MARKING SCHEME

SET 55/1/RU

Q. No.	Expected Answer / Value Points	Marks	Total Marks
Section A			
Set1, Q1 Set2,Q5 Set3,Q4	Self inductance of the coil is numerically equal to magnetic flux linked with it when unit current flows through it. / Self inductance is numerically equal to induced emf in the coil when rate of change of current is unity. Unit- Henry or / volt-second/ ampere / weber ampere ${ }^{-1}$	1/2 $1 / 2$	1
	Scattering of the blue colour is maximum due to its shorter wavelength / As per Rayleigh scattering law, the amount of scattering varies inversely with the fourth power of wavelength.	1	1
Set1, Q3 Set 2,Q4 Set 3,Q5	Since slope $\left(=\frac{1}{\text { Resistance }}\right.$) of T_{1} is greater $/$ Resistance of the wire at T_{1} is lower.	$1 / 2$ $1 / 2$	1
Set1, Q4 Set 2,Q2 Set 3,Q3	Point to Point communication mode	1	1
Set1, Q5 Set 2,Q1 Set 3,Q2	Due to conservative nature of electric field / These lines start from the positive charges and terminate at the negative charges. Alternatively, There are two kinds of electric charges (positive and negative) (which acts as the 'source' and 'sink' for the electric field lines.)	1	1
Section B			
Set1, Q6 Set 2,Q8 Set 3,Q10	Formula for Energy $1 / 2$ Formula for de-Broglieg wavelength $1 / 2$ Calculation $1 / 2$ Effect on wavelength $1 / 2$$\begin{gathered} \lambda=\frac{h}{p}=\frac{h}{\sqrt{2 m K}} \\ \frac{\lambda_{1}}{\lambda_{4}}=\sqrt{\frac{K_{4}}{K_{1}}} \end{gathered}$ But $K_{n}\left(=-E_{n}\right) \propto \frac{1}{n^{2}}$ Hence, $\frac{\lambda_{1}}{\lambda_{4}}=\sqrt{\frac{1}{16}}$ $\begin{aligned} & \therefore \frac{\lambda_{1}}{\lambda_{4}}=\frac{1}{4} \\ & \lambda_{4}=4 \lambda_{1} \quad \text { i.e. } \quad \lambda_{4}>\lambda_{1} \end{aligned}$	$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$	

	Alternatively $\lambda_{n}=\frac{h}{p_{n}}=\frac{\lambda}{m v_{n}}$ Velocity of electron in $\mathrm{n}^{\text {th }}$ state $v_{n} \propto \frac{1}{n}$ $\begin{aligned} & \lambda_{n} \propto \frac{1^{n}}{v_{n}} \therefore \lambda \propto n \\ & \therefore \frac{\lambda_{4}}{\lambda_{1}}=\frac{n_{4}}{n_{1}}=\frac{4}{1} \end{aligned}$	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \end{aligned}$	2 2
Set1, Q7 Set 2,Q6 Set 3,Q9	Any two Factors 1. Size of the antenna or aerial or $\left(L \sim \frac{\lambda}{4}\right)$ 2. Increase in effective power radiated by an Antenna (OR Power radiated $\alpha\left(\frac{1}{\lambda}\right)^{2}$) 3. To minimize mixing of signals from different transmitters (Any two)	$1+1$	2
Set1, Q8 Set 2, Q9 Set 3,Q7	Labeling of current in different branches of the circuit According to Kirchoff's Junction law at B $i_{3}=i_{1}+i_{2} \quad \therefore i_{3}=i_{1}$ (As $\mathrm{I}_{2}=0$ (given)) Applying second law to loop AFEB $\begin{aligned} & i_{3} \times 2+i_{3} \times 3+i_{2} R_{1}=1+3+6 \\ & \therefore i_{3}=i_{1}=2 \mathrm{~A} \end{aligned}$ From A to D along $\mathrm{AFD} \therefore \mathrm{V}_{\mathrm{AD}}=2 \mathrm{i}_{3}-1+3 \times \mathrm{i}_{3}$ $\begin{gathered} =(4-1+6) V \\ =9 V \end{gathered}$ [Alternatively, if the student determine value of V_{AD} by finding the value of R, award full marks.] [Note: If the student just writes Kirchoff's rules, award $1 / 2$ mark]	$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$	

