## MARKING SCHEME SET 55/1 (Compartment)

| 0.77  | SET 55/1 (Compartment)                                                                                                                                                                                                                                                     |         |                |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------|
| Q.No. | Expected Answer/Value Points                                                                                                                                                                                                                                               | Marks   | Total<br>Marks |
| 1.    | $v_d = \frac{eV}{m\ell} \tau$                                                                                                                                                                                                                                              | 1       | 1              |
| 2.    | With increase in temperature, the relaxation time ( average time between successive collisions) decreases and hence resistivity increases.  Alternatively:  Resistivity $\rho\left(=\frac{m}{ne^2\tau}\right)$ increases as $\tau$ decreases with increase in temperature. | 1       | 1              |
| 3.    | Loss of strength of a signal while propagating through a medium.                                                                                                                                                                                                           | 1       | 1              |
| 4.    | The locus of all points that are in the same phase / The surface of constant phase.                                                                                                                                                                                        | 1       | 1              |
| 5.    | A has positive polarity                                                                                                                                                                                                                                                    | 1       | 1              |
| 6.    | Telephone (any other correct example)                                                                                                                                                                                                                                      | 1       | 1              |
| 7.    | $v = \frac{E}{B}$ where $v$ is speed of electron  Alternatively: $ \overrightarrow{F_E}  =  \overrightarrow{F_B} $                                                                                                                                                         | 1       | 1              |
|       |                                                                                                                                                                                                                                                                            |         | 1              |
| 8.    | Line B Since slope $(q/V)$ of B is lesser than that of A.                                                                                                                                                                                                                  | 1/2 1/2 | 1              |
| 9.    | Formula 1/2 Substitution and simplification 1 Result 1/2                                                                                                                                                                                                                   |         |                |
|       | $q \xrightarrow{x} \xrightarrow{d} -2q$ Let P be the required point at a distance x from charge q                                                                                                                                                                          | 1/2     |                |
|       | $\frac{1}{4\pi\epsilon_0} \frac{q}{x} + \frac{1}{4\pi\epsilon_0} \frac{(-2q)}{(d-x)} = 0$                                                                                                                                                                                  | 1/2     |                |
|       | $\frac{1}{x} = \frac{1}{d-x}$ $x = \frac{d}{3}$                                                                                                                                                                                                                            | 1/2     |                |
|       | required point is at a distance $\frac{d}{3}$ from charge $q$                                                                                                                                                                                                              | 1/2     |                |

|     | Alternatively:                                                                                                                                                                                                                                                               |                     |   |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---|
|     | P $ \begin{array}{c}                                     $                                                                                                                                                                                                                   | 1/2 1/2 1/2 1/2 1/2 | 2 |
|     | (ii) Orientation 1  (i) We have $W = \int_{\theta_1}^{\theta_2} \tau d\theta$ $ \dot{W} = \int_{0}^{\pi} pE\sin\theta d\theta \\ = pE[-\cos\theta]_{0}^{\pi} \\ = -2 pE $ (ii) $\dot{\tau} = PE \sin\theta$ for $\theta = \frac{\pi}{2}$ , $\tau$ is maximum  Alternatively: | ½<br>½<br>1         | 2 |
| 10. | (i) (a) Formula (b) Result (ii) (a) Formula (a) Formula (b) Result  (i) $\omega_0 = \frac{1}{\sqrt{LC}}$ $= \frac{1}{\sqrt{50 \times 10^{-3} \times 80 \times 10^{-6}}} = 500 \text{ rad/s}$                                                                                 | 1/2                 |   |
|     | [Also accept<br>i.e. $\vartheta = \frac{500}{2\pi} = \frac{250}{\pi} Hz \approx 80Hz$ ]<br>(ii) $Q = \frac{\omega_o L}{R}$<br>$= \frac{500 \times 50 \times 10^{-3}}{100}$                                                                                                   | 1/2                 | 2 |
|     | (ii) $Q = \frac{\omega_0 L}{R}$<br>= $\frac{500 \times 50 \times 10^{-3}}{40}$<br>= $0.625$                                                                                                                                                                                  | 1/2                 |   |

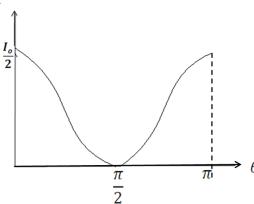
|     |                                                                                                                                                                                                                                                                                                                                               | I                 |   |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---|
| 11. | Formula 1 Substitution and Calculation 1/2 Result 1/2                                                                                                                                                                                                                                                                                         |                   |   |
|     | $\lambda = \frac{h}{mv}$                                                                                                                                                                                                                                                                                                                      | 1                 |   |
|     | $=\frac{6.63\times10^{-34}}{9.1\times10^{-31}\times2.2\times10^8}$                                                                                                                                                                                                                                                                            | 1/2               |   |
|     | $=3.31 \times 10^{-12} \text{m}$                                                                                                                                                                                                                                                                                                              | 1/2               | 2 |
| 12. |                                                                                                                                                                                                                                                                                                                                               |                   |   |
|     | Flux through $S_1$ , $\Phi_1 = \frac{Q}{\epsilon_0}$                                                                                                                                                                                                                                                                                          | 1/2               |   |
|     | Flux through $S_2$ , $\Phi_2 = \frac{Q+2Q}{\epsilon_o} = \frac{3Q}{\epsilon_o}$<br>Ratio of flux = 1:3<br>No change in flux through $S_1$ with dielectric medium inside the sphere $S_2$                                                                                                                                                      | 1/2<br>1/2<br>1/2 | 2 |
| 13. | (i)Statement of Biot Savart's law1(ii)Expression for magnetic field½(iii)Showing field lines½                                                                                                                                                                                                                                                 |                   |   |
|     | (i) According to Biot Savart's law, the magnetic field due to a current element $\overrightarrow{d\ell}$ carrying current I at a point with position $P$ vector $\overrightarrow{r}$ is given by $d\overrightarrow{B} = \frac{\mu_o}{4\pi} I \left[ \frac{\overrightarrow{d\ell} \times \overrightarrow{r}}{ \overrightarrow{r}' ^3} \right]$ | 1                 |   |
|     | r $ ightharpoonup P$                                                                                                                                                                                                                                                                                                                          |                   |   |
|     | (ii) $B = \frac{\mu_0 I}{2r}$ Field lines                                                                                                                                                                                                                                                                                                     | 1/2               |   |
|     |                                                                                                                                                                                                                                                                                                                                               | 1/2               | 2 |

| 14. |                                                                                                                                                                                                                                            |         |   |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---|
| 14. | (a) Conditions $\frac{1}{2} + \frac{1}{2}$                                                                                                                                                                                                 |         |   |
|     | (b) Formation of rainbow                                                                                                                                                                                                                   |         |   |
|     | Diagram ½                                                                                                                                                                                                                                  |         |   |
|     | Explanation ½                                                                                                                                                                                                                              |         |   |
|     | The condition for observing a rainbow are:  i. The sun comes out after a rainfall.  ii. The observer stands with the sun towards his/her back. (any one)                                                                                   | 1/2 1/2 |   |
| 15  | Formation of a rainbow:  → The rays of light reach the observer through a refraction, followed by a reflection, followed by a refraction.  → Figure shows red light, from drop 1 and violet light from drop 2, reaching the observers eye. | 1/2     | 2 |
| 15. | One difference between $\varepsilon$ and V $\frac{1}{2}$ VI Graph $\frac{1}{2}$ Determination of 'r' and $\varepsilon$ 1                                                                                                                   |         |   |
|     | Difference between emf( $\varepsilon$ ) and terminal voltage (v) $\varepsilon mf$ terminal voltage                                                                                                                                         |         |   |
|     | 1) It is the potential difference between two terminals of the cells when no current is drawn from it. 2) It is the cause.  1) It is the potential difference between two terminals when current passes through it. 2) It is the effect.   | 1/2     |   |
|     | (Any one) or any other relevant difference                                                                                                                                                                                                 |         |   |
|     | v                                                                                                                                                                                                                                          | 1       |   |
|     | Negative of slope gives internal resistance.                                                                                                                                                                                               | 1/2     | 2 |

