin{aligned} & \text { (ii) torque }=\mu_{m} B \sin \theta \\ & =1.28 \times 7.5 \times 10^{-2} \times \sin 30^{\circ} \\ & =0.048 \mathrm{~N}-\mathrm{m} \end{aligned}$ | \& $1 / 2$

$1 / 2$
$1 / 2$

$1 / 2$
$1 / 2$
$1 / 2$ \& 3 \\

\hline \[
$$
\begin{aligned}
& \text { Set1,Q16 } \\
& \text { Set2,Q12 } \\
& \text { Set3,Q21 }
\end{aligned}
$$

\] \& | (a) Formula $1 / 2$
 Calculation of the ratio 1
 (b) Answering about Conservation of Energy $1 / 2$
 Explanation 1 |
| :--- |
| (a) $\frac{I_{\max }}{I_{\text {min }}}=\left\|\frac{a_{1}+a_{2}}{a_{1}-a_{2}}\right\|^{2}$ |
| Here $\frac{a_{1}}{a_{2}}=\sqrt{\frac{w_{2}}{W_{1}}}=\sqrt{\frac{4}{1}}=\frac{2}{1}$ $\therefore \frac{I_{\max }}{I_{\text {min }}}=\left\|\frac{2 a_{2}+a_{2}}{2 a_{2}-a_{2}}\right\|^{2}=9: 1$ |
| (b) There is NO violation of the conservation of energy. |
| The appearance of the bright and dark fringes is simply due to a 'redistribution of energy'. | \& $1 / 2$

$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$
1 \& 3 \\

\hline \[
$$
\begin{aligned}
& \text { Set 1,Q17 } \\
& \text { Set2,Q13 } \\
& \text { Set3,Q22 }
\end{aligned}
$$

\] \& | (a) Factors by which the resolving power can be increased. 1
 (b) Formula $1 / 2$
 Estimation of angular separation $11 / 2$ |
| :--- |
| (a) The resolving power of a telescope can be increased by | \& \& \\

\hline
\end{tabular}

	(i) increasing the diameter of its objective (ii) using light of short wavelength [Note: Give full credit even if a student writes just the first of these two factors.] (b) Position of Maxima: $\theta \approx\left(n+\frac{1}{2}\right) \frac{\lambda}{a}$; position of minima $=\frac{n \lambda}{a}$ For first order maxima, $\theta=\frac{3 \lambda}{2 a}$ and for third order minima, $\theta=\frac{3 \lambda}{a}$ \therefore Required angular separation $\begin{aligned} & =\frac{3 \lambda}{2 a}=\frac{3 \times 600 \times 10^{-9}}{2 \times 1 \times 10^{-3}} \text { radian } \\ & =9 \times 10^{-4} \text { radian } \end{aligned}$	1 $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$	3
$\begin{aligned} & \hline \text { Set1,Q18 } \\ & \text { Set2,Q14 } \\ & \text { Set3,Q11 } \end{aligned}$	(a) Reason for preferring sun glasses made up of polaroids (b) Formula for intensity of light transmitted through P_{2} (a) Polaroid sunglasses are preferred because they can be much more effective than coloured sunglasses in cutting off the harmful (UV) rays of the sun. [Alternatively : Poloroid sun glasses are prefered over coloured sun glasses because they are more effective in reducing the glare due to reflections from horizontal surfaces.] [Alternatively : Poloroid sun glasses are prefered over coloured sun glasses because they provide a better protection to our eyes.] (b) Let θ be the angle between the pass axis of P_{1} and P_{3}. The angle between the pass axis of P_{3} and P_{2} would then be $\left(\frac{\pi}{2}-\theta\right)$. By Malus' law, $\begin{gathered} I_{3}=I_{1} \cos ^{2} \theta \\ \text { and } I_{2}=I_{3} \cos ^{2}\left(\frac{\pi}{2}-\theta\right)=I_{3} \sin ^{2} \theta \\ \therefore I_{2}=I_{1} \cos ^{2} \theta \sin ^{2} \theta=\frac{I_{1}(\sin 2 \theta)^{2}}{4} \end{gathered}$ The plot of I_{2} vs θ, therefore, has the form shown below:		