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
\[
\begin{aligned}
\therefore \frac{1}{\lambda} \& =R\left(\frac{1}{4}-\frac{1}{\infty}\right) \\
\& =\frac{R}{4} \\
\lambda \& =3640 A^{o} \\
\because R \& =1.09 \times 10^{7} \mathrm{~m}^{-1}
\end{aligned}
\] \\
[Note: Since the value of R is not given, award full marks to the candidate if he writes \(\lambda=\frac{4}{R}\)] \\
It will lie in Ultra Violet region \\
(Give \(1 / 2\) mark if the student just writes, visible region)
\end{tabular} \& \(1 / 2\)
\(1 / 2\)

$1 / 2$ \& 2

\hline \multicolumn{4}{|c|}{Section C}

\hline | Set1, Q11 |
| :--- |
| Set 2,Q18 |
| Set 3,Q15 | \& | Formula for net capacitance and its calculation $1 / 2+1 / 2$
 Calculation for net charge $1 / 2$
 Formula and calculation for P.d $1 / 2$
 Formula and calculation for energy stored $1 / 2+1 / 2$ |
| :--- |
| Net Capacitance, $\frac{1}{C}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}$ $\begin{aligned} & \frac{1}{c}=\frac{1}{20}+\frac{1}{30}+\frac{1}{15} \\ & \therefore \mathrm{C}=\frac{20}{3} \mu F \end{aligned}$ |
| Net Charge on Capacitors $\begin{aligned} \mathrm{q} & =\mathrm{CV} \\ & =\frac{20}{3} \times 10^{-6} \times 90 \mathrm{C} \\ & =600 \times 10^{-6} \mathrm{C} \\ & =600 \mu C(0.6 \mathrm{mC}) \\ \therefore \text { P.d across } C_{2} & =\frac{q}{c_{2}} \\ & =\frac{600 \times 10^{-6}}{30 \times 10^{-6}} \mathrm{~V} \\ & =20 \mathrm{~V} \end{aligned}$ |
| Energy stored in capacitoracross $C_{2}=\frac{1}{2} C_{2} V_{2}{ }^{2}$ $\begin{aligned} & =\frac{1}{2} \times 30 \times 10^{-6} \times 400 \\ & =6 \times 10^{-3} J(=6 \mathrm{~mJ}) \end{aligned}$ | \& 1/2 \& 3

\hline \[
$$
\begin{aligned}
& \hline \text { Set1, Q12 } \\
& \text { Set 2,Q19 } \\
& \text { Set 3,Q16 }
\end{aligned}
$$

\] \& | Derivation of the Relation 2
 Effect on drift velocity 1 |
| :--- |
| There being a random distribution, in the velocities of the charge carriers, their average velocity can be taken to be zero. |
| We have, $\mathrm{F}=\mathrm{ma}=\mathrm{e} \mathrm{F}_{\mathrm{E}}\left(\mathrm{F}_{\mathrm{E}}=\right.$ electric field $)$ $\therefore a=\frac{e F_{E}}{m}$ |
| If τ is the average time between collisions (called 'relaxation time') | \& $1 / 2$