| 16  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |   |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---|
| 16. | (a) Difference between a permanent magnet and an electromagnet $\frac{1}{2} + \frac{1}{2}$ (b) Any two properties of material $\frac{1}{2} + \frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |   |
|     | a) An electromagnet consists of a core made of a ferromagnetic material placed inside a solenoid. It behaves like a strong magnet when current flows through the solenoid and effectively loses its magnetism when the current is switched off.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1/2                      |   |
|     | <ul> <li>(i) A permanent magnet is also made up of a ferromagnetic material but it retains its magnetism at room temperature for a long time after being magnetized once.</li> <li>b)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1/2                      |   |
|     | (i) High permeability (ii) Low retentivity (iii)Low coercivity (Any two)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1/2+ 1/2                 |   |
|     | [Note: Give ½ mark if the student just writes 'soft iron' is a suitable material for making electromagnets.]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          | 2 |
| 17. | Three basic properties $\frac{1}{2} + \frac{1}{2} + \frac{1}{2}$ Plot of KE max versus $\nu$ $\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |   |
|     | Three basic properties of photons:  (i) Photons are quanta or discrete carriers of energy.  (ii) Energy of a photon is proportional to the frequency of light.  (iii) The photon gives all its energy to the electron with which it interacts. Einstein's photoelectric equation $\frac{1}{2}mv_{max}^2 = hv - w$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1/2<br>1/2<br>1/2<br>1/2 |   |
|     | The plot is as shown $\frac{1}{2}m\mathbf{v}_{max}^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1/2                      |   |
|     | $ \uparrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad$ |                          | 2 |
| 18. | Naming the gate Truth Table Logic Symbol  1/2 1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |   |
|     | NAND GATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1/2                      |   |

| TRUTH TABLE  A B Y  0 0 1                                                                                                                                                     | 1   |   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|
| 1                                                                                                                                                                             |     |   |
| A Y                                                                                                                                                                           | 1/2 |   |
| В                                                                                                                                                                             |     | 2 |
| Magnitude of resultant field 2 Direction of resultant field 1                                                                                                                 |     |   |
| (i) The magnitude $\begin{pmatrix} I & I & I & I & I & I & I & I & I & I $                                                                                                    | 1/2 |   |
| $\left  \overrightarrow{E_{AB}} \right  = \frac{1}{4\pi\epsilon_o} \frac{q}{a^2} = E$ $\left  \overrightarrow{E_{AC}} \right  = \frac{1}{4\pi\epsilon_o} \frac{2q}{a^2} = 2E$ | 1/2 |   |
| $E_{AB}$ $E_{net}$ $E_{AC}$                                                                                                                                                   | 1/2 |   |
| +q -2q C                                                                                                                                                                      | 72  |   |
| $E_{net} = \sqrt{(2E)^2 + E^2 + 2 \times 2E \times E \times \left(-\frac{1}{2}\right)}$                                                                                       |     |   |
| $= \sqrt{4E^2 + E^2 - 2E^2}$ $= E\sqrt{3} = \frac{1}{4\pi\epsilon_0} \frac{q\sqrt{3}}{a^2}$                                                                                   | 1/2 |   |
| (ii) Direction of resultant electric field at vertex A $\tan \propto = \frac{E_{AB} \sin 120^{o}}{E_{AC} + E_{AB} \cos 120^{o}}$                                              | 1/2 |   |
| $= \frac{E \times \frac{\sqrt{3}}{2}}{2E + E \times \left(\frac{-1}{2}\right)} = \frac{1}{\sqrt{3}}$ $\propto = 30^{\circ} \text{ (with side AC)}$                            | 1/2 | 3 |

| 20.                                                                                                                                 |                                                  |   |
|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---|
| (a) Principle of potentiometer ½                                                                                                    |                                                  |   |
| Reason for Part (i), (ii) and (iii) $\frac{1}{2} + \frac{1}{2} + \frac{1}{2}$                                                       |                                                  |   |
| (b) Graph                                                                                                                           |                                                  |   |
|                                                                                                                                     | ]                                                |   |
| a) Principle of potentiometer:                                                                                                      |                                                  |   |
| The potential drop across the length of a steady current carrying wire of uniform                                                   | 1/2                                              |   |
| cross section is proportional to the length of the wire.  i. We use a long wire to have a lower value of potential gradient (i.e. a |                                                  |   |
| lower 'least count' or greater sensitivity of the potentiam gradient (i.e. a                                                        | 1/2                                              |   |
| ii. The area of cross section has to be uniform to get a 'uniform wire' as                                                          | ,2                                               |   |
| per the principle of the potentiometer                                                                                              | 1/2                                              |   |
| / to ensure a constant value of resistance per unit length of the wire.                                                             |                                                  |   |
| iii. The emf of the driving cell has to be greater than the emf of the primary                                                      | y 1/2                                            |   |
| cells as otherwise no balance point would be obtained.                                                                              |                                                  |   |
| b) Potential gradient $K = \frac{V}{L}$                                                                                             |                                                  |   |
| $L$ $\therefore$ the required graph is as shown                                                                                     |                                                  |   |
|                                                                                                                                     |                                                  |   |
|                                                                                                                                     |                                                  |   |
|                                                                                                                                     |                                                  |   |
| $\left \begin{array}{c} \mathbf{K} \end{array}\right $                                                                              | 1                                                |   |
|                                                                                                                                     |                                                  |   |
|                                                                                                                                     |                                                  |   |
|                                                                                                                                     |                                                  |   |
| $\ell \longrightarrow$                                                                                                              |                                                  | 3 |
| 21. (i) Formula ½                                                                                                                   | <del>                                     </del> |   |
| Energy in the first excited state \frac{1}{2}                                                                                       |                                                  |   |
| Energy required 1/2                                                                                                                 |                                                  |   |
| (ii) Kinetic energy ½                                                                                                               |                                                  |   |
| Orbital radius (Formula and Result) $\frac{1}{2} + \frac{1}{2}$                                                                     |                                                  |   |
| (i) For the hydrogen atom                                                                                                           | 1                                                |   |
| a. $ E_n  \propto \frac{1}{n^2}$                                                                                                    | 1/2                                              |   |
| b. $\therefore$ Energy of first excited state $=\frac{-13.6}{2^2} = -3.4 \text{eV}$                                                 |                                                  |   |
| <del>-</del>                                                                                                                        | 1/2                                              |   |
| c. : Energy required = [ - 3.4 – (13.6)eV] = 10.2 eV                                                                                | 1/2                                              |   |
| a. Kinetic energy =  energy of 1st excited state                                                                                    |                                                  |   |
| = 3.4  eV                                                                                                                           | 1/2                                              |   |
| b. Orbital radius in nth state $\propto n^2$                                                                                        | 1/2                                              |   |
| $= 4 \times 0.53 \dot{A}$                                                                                                           | , -                                              |   |
| $= 2.12  \acute{A}$                                                                                                                 |                                                  |   |
| — 2.12 A                                                                                                                            | 1/2                                              | 3 |
|                                                                                                                                     |                                                  |   |


| 2 | 2 |
|---|---|
|   |   |

- (a) Graph showing variation of intensity with
- (b) Determination of values of  $\theta$  and  $\beta$

1 1+1

(a) The required graph would have the form shown as:

Ι



1

Using 
$$I_2 = I_1 \cos^2 \theta$$

- (b)  $I_1$ = Light transmitted by  $P_1$ 
  - $I_3$ = Light transmitted by  $P_3 = I_1 \cos^2 \beta$

 $I_2$ = Light transmitted by  $P_2 = I_3 \cos^2(\theta - \beta)$ Alternatively, (Award mark to student who indicates correct value of  $\overline{I_1}$ ,  $\overline{I_2}$  and  $\overline{I_3}$  by making a diagram)

$$I_2 = I_3$$

$$I_3 = I_3$$

$$illingtharpoonup I_2 = I_3 I_1 \cos^2 \beta . \cos^2 (\theta - \beta) = I_1 \cos^2 \beta \theta = \beta$$

$$\theta = \beta$$

Also 
$$I_1 = I_2$$
  
 $I_{1=} I_1 \cos^2 \beta . \cos^2 (\theta - \beta)$   
or  $\cos^2 \theta = 1$ 

or 
$$\cos^2\theta = 1$$

$$\theta = 0^{\circ} \text{ or } \pi$$

Therefore 
$$\beta = 0^{\circ}$$
 or  $\pi$ 

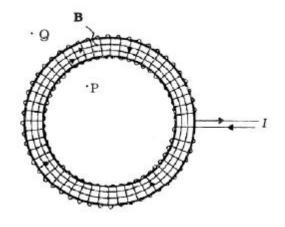
1/2

1/2

1/2 1/2

- (a) Difference between a solenoid and a toroid
- (b) Derivation of the relation  $B=\mu_0 nI$

1


1

(c) Magnetic field (i) inside and (ii) outside

- $\frac{1}{2} + \frac{1}{2}$
- (a) A toroid can be viewed as a solenoid which has been bent into a circular shape to close on itself

1

(b)



1/2

For the magnetic field at a point S inside a toroid we have

$$B(2 \pi r) = \mu_{\circ} NI$$

$$B = \mu_{\circ} \frac{NI}{2 \pi r} = \mu_{\circ} nI$$

( n = no. of turns per unit length of solenoid)

1/2

(c) For the loop 1, Ampere's circuital law gives  $B_1 \cdot 2\pi r_1 = \mu_0(0)$  i.e.  $B_1 = 0$ 

1/2

Thus the magnetic field, in the open space inside the toroid is zero.