		1/2	3
$\begin{array}{\|l\|} \hline \text { Set 1,Q19 } \\ \text { Set2,Q15 } \\ \text { Set3,Q12 } \end{array}$	(a) Completing the reactions $1 / 2+1 / 2$ (b) Basic processes involved in β^{-}and β^{+}decay $1 / 2+1 / 2$ (c) Reason for difficulty in dejecting neutrinos (a) We have (i) ${ }_{84}^{208} \mathrm{Po} \rightarrow{ }_{82}^{204} \mathrm{~Pb}+{ }_{2}^{4} \mathrm{He}+\mathrm{Q}$ (Also accept if Q is not written) (ii) ${ }_{15}^{32} \mathrm{P} \rightarrow{ }_{16}^{32} \mathrm{~S}+{ }_{-1}^{0} e+\bar{v}$ [Also accept if \bar{v} is not written] (b) The basic processes involved are (i) ${ }_{0}^{1} n \rightarrow{ }_{1}^{1} p+{ }_{-1}^{0} \beta^{-}+\bar{v}$ (ii) ${ }_{1}^{1} P \rightarrow{ }_{0}^{1} n+{ }_{1}^{0} \beta^{+}+v$ (c) Neutrinos are difficult to detect because: (i) they have only weak interactions with other particles (ii) they can penetrate large quantity of matter without any interaction. [Any one]	$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$	3
$\begin{aligned} & \hline \text { Set1,Q20 } \\ & \text { Set2,Q16 } \\ & \text { Set3,Q13 } \end{aligned}$	Energy Band Diagrams (i) n-type semiconductor at $\mathrm{T}>0 \mathrm{~K}$	1/2	

	(ii) p-type semiconductor at $\mathrm{T}>0 \mathrm{~K}$ For a n-type semiconductor The electrons, from the donor impurity atoms, can move into the conduction band with very small supply of energy. The conduction band, therefore, has electrons as the majority charge carriers. For a p-type semiconductor In these semiconductors, a very small supply of energy can cause an electron from its valence band to jump to the acceptor energy level. The valence band, therefore, has a dominant density of holes in it. This effectively implies that the holes are the majority charge carriers in a p-type semiconductor.	112	3
$\begin{array}{\|l\|} \hline \text { Set1,Q21 } \\ \text { Set2,Q17 } \\ \text { Set3,Q14 } \end{array}$	Plot of transfer characteristics; use \& reason $1 / 2+1 / 2$ Circuit diagram 1 Working 1 The transfer characteristic has the form shown: The Active Region of the transfer characteristic is used for amplification because in this region, I_{C} increases almost linearly with increase of V_{i} The circuit diagram of the base biased transistor amplifier, in CE configuration, is shown below:	1/2	

$\left.\begin{array}{|l|l|l|l|}\hline & \begin{array}{l}\text { Working: The sinusoidal voltage, superposed on the de base bias, causes the } \\ \text { base current to have sinusoidal variations. } \\ \text { As a result the collector current, also has similar sinusoidal variations present } \\ \text { in it. } \\ \text { The output, between the collector and the ground, is an amplified version of } \\ \text { the input sinusoidal voltage. } \\ \text { (Also accept 'other forms' for explanation of 'working' }\end{array} & 1\end{array}\right\}$

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
The plot of \(\varepsilon\) against \(t\) is, therefore, as shown: \\
(iii) \(i=\frac{\varepsilon}{R}=\frac{2 \times 10^{-3}}{0.1 \Omega}=20 \mathrm{~mA}\)
\end{tabular} \& 1

1 \& 5 \\

\hline \[
$$
\begin{aligned}
& \hline \text { Set1,Q25 } \\
& \text { Set2,Q24 } \\
& \text { Set3,Q26 }
\end{aligned}
$$

\] \& | (a) Definition of wavefront 1
 Difference from a ray 1
 (b) Shape of the wavefront in three cases $1+1+1$ |
| :--- |
| (a) A wavefront is defined as a surface of constant phase. |
| [Alternatively: A wavefront is the locus of all points in the medium that have the same phase.] |
| Difference from a ray: |
| (i) The ray, at each point of a wavefront, is normal to the wavefront at that point. |
| (ii) The ray indicates the direction of propagation of wave while the wavefront is the surface of constant phase. |
| (Any one) |
| (b) The shape of the wavefront, in the three cases, are as shown. |
| (i) |
| (ii) | \& 1