$1 / 2$
$1 / 2$ \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
\[
v_{d}=\frac{e F_{E} \tau}{m}
\] \\
Now, \(\mathrm{F}_{\mathrm{E}}=\frac{P . D}{\text { distance }} \therefore\) For given E , the field becomes \(\frac{1}{3} r d\) when the length is made 3 times. Hence, \(v_{d}^{\prime}(N e w)=\frac{1}{3} v_{d}\)
\[
\therefore v_{d^{\prime}}=\frac{v_{d}}{3}
\] \\
[Note: If explained by any other appropriate method award 1 mark for the explanation]
\end{tabular} \& \(1 / 2\)
\(1 / 2\)
\(1 / 2\) \& 3 \\
\hline \begin{tabular}{l}
Set1, Q13 \\
Set 2,Q20 \\
Set 3,Q17
\end{tabular} \& \begin{tabular}{l}
\begin{tabular}{|ll|}
\hline Explanation of Polarization through polarizer \& 1 \\
Variation in \(\mathrm{I}_{1}\) and \(\mathrm{I}_{2}\) \& 1 \\
Relation between \(\mathrm{I}_{1}\) and \(\mathrm{I}_{2}\) \& 1 \\
\hline
\end{tabular} \\
Let unpolarized light be incident on a polaroid; its electric vectors, oscillating in a direction perpendicular to that of the alignment of the molecules in the polaroid, are able to pass through it while the component of light along the aligned molecules gets blocked. Hence the light gets linearly polarised. \\
[Note : If student gives labelled diagram, award full marks.] \\
\(\mathrm{I}_{1}\) will remain unaffected whereas \(\mathrm{I}_{2}\) will decrease from maximum \(\left(=\mathrm{I}_{0} / 2\right)\) to zero of the incident light. \(\left(I_{1}=\frac{I_{o}}{2}\right)\)
\[
\mathrm{I}_{2}=\mathrm{I}_{1} \cos ^{2} \theta \quad / \quad \mathrm{I}_{2}=\left(\mathrm{I}_{0} / 2\right) \cos ^{2} \theta
\]
\end{tabular} \& 1
1
1
1 \& 3 \\
\hline \begin{tabular}{l}
Set1, Q14 \\
Set 2,Q21 \\
Set 3,Q18
\end{tabular} \& \begin{tabular}{l}
\begin{tabular}{|lc|}
\hline Definition of Modulation index \& 1 \\
Reason \& \(1 / 2\) \\
Calculation of USB and LSB \& \(1 / 2+1 / 2\) \\
Amplitude of AM \& \(1 / 2\) \\
\hline
\end{tabular} \\
The ratio of amplitude of modulating signal \(\left(\mathrm{E}_{\mathrm{m}}\right)\) and amplitude of carrier wave \(\left(\mathrm{E}_{\mathrm{C}}\right)\) is called modulating index. \\
[Note: Also accept if only the formula \(\left(\mu=\frac{E_{m}}{E_{c}}\right)\) is given] \\
To avoid /minimize distortion: \\
Given:
\[
\begin{gathered}
\mathrm{f}_{\mathrm{c}}=1.5 \mathrm{MHz} \\
\mathrm{f}_{\mathrm{m}}=10 \mathrm{kHz}=0.01 \mathrm{MHz} \\
\because \mu=\frac{E_{m}}{E_{c}} \\
\frac{50}{100}=\frac{E_{m}}{50} \\
E_{m}=25 \mathrm{~V}
\end{gathered}
\] \\
USB frequency \(=\mathrm{f}_{\mathrm{c}}+\mathrm{f}_{\mathrm{m}}\)
\[
\begin{aligned}
\& =(1.5+0.01) \mathrm{MHz} \\
\& =1.51 \mathrm{MHz}
\end{aligned}
\] \\
LSB frequency \(=\mathrm{f}_{\mathrm{c}}-\mathrm{f}_{\mathrm{m}}\)
\[
\begin{aligned}
\& =(1.5-0.01) \mathrm{MHz} \\
\& =1.49 \mathrm{MHz}
\end{aligned}
\]
\end{tabular} \& \(1 / 2\)

$1 / 2$
$1 / 2$
$1 / 2$ \& 3

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{aligned}
\& \hline \text { Set1, Q15 } \\
\& \text { Set 2,Q22 } \\
\& \text { Set 3,Q11 }
\end{aligned}
\] \& \begin{tabular}{l}
\begin{tabular}{|ll|}
\hline Trajectory of particle \& 1 \\
Reason /explanation \& 1 \\
Expression for distance travelled \& 1 \\
\hline
\end{tabular} \\
Trajectory will be a helix \\
Explanation/Reason \\
The particle will describe a circle in the y-z plane, due to the component, \(v_{y}\), of its velocity. It also moves along the x -axis (parallel to the field), due to the component \(v_{x}\) of its velocity. Hence its trajectory would be helical. \\
Distance moved along the magnetic field in one rotation
\[
\begin{gathered}
x=v_{\mathrm{x}} \times \mathrm{T} \\
\because T=\frac{2 \pi m}{B q} \\
\therefore x=\frac{2 \pi m v_{\mathrm{p}}}{B q}
\end{gathered}
\]
\end{tabular} \& 1