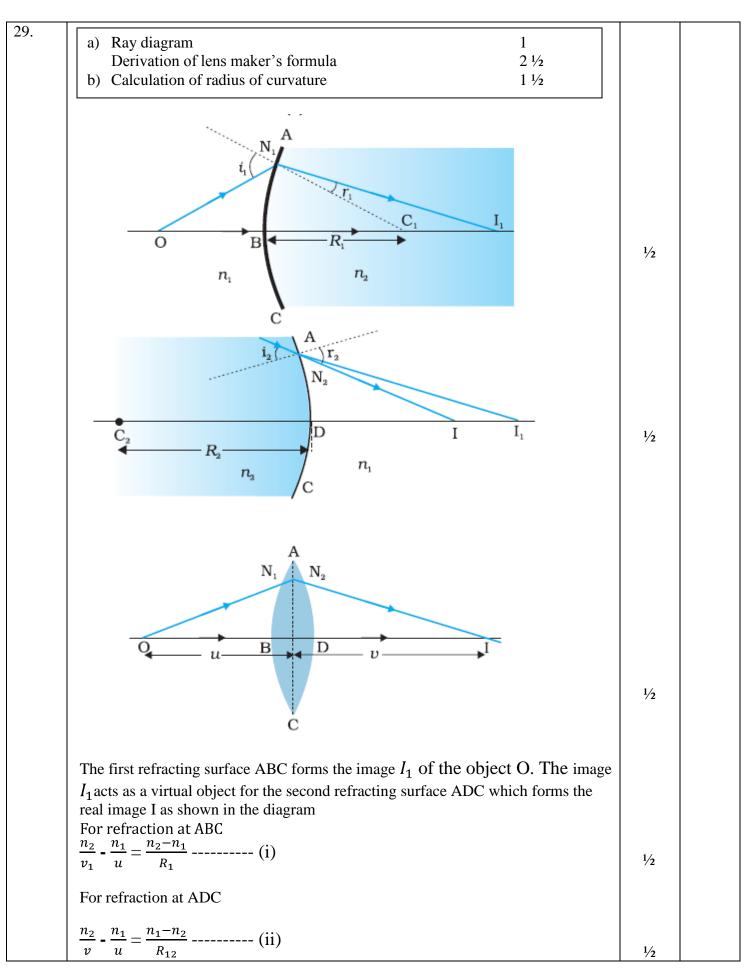
Also at point Q, we have  $B_3(2\pi r_3) = \mu_0(I_{enclosed})$ 

But from the sectional cut, we see that the current coming out of the plane of the paper, is cancelled exactly by the current going into it.

Hence  $I_{enclosed} = 0$ 

$$\therefore B_3=0$$

1/2


|     | OR                                                                                                                                                                                                             |            |   |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---|
|     | Derivation of the expression for magnetic moment 2 ½ Direction of magnetic moment ½                                                                                                                            |            |   |
|     | We have $\mu = iA$ $= \frac{e \cdot v}{2\pi r} \cdot \pi r^2.$                                                                                                                                                 | 1/2<br>1/2 |   |
|     | $=\frac{evr}{2}$                                                                                                                                                                                               | 1/2        |   |
|     | $\ell = m \text{V} r$ $\text{V} r = \frac{\ell}{m}$                                                                                                                                                            | 1/2        |   |
|     | $\vec{\mu} = \frac{-e\vec{l}}{2m}$                                                                                                                                                                             | 1/2        |   |
|     | The direction of $\vec{\mu}$ is opposite to that of $\vec{l}$ because of the negative charge of the electron.                                                                                                  | 1/2        | 3 |
| 24. |                                                                                                                                                                                                                |            |   |
|     | (a) Derivation of the result $I = 4I_0 cos^2 \frac{\phi}{2}$ 2  (b) Conditions for constructive and destructive interference $\frac{1}{2}$                                                                     |            |   |
|     | (a) The resultant displacement is given by :<br>$y = y_1 + y_2$<br>$= a \cos \omega t + a \cos(\omega t + \phi)$                                                                                               | 1/2        |   |
|     | $= a \cos \omega t (1 + \cos \phi) - a \sin \omega t \sin \phi$ Put $R \cos \theta = a (1 + \cos \phi)$ $R \sin \theta = a \sin \phi$ $\therefore R^2 = a^2 (1 + \cos^2 \phi + 2 \cos \phi) + a^2 \sin^2 \phi$ | 1/2        |   |
|     | $= 2 a^{2} (1 + \cos \phi) = 4a^{2} \cos^{2} \frac{\phi}{2}$                                                                                                                                                   | 1/2        |   |
|     | $\therefore I = R^2 = 4 \ a^2 \cos^2 \frac{\phi}{2} = 4 \ I_0 \cos^2 \frac{\phi}{2}$                                                                                                                           | 1/2        |   |
|     | For constructive interference,                                                                                                                                                                                 |            |   |
|     | $\cos\frac{\phi}{2} = \pm 1  or  \frac{\phi}{2} = n \pi  or  \phi = 2n\pi$                                                                                                                                     | 1/2        |   |
|     | For destructive interference, $\cos \frac{\phi}{2} = 0  or  \frac{\phi}{2} = (2n+1) \frac{\pi}{2}  or  \phi = (2n+1)\pi$                                                                                       | 1/2        | 3 |

| 25. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                               |   |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---|
| 23. | (a) Reason (b) Any two values (c) Determination of sideband frequencies  1 1 1/2 + 1/2 1/2 + 1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 |   |
|     | <ul><li>(a) The ultra high frequency em radiations, continuously emitted by a mobile phone, may harm the system of the human body.</li><li>(b) Sister Anita shows</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                               |   |
|     | <ul> <li>(i) Concern about her brother</li> <li>(ii) Awareness about the likely effects of em radiations on human body</li> <li>(iii) Sense of responsibility (any two)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1/2<br>1/2                      |   |
|     | (c) The side bands are $(\nu_e + \nu_m)$ and $(\nu_e - \nu_m)$ or $(1000 + 10)$ kHz and $(1000 - 10)$ kHz $1010$ kHz and $990$ kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1/2                             | 3 |
| 26. | (a) Reason for momentary deflection Deflection after the capacitor gets fully charged (b) Explanation for modification in Ampere's circuital law 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 |   |
|     | (a) The momentary deflection is due to the transient current flowing through the circuit when the capacitor is getting charged.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1/2                             |   |
|     | The deflection would be zero when the capacitor gets fully charged.  (b) We consider the charging of a capacitor when it is being charged by connecting it to a dc source.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1/2                             |   |
|     | $(t) \longrightarrow \begin{pmatrix} + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & - \\ + & $ |                                 |   |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 |   |
|     | In Ampere's circuital law, namely $B(2\pi r) = \mu_0 i$ We have is a row zero for surface (a) but zero for surface (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                 |   |
|     | We have <i>i</i> as non zero for surface (a) but zero for surface (c) Hence there is a contradiction in the value of B; calculated one way we have a magnetic field at P but calculated another way we have <i>B</i> =0 To remove this contradiction the concept of displacement current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1/ <sub>2</sub> 1/ <sub>2</sub> |   |