1
1
1 \& \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
When the final image is formed at infinity, the angular magnification due to the eye piece equals \(\frac{D}{f_{e}}\). \((\mathrm{D}=\) least distance of distinct vision) \\
\(\therefore\) Total magnification when the final image is formed at infinity \(=\left(\frac{L}{f_{o}} \cdot \frac{D}{f_{e}}\right)\) \\
(c) (i) Resolving power increases when the focal length of the objective is decreased. \\
(d) This is because the minimum separation, \(d_{\min }\left(=\frac{1.22 f \lambda}{D}\right)\) decreases when f is decreased. \\
(ii) Resolving power decreases when the wavelength of light is increased. \\
This is because the minimum separation, \(d_{\min }\left(=\frac{1.22 f \lambda}{d}\right)\) increases when \(\lambda\) is increased.
\end{tabular} \& \(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\)

$1 / 2$
$1 / 2$ \& 5 \\

\hline \[
$$
\begin{array}{|l|l|}
\hline \text { Set1,Q26 } \\
\text { Set2,Q25 } \\
\text { Set3,Q24 }
\end{array}
$$

\] \& | (a) Writing three features $1 / 2+1 / 2+1 / 2$ |
| :--- |
| Explanation on the basis of Einstein's photoelectric equation |
| (b) (i) Reason for equality of the two slopes |
| 1 |
| (ii) Identification of material |
| (a) Three features, of photoelectric effect, which cannot be explained by the wave theory of light, are: |
| (i) Maximum kinetic energy of emitted electrons is independent of the intensity of incident light. |
| (ii) There exists a 'threshold frequency' for each photosensitive material. |
| (iii) 'Photoelectric effect' is instantaneous in nature. |
| Einstein's photoelectric equation $K_{\max }=h v-\phi_{o}$ |
| [Alternatively: $e V_{o}=h v-\phi_{o}$] can be used to explain these features as follows. |
| (i) Einstein's equation shows that $K_{\max } \propto v$. However, $K_{\max }$ does not depend on the intensity of light. |
| (ii) Einstein's equation shows that for $v<\frac{\phi_{0}}{h}, K_{\max }$ becomes negative, i.e, there cannot be any photoemission for $v<v_{o}\left(v_{o}=\frac{\phi_{o}}{h}\right)$ |
| (iii) The free electrons in the metal, that absorb completely the energy of the incident photons, get emitted instantaneously. |
| (b) |
| (i) Slope of the graph between V_{o} and v (from Einstein's equation) equals (h / e). Hence it does not depend on the nature of the material. |
| (ii) Emitted electrons have greater energy for material M_{1}. This is because $\phi_{o}\left(=h v_{o}\right)$ has a lower value for material M_{1}. | \& $1 / 2$

$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$
1 \& 5 \\
\hline
\end{tabular}

(a) Drawing the Trajectory
Estimating the size of the nucleus1
(b) Establishment of wave nature 1
(c) Estimating the ratio of deBroglie wavelengths
(a) The trajectory, traced by the α-particles in the Coulomb field of target nucleus, has the form shown below.

The size of the nucleus was estimated by observing the distance (d) of closest approach, of the α-particles. This distance is given by:

$$
\frac{1}{4 \pi \varepsilon_{o}} \cdot \frac{(Z e)(2 e)}{d}=K
$$

where $K=$ kinetic energy of the α-particles when they are far away from the target nuclei.
(b) The wave nature of moving electrons was established through the Davisson-Germer experiment.
In this experiment, it was observed that a beam of electrons, when scattered by a nickel target, showed 'maxima' in certain directions; (like the 'maxima' observed in interference/diffraction experiments with light.)
(c) We have: $\lambda=\frac{h}{p}=\frac{h}{\sqrt{2 m q V}}$
$\therefore \frac{\lambda_{d}}{\lambda_{\alpha}}=\sqrt{\frac{m_{\alpha} q_{\alpha}}{m_{d} q_{d}}}$
$=\sqrt{2 \times 2}=2$