1
1

$11 / 2$
$1 / 2$ \&

\hline | Set1, Q16 |
| :--- |
| Set 2,Q14 |
| Set 3,Q12 | \& | (a) Value of phase difference |
| :--- |
| (b) Value of additional Capacitance |
| (a) In LCR circuit $\tan \varphi=\frac{X_{L}-X_{C}}{R}=\frac{w L-\frac{1}{w C}}{R}$ |
| Now $\begin{aligned} X_{L}=w L & =\left(1000 \times 100 \times 10^{-3}\right) \Omega \\ & =100 \Omega\end{aligned}$ $\text { and } \begin{gathered} X_{C}=\frac{1}{w C}=\left(\frac{1}{1000 \times 2 \times 10^{-6}}\right) \Omega \\ \therefore X_{C}=500 \Omega \\ \therefore \tan \varphi=\frac{500-100}{400}=1 \\ \tan \varphi=1 \\ \varphi=45^{\circ} \end{gathered}$ | \& $1 / 2$

$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$ \&

\hline
\end{tabular}

	(b) Power Factor When power factor $=1$, we have $X_{L}=X_{C}$ $\therefore X_{C}^{\prime}=\frac{1}{\omega C^{\prime}}=100 \Omega$ This gives $C^{\prime}=\frac{1}{100 \omega}=10 \mu F$ We, therefore, need to add a capacitor of capacitance $(10-2) \mu \mathrm{F}=8 \mu \mathrm{~F}$ in parallel with the given capacitor. Alternatively, Let addition capacitance C_{1} be connected $\begin{gathered} X_{C}^{\prime}=\frac{1}{1000\left(2+C_{1}\right) \times 10^{-6}} \\ \therefore 100=\frac{1}{1000\left(2+C_{1}\right) \times 10^{-6}} \\ \therefore 2+C_{1}=10 \\ C_{1}=8 \mu F \end{gathered}$	$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$	3
Set1, Q17 Set 2,Q15 Set 3,Q13	Generalized form of Ampere's Circuital law 1 Significance 1 Explanation 1 Generalized form of Ampere Circuital law: $\oint \vec{B} \cdot \overrightarrow{d l}=\mu_{o}\left(I_{C}+\varepsilon_{o} \frac{d \varphi}{d t}\right)$ It signifies that the source of magnetic field is not just due to the conduction electric current(ic) due to flow of charge but also due to the time rate of change of electric field called displacement current . During charging and discharging of a capacitor the electric field between the plates will change so there will be a change of electric flux (displacement current) between the plates.	1	3
Set1, Q18 Set 2,Q16 Set 3,Q14	Labelled Diagram 1 Verification of Snell's law 2 In $\Delta \mathrm{ABC}$ $\sin i=\frac{B C}{A C}=\frac{v_{1} t}{A C}$	1/2	

	In Δ CEA$\begin{aligned} & \quad \sin r=\frac{A E}{A C}=\frac{v_{2} t}{A C} \\ & \therefore \frac{\sin i}{\sin r}=\frac{B C}{A E}=\frac{v_{1} t}{v_{2} t}=\frac{v_{1}}{v_{2}} \\ & \because \mu_{1}=\frac{c}{v_{1}} \\ & \mu_{2}=\frac{c}{v_{2}} \\ & \therefore \frac{\mu_{2}}{\mu_{1}}=\frac{v_{1}}{v_{2}} \\ & \therefore \frac{\sin i}{\sin r}=\frac{\mu_{2}}{\mu_{1}} \\ & \text { or } \mu_{2} \sin r=\mu_{1} \sin i \end{aligned}$- It is Snell's law.			$1 / 2$ $1 / 2$ $1 / 2$	3
Set1, Q19 Set 2,Q17 Set 3,Q21	Name of G Truth Table Equivalent Logic symb Gate P : AND Gate Q: NOT Equivalent Gat	P and Q of equivalent Gate NAND	$1 / 2+1 / 2$ 1 $1 / 2$ $1 / 2$Y 1 1 1 0	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$ 1 $1 / 2$ $1 / 2$	3
Set1, Q20 Set 2,Q11 Set 3,Q22	Labeled Circ Working of Expression Expression	diagram plifier voltage gain current gain	1 1 $1 / 2$ $1 / 2$		