| $(i_d = \varepsilon_0 \frac{d\phi_E}{dt} = i)$ was introduced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1/2                                                             |   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|---|
| and Ampere's circuital law was put in its generalized form namely                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 72                                                              |   |
| $\oint_{B} \cdot \overrightarrow{dl} = \mu_0 i_c + \mu_0 \epsilon_0 \frac{d\phi_E}{dt}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1/2                                                             |   |
| This form gives consistent results for values of B irrespective of which surface is used to calculate it.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                 | 3 |
| 27. (a) Definition of activity and its SI unit \( \frac{1}{2} + \frac{1}{2} \) (b) Calculation of the activity of the sample \( 2 \)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                 |   |
| <ul> <li>a) The activity of a sample of radioactive nucleus equals its decay rate(or number of nuclei decaying per unit time)         Its SI unit is disintegration /s or Becquerel     </li> <li>b) R = λN</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1/ <sub>2</sub> 1/ <sub>2</sub> 1/ <sub>2</sub> 1/ <sub>2</sub> |   |
| $= \frac{\log_{e^2} \times 25.3 \times 10^{20} \times 10}{4.5 \times 10^9}$ $= \frac{0.6931 \times 25.3 \times 10^{21}}{0.6931 \times 25.3 \times 10^{21}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1/2                                                             |   |
| $-4.5 \times 10^{9} \times 365 \times 24 \times 60 \times 60$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1/2                                                             |   |
| $= 1.24 \times 10^5 \ dps$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1/2                                                             |   |
| [Note: If a candidate gives the result in (year) <sup>-1</sup> , give full credit.]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                 | 3 |
| <ul> <li>(a) Schematic arrangement</li> <li>(b) Principle of a transformer</li> <li>Obtaining expression</li> <li>(i)  <sup>V<sub>1</sub></sup>/<sub>V<sub>2</sub></sub> = <sup>N<sub>1</sub></sup>/<sub>N<sub>2</sub></sub></li> <li>(ii)  <sup>V<sub>1</sub></sup>/<sub>V<sub>2</sub></sub> = <sup>1/2</sup>/<sub>I<sub>1</sub></sub></li> <li>(c) Assumptions (any one)</li> <li>(d) Two reasons for energy losses</li> <li>(e) Two reasons for energy losses</li> <li>(f) Two reasons for energy losses</li> <li>(g) Principle of a transformer: when alternating current flows through the primary coil, an emf is induced in the neighbouring (secondary) coil</li> <li>(i) Let <sup>dφ</sup>/<sub>dt</sub> be the tare of charge of flux through each turn of the primary</li> </ul> | 1 1/2                                                           |   |
| and the secondary coil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                 |   |

| $\frac{e_1}{e_2} = -N_1 \frac{d\phi}{dt} / -N_2 \frac{d\phi}{dt} = \frac{N_1}{N_2}$                          | 1/2            |   |
|--------------------------------------------------------------------------------------------------------------|----------------|---|
| $e_2$ $t$ $dt$ $t$ $t$ $t$ $t$ $t$ $t$ $t$ $t$ $t$                                                           |                |   |
|                                                                                                              |                |   |
| $\frac{V_1}{V_2} = \frac{N_1}{N_2} - \dots (1)$                                                              | 1/2            |   |
| (ii) But for an ideal transformer $V_1I_1 = V_2I_2$                                                          |                |   |
| $\frac{V_1}{V_2} = \frac{I_2}{I_1}$ (2)                                                                      | 1/             |   |
| $V_2$ $I_1$                                                                                                  | 1/2            |   |
| From equation (1) and (2                                                                                     |                |   |
| $\frac{V_1}{V_2} = \frac{N_1}{N_2} = \frac{I_2}{I_1}$                                                        | 1/2            |   |
|                                                                                                              |                |   |
| c) Main assumptions (i) The primary resistance and current are small                                         |                |   |
| (ii) The flux linked with the primary and secondary coils is same / there                                    |                |   |
| is no leakage of flux from the core.                                                                         |                |   |
| (iii)Secondary current is small                                                                              | 1/2            |   |
| (Any one)                                                                                                    |                |   |
| d) Reason due to which energy loses may occur                                                                |                |   |
| Flux leakage/resistance of the coils / eddy currents / Hysteresis ( <b>Any two</b> )                         | 1/2 +1/2       | 5 |
| OR                                                                                                           | /2 1/2         | 5 |
| Desiration of the community of the                                                                           |                |   |
| a) Derivation of the expressions for 2 ½ i. Induced emf                                                      |                |   |
| ii. Induced current                                                                                          |                |   |
| b) Expression for magnitude of force and its direction 1½                                                    |                |   |
| c) Expression for power 1                                                                                    |                |   |
| a) In one revolution                                                                                         |                |   |
| Change of area, $dA = \pi \ell^2$                                                                            |                |   |
| ∴ change of magnetic flux                                                                                    |                |   |
| $d\phi = \overrightarrow{B} \cdot \overrightarrow{dA} = BdA\cos\theta$                                       |                |   |
| $= B \pi \ell^2$                                                                                             |                |   |
| Period of revolution T                                                                                       | 1/2            |   |
| (i) Induced emf $\varepsilon = B\pi \ell^2 / T = B\pi \ell^2 v$                                              | 1/2            |   |
| (ii) Induced current in the rod, $I = \frac{\varepsilon}{R} = \frac{\pi v B \ell^2}{R}$                      | 1              |   |
| [Note: Award 2 marks if the student derives the above relation using other                                   | 1/2            |   |
| method.]                                                                                                     |                |   |
| b) Force acting on the rod, $F = I \ell B$                                                                   | 1/2            |   |
| $=\frac{\pi v B^2 \ell^3}{R}$                                                                                | 72             |   |
|                                                                                                              | 1/2            |   |
| The external force required to rotate the rod opposes the Lorentz force acting on the                        |                |   |
| rod / external force acts in the direction opposite to the Lorentz force c) Power required to rotate the rod | 1/2            |   |
| $P = F\vartheta$                                                                                             |                |   |
|                                                                                                              | 1/2            |   |
| $=rac{\pi v B^2 \ell^3 v}{R}$                                                                               | , <del>-</del> |   |
| T.                                                                                                           | 1/2            | 5 |

Compartment



Compartment Page No. 14 20th July, 2014 Final

| Adding equ | uation (i | ) and ed | quation (ii) |
|------------|-----------|----------|--------------|
|            |           |          |              |

$$\frac{n_1}{v} - \frac{n_1}{u} = (n_2 - n_1)(\frac{1}{R_1} - \frac{1}{R_2})$$

$$\frac{1}{v} - \frac{1}{u} = (\frac{n_2}{n_1} - 1)(\frac{1}{R_1} - \frac{1}{R_2})$$

1/2

We know If  $u = \infty$ , v = f

$$\frac{1}{v} - \frac{1}{u} = \frac{1}{f}$$

$$\frac{1}{f} = (n_2 - 1)(\frac{1}{R_1} - \frac{1}{R_2})$$

1/2

(b) 
$$\frac{1}{f} = (\mu - 1) \left( \frac{1}{R_1} - \frac{1}{R_2} \right)$$
  
 $\frac{1}{20} = (1.55 - 1) \left( \frac{1}{R} - \frac{1}{-R} \right)$   
 $= 0.55 \times \frac{2}{R}$   
 $R = 0.55 \times 2 \times 20 = 22 \ cm$ 

1/2

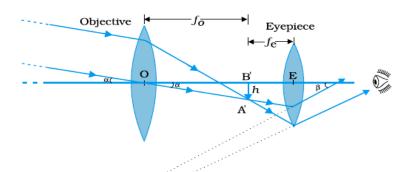
1

5

## OR

(a) Labelled ray diagram

Derivation of expression for magnifying power


1 ½

1 1/2

(b) Determination of total magnification

2

a)