(a) Three experimental observations
(b) Failure of wave theory
$1 / 2+1 / 2+1 / 2$
$11 / 2$
(a) 1. There is no emission of photoelectrons i.e. no current if the frequency of the incident radiation is below a certain minimum value however large may be the intensity of the light.
2 The current varies directly with the intensity of the incident radiation.
3.The current becomes zero at a certain value of negative potential, applied at the anode, this is known as stopping potential.
4. The value of stopping potential increases with the increase in the frequency of the incident radiation.
5.Maximum kinetic energy of the photo electrons does not depend upon intensity of light..
6. Maximum kinetic energy of photoelectron increases with the frequency of the incident radiation.
7.The process of photoelectric emission is instantaneous.
(Any three)
(b) It fails to explain why
1.The photo electric emmission is instantaneous.
2.There exists a threshold frequency for a given metal.
3.The maximim KE of photoelectrons is independent of the intensity of incident radiation.

OR

(a) Two properties of photon $1 / 2+1 / 2$
(b) Eienstein equation Explanation of threshold frequency Stopping potential1 $1 / 2$ $1 / 2$
ii. \quad At $v=v_{0}, E_{k}=e V_{o}=0$
V_{o} is called stopping potential.
(a)
i) The energy of a photon is $h v$
ii)Each photon is completely absorbed by a single electron.
(b) $E_{K}=h v-W$

Alternatively, $h v=h v_{0}+\frac{1}{2} m v_{\max }{ }^{2}$ or $h v=h v_{0}+e V_{o}$ or $E_{k}=h\left(v-v_{o}\right)$
(Any one)
i. When Incident frequency < Threshold frequency, there will be no emission of electrons. Hence, frequency of incident radiation should be greater than threshold frequency. $\left(v_{o}=\frac{W}{h}\right)$

$$
\begin{gathered}
E_{K}=e V_{0}=h v-W \\
\therefore V_{0}=\frac{h}{e} v-\frac{W}{e}
\end{gathered}
$$

Section D			
Set1, Q23 Set 2,Q23 Set 3,Q23	Value of voltage and frequency in India $1 / 2+1 / 2$ Reason of A.C being used more $1 / 2$ Use of transformer with D.C $1+1 / 2$ Two qualities of Anil $1+1$ (i) voltage $=220 \mathrm{~V}$ frequency $=50 \mathrm{~Hz}$ (ii) a) It can be stepped up / stepped down b)It can be converted into d.c c)Line losses can be minimised (any one) (iii) No (iv) Helping / Brave / Kind / Knowledge about AC or DC / Knowledge about insulator \& conductors/ Awareness about safety precautions. (any two)	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1+1 \end{aligned}$	3
Section E			
Set1, Q24 Set 2,Q25 Set 3,Q26	(a) Definition of electric flux and unit $1+1 / 2$ Justification $11 / 2$ (b) Proof $1+1$ a) Total number of electric lines of force passing perpendicular through a given surface. Unit - newton $\mathrm{m}^{2} /$ coulomb (or V-m) According to Gauss theorem, the electric flux through a closed surface depends only on the net charge enclosed by the surface and not upon the shape or size of the surface. For any closed arbitrary slope of the surface enclosing a charge the outward flux is the same as that due to a spherical Gaussian surface enclosing the same charge. Justification: This is due to the fact (i) electric field is radial and (ii) the electric field $E \propto \frac{1}{R^{2}}$ b) \therefore According to Gauss theorem, $\phi \oint \vec{E} \cdot \overrightarrow{d S}=\frac{q}{E_{0}}=0$ (\because charge inside the shell is zero.) $\therefore E . d S=0$, But $d S \neq 0$ $\therefore E=0$	1 $1 / 2$ $1 / 2$ 1 $1+1$	5

(a) Biot-Savart law in vector form

$$
\overrightarrow{d B}=\frac{\mu_{o}}{4 \pi} I\left(\frac{\vec{d} \times \vec{r}}{r^{3}}\right)
$$