 $1\frac{1}{2}$ 

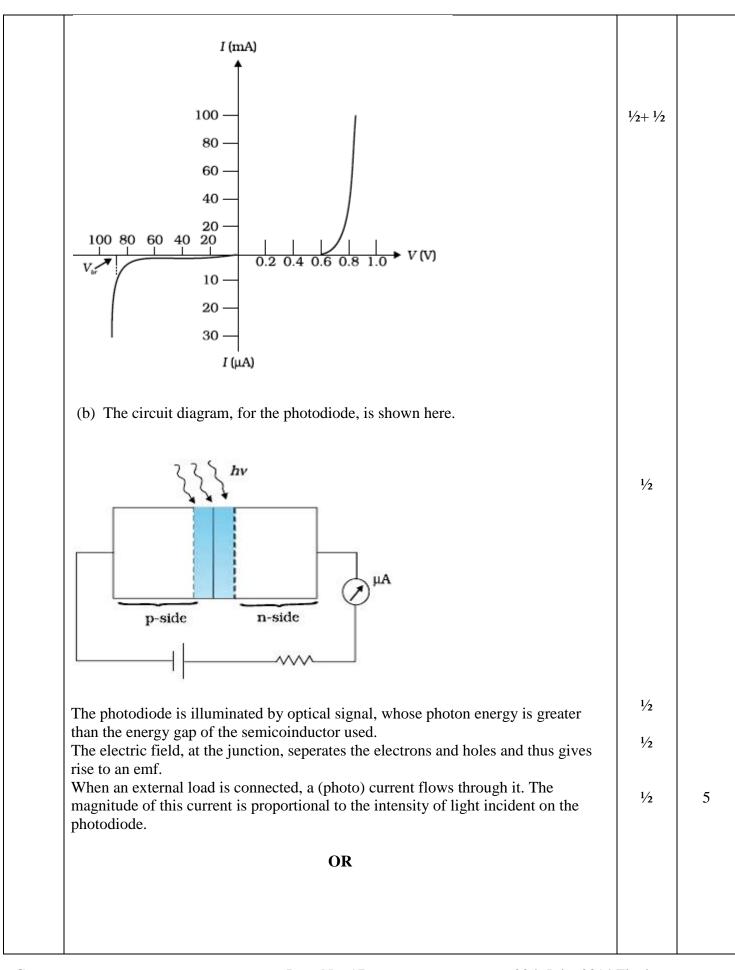
[Note: deduct ½ mark if not labelled]

Derivation

Magnifying Power

$$M = \frac{\tan \beta}{\tan \alpha} \cong \frac{\beta}{\alpha}$$

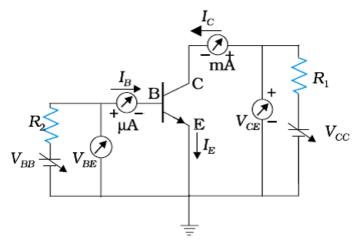
1/2


Final image is formed at infinity when the image A'B' is formed by the objective lens at the force of the eye piece

$$m = \frac{h}{f_e} \times \frac{f_0}{h}$$
$$= \frac{f_0}{f_0}$$

1/2

|     | b) Given                                                                             |                                 |   |
|-----|--------------------------------------------------------------------------------------|---------------------------------|---|
|     | $f_0 + f_e = 105$ , $f_0 = 20 f_e$                                                   | 1/2                             |   |
|     | $20 f_e + f_e = 105$                                                                 |                                 |   |
|     | $f_e = \frac{105}{21} = 5 \ cm$                                                      | 1/                              |   |
|     |                                                                                      | 1/ <sub>2</sub> 1/ <sub>2</sub> |   |
|     | $f_0 = 20 \times 5 = 100 \ cm$                                                       | 72                              |   |
|     | $\therefore Magnification \ m = \frac{f_0}{f_e} = \frac{100}{5} = 20$                | 1/2                             | 5 |
| 30. |                                                                                      |                                 |   |
|     | (a) Circuit arrangement of p-n function in                                           |                                 |   |
|     | (i) Forward biasing ½                                                                |                                 |   |
|     | (ii) Reverse biasing ½                                                               |                                 |   |
|     | VI characteristics 1                                                                 |                                 |   |
|     | Explanation ½                                                                        |                                 |   |
|     | (b) Circuit diagram ½                                                                |                                 |   |
|     | Explanation 2                                                                        |                                 |   |
|     |                                                                                      |                                 |   |
|     | (a)                                                                                  |                                 |   |
|     | Voltmeter(V)                                                                         |                                 |   |
|     |                                                                                      |                                 |   |
|     | p n                                                                                  | 1/2                             |   |
|     | <b>y</b> " <b>(*)</b>                                                                |                                 |   |
|     | Milliammeter (mA)                                                                    |                                 |   |
|     | Switch                                                                               |                                 |   |
|     |                                                                                      |                                 |   |
|     | Forward biasing                                                                      |                                 |   |
|     | Voltmeter(V)                                                                         |                                 |   |
|     |                                                                                      |                                 |   |
|     |                                                                                      |                                 |   |
|     | p n                                                                                  |                                 |   |
|     | Microammeter                                                                         | 1/2                             |   |
|     | (μΑ)                                                                                 | 72                              |   |
|     | Switch                                                                               |                                 |   |
|     | *                                                                                    |                                 |   |
|     | Reverse biasing                                                                      |                                 |   |
|     | The VI characteristics are obtained by connecting the battery, to the diode, through | 1                               |   |
|     | a potentiometer (or rheostat). The applied voltage to the diode is changed. The      |                                 |   |
|     | values of current, for different values of voltage, are noted and a graph between V  |                                 |   |
|     | and I is plotted.                                                                    |                                 |   |
|     | The V-I characteristics ,of a diode, have the form shown here.                       |                                 |   |
|     |                                                                                      |                                 |   |
|     |                                                                                      |                                 |   |
|     |                                                                                      |                                 |   |
|     |                                                                                      |                                 |   |


20th July, 2014 Final



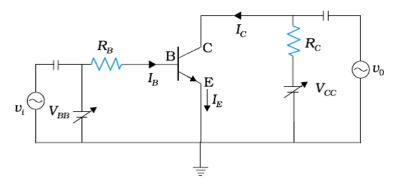
Compartment Page No. 17 20th July, 2014 Final

| (a) Circuit diagram              | 1   |  |
|----------------------------------|-----|--|
| Description of current formation | 1   |  |
| Deduction of $I_e = I_b + I_c$   | 1/2 |  |
| (b) Circuit diagram              | 1   |  |
| Working                          | 1 ½ |  |

a) The circuit diagram is shown here



The emitter-base junction, being forward biased, the majority charge carriers (electrons), from the emitter, flow into the base region constituting the emitter current( $I_E$ )


The base region, being very thin, only a (very) small fraction, of these charge carriers, swamps the holes present in the base region resulting in a (small) base current  $(I_B)$ .

The majority of these charge carriers, are attracted by the (reverse biased) collector. These make up the collector current( $I_C$ ).

It is clear, therefore, that

$$I_E = I_C + I_B$$

b) The circuit diagram, of a transistor, working as an amplifier, in its CE mode, is shown here.



If a small sinusoidal voltage is superimposed on the dc base bias by connecting the source of this signal in series with  $V_{BB}$  supply. Then the base current will have sinusoidal variations superposed on the values  $I_B$ . As a consequence the collector current also will have sinusoidal variation superimposed on the value of  $I_C$  producing in turn corresponding change in the output voltage  $V_o$ .

1 ½

1

1

1/2

1

## MARKING SCHEME SET 55/2 (Compartment)

| Q.No. | Expected Answer/Value Points                                                                                                                                                                                                                                                                                                                                                          | Marks                           | Total<br>Marks |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------|
| 1.    | With increase in temperature, the relaxation time ( average time between successive collisions) decreases and hence resistivity increases.  Alternatively:                                                                                                                                                                                                                            | 1                               |                |
|       | Resistivity $\rho\left(=\frac{m}{ne^2\tau}\right)$ increases as $\tau$ decreases with increase in temperature.                                                                                                                                                                                                                                                                        |                                 | 1              |
| 2.    | $v = \frac{E}{B}$ where $v$ is speed of electron  Alternatively:                                                                                                                                                                                                                                                                                                                      | 1                               |                |
| 2     | $   \overrightarrow{F_E}   =  \overrightarrow{F_B}  $                                                                                                                                                                                                                                                                                                                                 | 1                               | 1              |
| 3.    | Radio, Television (Any one)                                                                                                                                                                                                                                                                                                                                                           | 1                               |                |
| 4.    | Incident planewave F                                                                                                                                                                                                                                                                                                                                                                  | 1                               |                |
|       |                                                                                                                                                                                                                                                                                                                                                                                       |                                 | 1              |
| 5.    | Line B Since slope $(q/V)$ of B is lesser than that of A.                                                                                                                                                                                                                                                                                                                             | 1/2<br>1/2                      | 1              |
| 6.    | $v_d = \frac{eV}{m\ell} \tau$                                                                                                                                                                                                                                                                                                                                                         | 1                               | 1              |
| 7.    | A has positive polarity                                                                                                                                                                                                                                                                                                                                                               | 1                               | 1              |
| 8.    | Modulation Index is defined as the ratio of amplitude of modulating signal to the amplitude of carrier wave i.e. $\mu = \frac{A_m}{A_c}$                                                                                                                                                                                                                                              | 1                               | 1              |
| 9     | Flux through $S_1$ $\frac{1}{2}$ Flux through $S_2$ $\frac{1}{2}$ Ratio $\frac{1}{2}$ Flux through $S_1$ with dielectric median $\frac{1}{2}$ Flux through $S_1$ , $\Phi_1 = \frac{Q}{\epsilon_o}$ Flux through $S_2$ , $\Phi_2 = \frac{Q+2Q}{\epsilon_o} = \frac{3Q}{\epsilon_o}$ Ratio of flux = 1:3 No change in flux through $S_1$ with dielectric medium inside the sphere $S_2$ | 1/2<br>1/2<br>1/2<br>1/2<br>1/2 | 2              |

| 10. | Formula 1/2 Substitution and simplification 1 Result 1/2                                                                                                         |            |   |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---|
|     | $q \stackrel{\mathbf{P}}{\longleftrightarrow} x \longrightarrow d \longrightarrow -2q$                                                                           | 1/2        |   |
|     | Let P be the required point at a distance x from charge $q$ $\therefore \frac{1}{4\pi\epsilon_0} \frac{q}{x} + \frac{1}{4\pi\epsilon_0} \frac{(-2q)}{(d-x)} = 0$ | 1/2        |   |
|     | $\frac{1}{x} = \frac{2}{d-x}$                                                                                                                                    | 1/2        |   |
|     | $x = \frac{d}{3}$                                                                                                                                                |            |   |
|     | required point is at a distance $\frac{d}{3}$ from charge $q$                                                                                                    | 1/2        |   |
|     | Alternatively:                                                                                                                                                   |            |   |
|     | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                            | 1/2        |   |
|     | $\frac{1}{4\pi\varepsilon_0}\frac{q}{x} = \frac{1}{4\pi\varepsilon_0}\frac{2q}{d+x}$                                                                             | 1/2        |   |
|     | 2 x = x + d or $x = dAt distance d towards left of charge q$                                                                                                     | 1/2<br>1/2 | 2 |
|     | (i) Work Done 1<br>(ii) Orientation 1                                                                                                                            |            |   |
|     | (i) We have $W = \int_{\theta_1}^{\theta_2} \tau d\theta$                                                                                                        |            |   |
|     |                                                                                                                                                                  | 1/2        |   |
|     | $= -2 pE$ (ii) : $\tau = PE \sin\theta$ for $\theta = \frac{\pi}{2}$ , $\tau$ is maximum                                                                         | 1/2        |   |
|     | Alternatively:                                                                                                                                                   | 1          |   |
|     | $\xrightarrow{90^{\circ}} \xrightarrow{+q}$                                                                                                                      |            |   |
|     | $P \rightarrow \overrightarrow{E}$                                                                                                                               |            | 2 |
|     |                                                                                                                                                                  |            | 1 |

| 11  |                                                                                                                                                                                                                                                 | 1         |   |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---|
| 11. | <ul> <li>a) Difference between electromagnet and permanent magnet 1</li> <li>b) Properties of material (any two)</li> </ul>                                                                                                                     |           |   |
|     | a) An electromagnet consists of a core made of a ferromagnetic material placed inside a solenoid. It behaves like a strong magnet when current flows through the solenoid and effectively loses its magnetism when the current is switched off. | 1/2       |   |
|     | A permanent magnet is also made up of a ferromagnetic material but it retains its magnetism at room temperature for a log time after being magnetized once.  b) Properties                                                                      | 1/2       |   |
|     | <ul> <li>i. High permeability</li> <li>ii. Low retentivity</li> <li>iii. Low coercivity (Any two)</li> </ul>                                                                                                                                    | 1/2 + 1/2 | 2 |
| 12. | Formula 1 Substitution and Calculation 1/2 Result 1/2                                                                                                                                                                                           |           |   |
|     | $\lambda = \frac{h}{}$                                                                                                                                                                                                                          | 1         |   |
|     | $=\frac{mv}{6.63\times10^{-34}}$ $=\frac{6.63\times10^{-34}}{9.1\times10^{-31}\times2.2\times10^8}$                                                                                                                                             | 1/2       |   |
|     | $=3.31 \times 10^{-12} \text{m}$                                                                                                                                                                                                                | 1/2       | 2 |
| 13. | One difference between $\varepsilon$ and V 1/2 VI Graph 1/2 Determination of 'r' and $\varepsilon$ 1                                                                                                                                            |           |   |
|     | Difference between emf( $\varepsilon$ ) and terminal voltage (v) $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                          |           |   |
|     | when no current is drawn from it.  2) It is the cause.  (Any one) or any other relevant difference                                                                                                                                              | 1/2       |   |
|     | v   v                                                                                                                                                                                                                                           | 1         |   |
|     | Negative of slope gives internal resistance.                                                                                                                                                                                                    | 1/2       | 2 |

| 1.4 |                                                                                                                                                                                                                                                                                                                                              |     |   |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|
| 14. | (i)Statement of Biot Savart's law1(ii)Expression for magnetic field½(iii)Showing field lines½                                                                                                                                                                                                                                                |     |   |
|     | (i) According to Biot Savart's law, the magnetic field due to a current element $\overrightarrow{d\ell}$ carrying current I at a point with position $P$ vector $\overrightarrow{r}$ is given by $d\overrightarrow{B} = \frac{\mu_o}{4\pi} I \left[ \frac{\overrightarrow{d\ell} \times \overrightarrow{r}}{ \overrightarrow{r} ^3} \right]$ | 1   |   |
|     | I  (ii) $B = \frac{\mu_o I}{2r}$ Field lines                                                                                                                                                                                                                                                                                                 | 1/2 |   |
|     |                                                                                                                                                                                                                                                                                                                                              | 1/2 | 2 |
| 15. | a) Definition of stopping potential 1 b) Diagram / Plotting graph 1                                                                                                                                                                                                                                                                          |     |   |
|     | <ul> <li>a) The minimum negative potential, applied on the collector plate, that makes the photocurrent zero, is called the stopping potential.</li> <li>b) v<sub>2</sub> &gt; v<sub>1</sub></li> </ul>                                                                                                                                      | 1   |   |
|     | Photoelectric current $\nu_2 > \nu_1$ Saturation current                                                                                                                                                                                                                                                                                     | 1   |   |
|     | $-V_{02}$ $-V_{01}$ 0 Collector plate potential $\longrightarrow$ Retarding potential                                                                                                                                                                                                                                                        |     | 2 |

|     |                                                                                                                                                                                                                | 1          |   |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---|
| 16. | a) Truth table for OR gate Logic symbol for OR gate b) Output waveform  1/2  1/2  1/2  1                                                                                                                       |            |   |
|     | a) Truth Table Logic symbol  Input Output  A B Y  O O O  O 1 1  1 0 1  1 1 1 1  B  Logic symbol                                                                                                                | 1/2 + 1/2  |   |
|     | b) Output waveform                                                                                                                                                                                             |            |   |
|     | t=0 1 2 3 4 5 6 7                                                                                                                                                                                              | 1          | 2 |
| 17. | (a) Conditions (b) Formation of rainbow Diagram Explanation  1/2 + 1/2  1/2  1/2  1/2                                                                                                                          |            |   |
|     | The condition for observing a rainbow are:  i. The sun comes out after a rainfall.  ii. The observer stands with the sun towards his/her back. (any one)                                                       | 1/2<br>1/2 |   |
|     | Raindrops  2 Observer  42°                                                                                                                                                                                     | 1/2        |   |
|     | Formation of a rainbow:  → The rays of light reach the observer through a refraction, followed by a reflection, followed by a refraction.  → Figure shows red light, from drop 1 and violet light from drop 2, | 1/2        | 2 |
|     | reaching the observers eye.                                                                                                                                                                                    | 72         | 4 |