Magnetic field on the axis of a circular current loop

$\therefore B=\int \frac{\mu_{0}}{4 \pi} \frac{I d l}{\left(x^{2}+R^{2}\right)} \cdot \cos \theta$
$\because \cos \theta=\frac{R}{\left(x^{2}+R^{2}\right)^{1 / 2}}$
$\therefore B=\int \frac{\mu_{0}}{4 \pi} \frac{R I d l}{\left(x^{2}+R^{2}\right)^{3 / 2}}$

$$
\begin{gathered}
B=\frac{\mu_{0}}{4 \pi} \frac{I R}{\left(x^{2}+R^{2}\right)^{3 / 2}} \int d l \\
\because \int d l=2 \pi \mathrm{R} \\
\therefore B=\frac{\mu_{0}}{2} \frac{I R^{2}}{\left(x^{2}+R^{2}\right)^{3 / 2}}
\end{gathered}
$$

	(b) Biot-Savart law can be expressed as Ampere's circuital law by considering the surface to be made up a large number of loops. The sum of the tangential components of the magnetic field multiplied by the length of all such elements, gives the result $\oint \vec{B} \cdot \overrightarrow{d l}=\mu_{0} I$ Alternatively, Ampere Circuital law and Biot-Savart law, both relate the magnetic field and the current, and both express the same physical consequences of a steady current.	1	5
Set1, Q26 Set 2,Q24 Set 3,Q25	(a) Expression for the Amplitude and the conditions (b) Effect on Interference fringes (a) The resultant displacement will be $\begin{gathered} \vec{y}=\overrightarrow{y_{1}}+\overrightarrow{y_{2}} \\ =a\lfloor\cos \omega t+\cos (\omega t+\phi)\rfloor \\ =2 a \cos \frac{\phi}{2} \cos \left(\omega t+\frac{\phi}{2}\right) \end{gathered}$ The amplitude of the resultant displacement is $A=2 a \cos \frac{\phi}{2}$ \therefore Intensity $A^{2}=4 a^{2} \cos ^{2} \frac{\phi}{2}$ If $\phi=0, \pm 2 \pi, \pm 4 \pi, \ldots$.. the intensity will be maximum. i.e $\phi=2 n \pi$ $=n \lambda$ where $n=1,2,3 .$. Hence interference will be constructive. If $\phi= \pm \pi, \pm 3 \pi, \pm 5 \pi, \ldots$, the intensity will be zero, i.e $\phi=(2 n+1) \pi$ $=(2 n+1) \frac{\lambda}{2} \text { where } \mathrm{n}=1,2,3 . .$ Hence interference will be destructive. (b)(i)Pattern will become less and less sharp. (ii) At the centre there will be white fringe followed by red colour fringes on either side. OR		5

(a)

In the quadrilateral $A Q N R$ at Q and R, two of the angles are right angles.
Therefore, the sum of the other angles of the quadrilateral is 180°

From the triangle QNR,

$$
\angle A+\angle Q N R=180^{\circ}
$$

$r_{1}+r_{2}+\angle Q N R=180^{0}$
Comparing these two equations

$$
r_{1}+r_{2}=A
$$

The total deviation δ is the sum of the deviations at the two faces

$$
\delta=\left(\mathrm{t}-\mathrm{r}_{1}\right)+\left(\mathrm{e}-\mathrm{r}_{2}\right)
$$

i.e. $\delta=\mathrm{t}+\mathrm{e}-\left(\mathrm{r}_{1}+\mathrm{r}_{2}\right)$
$\delta=\imath+\mathrm{e}-\mathrm{A}$
$\delta+\mathrm{A}=\mathrm{t}+\mathrm{e}$

δ will be minimum for $t=e$
(b)

$$
\mu=\frac{\sin \left(\frac{A+\delta_{m}}{2}\right)}{\sin \frac{A}{2}}=\frac{\sin A}{\sin \frac{A}{2}}=2 \cos \frac{A}{2}
$$

If $\mathrm{A}=60^{\circ}$

$$
\mu=2 \cos 30=\sqrt{3}
$$