Compartment Page No. 5 20th July, 2014 Final

| 18. |                                                                                   |     |   |
|-----|-----------------------------------------------------------------------------------|-----|---|
| 10. | (i) Formula of source frequency ½                                                 |     |   |
|     | Result of source frequency ½                                                      |     |   |
|     | (ii) Formula of quality factor ½                                                  |     |   |
|     | Result of quality factor ½                                                        |     |   |
|     | 72                                                                                |     |   |
|     | (i) $\omega = \frac{1}{\sqrt{LC}}$                                                | 1/2 |   |
|     | $\sqrt{LC}$                                                                       |     |   |
|     | $= \frac{1}{\sqrt{40 \times 10^{-3} \times 100 \times 10^{-6}}}$                  |     |   |
|     | $= 500 \text{ rad/s Or } v = \frac{500}{2\pi} hz$                                 | 1/2 |   |
|     |                                                                                   |     |   |
|     | (ii) $Q = \frac{1}{R} \sqrt{\frac{L}{C}} \text{ or } Q = \frac{\omega_0 L}{R}$    | 1/2 |   |
|     |                                                                                   |     |   |
|     | $=\frac{1}{50}\sqrt{\frac{40\times10^{-3}}{100\times10^{-6}}}$                    |     |   |
|     | $-\frac{1}{50}\sqrt{\frac{100\times10^{-6}}{100\times10^{-6}}}$                   |     |   |
|     | = 0.4                                                                             | 1/2 | 2 |
| 10  |                                                                                   | 72  |   |
| 19. | (a) Principle of potentiometer ½                                                  |     |   |
|     | Reason for Part (i), (ii) and (iii) $\frac{1}{2} + \frac{1}{2} + \frac{1}{2}$     |     |   |
|     | (b) Graph                                                                         |     |   |
|     |                                                                                   |     |   |
|     | a) Principle of potentiometer:                                                    |     |   |
|     | The potential drop across the length of a steady current carrying wire of uniform | 1/2 |   |
|     | cross section is proportional to the length of the wire.                          |     |   |
|     | i. We use a long wire to have a lower value of potential gradient (i.e. a         |     |   |
|     | lower 'least count' or greater sensitivity of the potentiometer                   | 1/2 |   |
|     | ii. The area of cross section has to be uniform to get a 'uniform wire' as        |     |   |
|     | per the principle of the potentiometer                                            | 1/2 |   |
|     | / to ensure a constant value of resistance per unit length of the wire.           |     |   |
|     | iii. The emf of the driving cell has to be greater than the emf of the primary    | 1/2 |   |
|     | cells as otherwise no balance point would be obtained.                            |     |   |
|     | V                                                                                 |     |   |
|     | b) Potential gradient $K = \frac{V}{L}$                                           |     |   |
|     | ∴ the required graph is as shown                                                  |     |   |
|     |                                                                                   |     |   |
|     |                                                                                   |     |   |
|     |                                                                                   |     |   |
|     |                                                                                   | 1   |   |
|     | K \                                                                               | 1   |   |
|     |                                                                                   |     |   |
|     |                                                                                   |     |   |
|     | $\rho \longrightarrow$                                                            |     | 3 |
|     | · ·                                                                               |     |   |
|     |                                                                                   |     |   |
|     |                                                                                   |     |   |
|     |                                                                                   |     |   |
|     |                                                                                   |     |   |

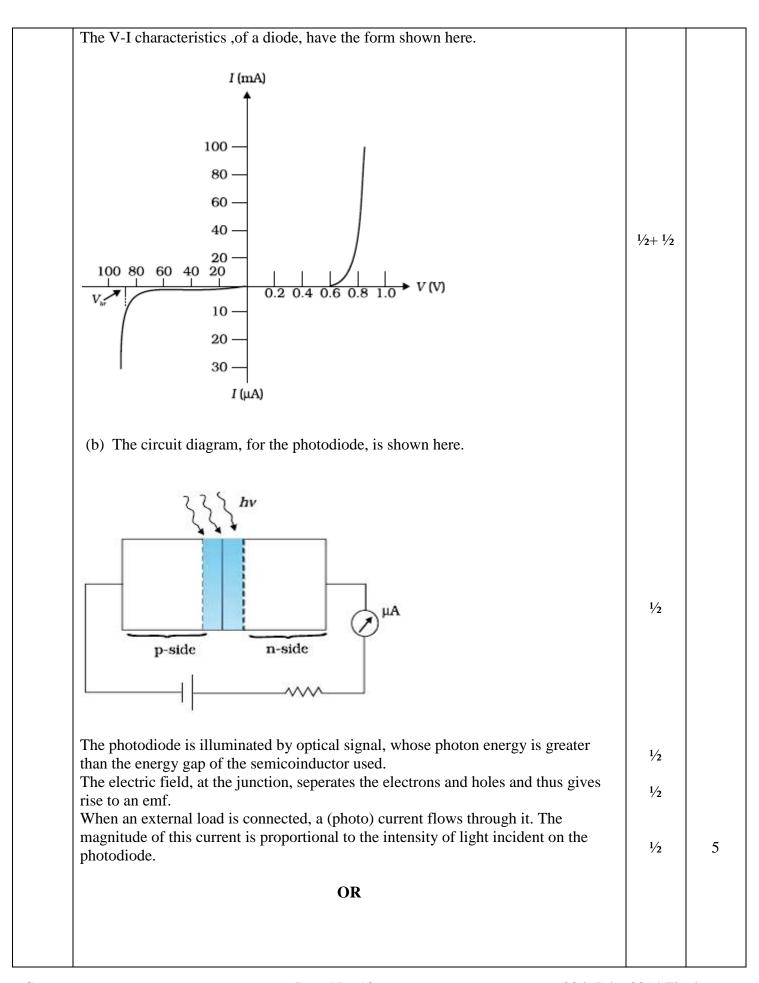
| 21. |                                                                                                                                                                                                                                                                                                                                                                    |         |   |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---|
| 21. | (i) Magnitude of Resultant field 2 (ii) Direction of Resultant field 1                                                                                                                                                                                                                                                                                             |         |   |
|     | (i) Magnitude $E_{AB}$ $E_{AC}$ $E_{AC}$ $E_{AC}$                                                                                                                                                                                                                                                                                                                  | 1/2     |   |
|     | $\left  \frac{1}{E_{AB}} \right  = \frac{1}{4\pi\varepsilon_0} \frac{3q}{a^2} = 3E, \text{ where } E = \frac{1}{4\pi\varepsilon_0} \frac{q}{a^2}$ $\left  \frac{1}{E_{AC}} \right  = \frac{1}{4\pi\varepsilon_0} \frac{4q}{a^2} = 4E$                                                                                                                              | 1/2     |   |
|     | $E_{net} = \sqrt{(3E)^2 + (4E)^2 + 2(3E) \times (4E) \times \left(-\frac{1}{2}\right)}$ $= \sqrt{9E^2 + 16E^2 - 12E^2}$ $= E\sqrt{13} = \frac{1}{4\pi\varepsilon_0} \frac{q\sqrt{13}}{a^2}$ (ii) Direction $\tan \propto = \frac{ E_{AB}  \sin 120^\circ}{ E_{AC}  +  E_{AB}  \cos 120^\circ}$                                                                     | 1/2     |   |
|     | $= \frac{3E \times \sqrt{3}/2}{4E + 3E \times -\left(\frac{1}{2}\right)} = \frac{3E\sqrt{3} \times 2}{2 \times 5E}$ $\propto = \tan^{-1}\left(\frac{3\sqrt{3}}{5}\right)$                                                                                                                                                                                          | 1/2     | 3 |
| 22. | (a) Reason 1 (b) Any two values 1½ +1½ (c) Determination of sideband frequencies 1½ + ½                                                                                                                                                                                                                                                                            |         |   |
|     | <ul> <li>(a) The ultra high frequency em radiations, continuously emitted by a mobile phone, may harm the system of the human body.</li> <li>(b) Sister Anita shows <ul> <li>(i) Concern about her brother</li> <li>(ii) Awareness about the likely effects of em radiations on human body</li> <li>(iii) Sense of responsibility (any two)</li> </ul> </li> </ul> | 1/2 1/2 |   |

| (c) The side bands are $(\nu_e + \nu_m)$ and $(\nu_e - \nu_m)$ or $(1000 + 10)$ kHz and $(1000 - 10)$ kHz $1010$ kHz and $990$ kHz        | 1/2 | 3 |
|-------------------------------------------------------------------------------------------------------------------------------------------|-----|---|
| (a) Difference between a solenoid and a toroid (b) Derivation of the relation $B=\mu_0 nI$ (c) Magnetic field (i) inside and (ii) outside |     |   |
| (a) A toroid can be viewed as a solenoid which has been bent into a circular shape to close on itself                                     | 1   |   |
| (b) B P P P                                                                                                                               |     |   |
| S S S S S S S S S S S S S S S S S S S                                                                                                     | 1/2 |   |
| For the magnetic field at a point S inside a toroid we have                                                                               |     |   |
| $B(2 \pi r) = \mu_{\circ} NI$ $B = \mu_{\circ} \frac{NI}{2 \pi r} = \mu_{\circ} nI$ ( n = no. of turns per unit length of solenoid)       | 1/2 |   |
| (c) For the loop 1, Ampere's circuital law gives $B_1 \cdot 2\pi r_1 = \mu_0(0)$ i.e. $B_1 = 0$                                           | 1/2 |   |
| Thus the magnetic field, in the open space inside the toroid is zero.                                                                     |     |   |

Compartment Page No. 9 20th July, 2014 Final

|     |                                                                                                                            | I   |   |
|-----|----------------------------------------------------------------------------------------------------------------------------|-----|---|
|     | Also at point Q, we have $B_3(2\pi r_3) = \mu_0(I_{enclosed})$                                                             |     |   |
|     | But from the sectional cut, we see that the current coming out of the plane of                                             |     |   |
|     | the paper, is cancelled exactly by the current going into it.                                                              |     |   |
|     | Hence $I_{enclosed}$ =0                                                                                                    |     |   |
|     | $B_3 = 0$                                                                                                                  | 1/2 | 3 |
|     |                                                                                                                            |     |   |
|     | OR                                                                                                                         |     |   |
|     |                                                                                                                            |     |   |
|     | Derivation of the expression for magnetic moment $2\frac{1}{2}$                                                            |     |   |
|     | Direction of magnetic moment ½                                                                                             |     |   |
|     |                                                                                                                            |     |   |
|     |                                                                                                                            |     |   |
|     | We have $\mu = iA$                                                                                                         | 1/2 |   |
|     | $=\frac{e \cdot v}{2\pi r} \cdot \pi r^2$ .                                                                                | 1/2 |   |
|     | $2\pi r$                                                                                                                   |     |   |
|     | _ evr                                                                                                                      | 1/2 |   |
|     | $= \frac{evr}{2}$ $\ell = mvr$                                                                                             |     |   |
|     | ρ                                                                                                                          | 1/2 |   |
|     | $\operatorname{vr} = \frac{\varepsilon}{m}$                                                                                | 72  |   |
|     | $\vec{\mu} = \frac{-e\vec{l}}{2m}$                                                                                         | 1/2 |   |
|     | The direction of $\vec{\mu}$ is opposite to that of $\vec{l}$ because of the negative charge of the                        |     | _ |
|     | electron.                                                                                                                  | 1/2 | 3 |
| 24. | (i) Relation between eveness life and half life                                                                            |     |   |
|     | (i) Relation between average life and half life 1                                                                          |     |   |
|     | (ii) Calculation for activity 2                                                                                            |     |   |
|     | (i) Average Life $\tau = \frac{T_{1/2}}{0.693}$                                                                            | 1   |   |
|     | (ii) Activity = $\lambda N$                                                                                                |     |   |
|     |                                                                                                                            | 1/2 |   |
|     | $= \frac{0.6931}{28} \times 15 \times 10^{-3} \times 75 \times 10^{20} \ year^{-1}$                                        | 1/2 |   |
|     | 28<br>1125 x 0.6931                                                                                                        |     |   |
|     | $= \frac{11\overline{25} \times 0.6931}{28} \times 10^{17}  year^{-1}$                                                     |     |   |
|     | $= 2.81 \times 10^{18} yr^{-1} or = 8.81 \times 10^{10} s^{-1}$                                                            |     |   |
|     | · ·                                                                                                                        | 1   |   |
|     | [Note: There is a misprint in this part of question. Award last 1 mark of the second part even if the candidate attempts.] |     |   |
|     | second part even it the candidate attempts.]                                                                               |     | 3 |
| 25. | 2.6                                                                                                                        |     |   |
|     | (a) Derivation of the result $I = 4I_0 cos^2 \frac{\phi}{2}$                                                               |     |   |
|     | (b) Conditions for                                                                                                         |     |   |
|     | constructive and ½                                                                                                         |     |   |
|     | destructive interference ½                                                                                                 |     |   |
|     |                                                                                                                            |     |   |
|     | (a) The resultant displacement is given by:                                                                                |     |   |
|     | $y = y_1 + y_2$                                                                                                            |     |   |
|     | $= a \cos \omega t + a \cos(\omega t + \phi)$                                                                              | 1/2 |   |
|     | $= a \cos \omega t (1 + \cos \phi) - a \sin \omega t \sin \phi$                                                            |     |   |
|     | Put $R \cos \theta = a (1 + \cos \phi)$                                                                                    |     |   |
|     | $R\sin\theta = a\sin\phi$                                                                                                  | 1/2 |   |
| L   | · · · · · · · · · · · · · · · · · · ·                                                                                      | 1   |   |

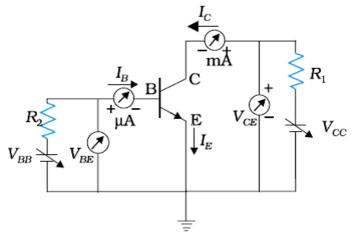
Compartment Page No. 10 20th July, 2014 Final


| $\therefore R^2 = a^2(1 + \cos^2\phi + 2\cos\phi) + a^2\sin^2\phi$ $= 2 a^2 (1 + \cos\phi) = 4a^2\cos^2\frac{\phi}{2}$ $\therefore I = R^2 = 4 a^2\cos^2\frac{\phi}{2} = 4 I_0\cos^2\frac{\phi}{2}$ For constructive interference, $\cos\frac{\phi}{2} = \frac{1}{1} \text{ or } \frac{\phi}{2} = n \pi \text{ or } \phi = 2n\pi$ For destructive interference, $\cos\frac{\phi}{2} = 0 \text{ or } \frac{\phi}{2} = (2n+1)\frac{\pi}{2} \text{ or } \phi = (2n+1)\pi$ $26.$ (i) Formula Energy in the first excited state Energy required (ii) Kinetic energy Orbital radius (Formula and Result) $a.  E_n  \propto \frac{1}{n^2}$ b. $\therefore$ Energy of first excited state $= \frac{-13.6}{2^2} = -3.4\text{eV}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\therefore I = R^2 = 4 \ a^2 cos^2 \frac{\phi}{2} = 4 \ I_0 cos^2 \frac{\phi}{2}$ For constructive interference, $\cos \frac{\phi}{2} = \frac{1}{2}  \text{or}  \frac{\phi}{2} = n \pi \text{ or } \phi = 2n\pi$ For destructive interference, $\cos \frac{\phi}{2} = 0  \text{or}  \frac{\phi}{2} = (2n+1) \frac{\pi}{2} \text{ or } \phi = (2n+1)\pi$ $26.$ (i) Formula Energy in the first excited state Energy required (ii) Kinetic energy Orbital radius (Formula and Result) $(i) \text{ For the hydrogen atom}$ a. $ E_n  \propto \frac{1}{n^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| For constructive interference, $\cos\frac{\phi}{2} = \frac{+1}{1}  or  \frac{\phi}{2} = n \pi  or  \phi = 2n\pi$ For destructive interference, $\cos\frac{\phi}{2} = 0  or  \frac{\phi}{2} = (2n+1) \frac{\pi}{2}  or  \phi = (2n+1)\pi$ $26. \qquad (i)  \text{Formula} \qquad \qquad \frac{1}{2} $ |
| $\cos \frac{\phi}{2} = \frac{+1}{1} \text{ or } \frac{\phi}{2} = n \pi \text{ or } \phi = 2n\pi$ For destructive interference, $\cos \frac{\phi}{2} = 0 \text{ or } \frac{\phi}{2} = (2n+1) \frac{\pi}{2} \text{ or } \phi = (2n+1)\pi$ $26.$ (i) Formula Energy in the first excited state Energy required (ii) Kinetic energy Orbital radius (Formula and Result) $(i) \text{ For the hydrogen atom}$ a. $ E_n  \propto \frac{1}{n^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| For destructive interference, $\cos \frac{\phi}{2} = 0  \text{or}  \frac{\phi}{2} = (2n+1) \frac{\pi}{2}  \text{or}  \phi = (2n+1)\pi$ $26.$ (i) Formula $\frac{1}{2}$ Energy in the first excited state $\frac{1}{2}$ Energy required $\frac{1}{2}$ (ii) Kinetic energy $\frac{1}{2}$ Orbital radius (Formula and Result) $\frac{1}{2} + \frac{1}{2}$ (i) For the hydrogen atom $a.   E_n  \propto \frac{1}{n^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $\cos \frac{\phi}{2} = 0 \text{ or } \frac{\phi}{2} = (2n+1) \frac{\pi}{2} \text{ or } \phi = (2n+1)\pi$ $26.$ (i) Formula $Energy \text{ in the first excited state} $ $Energy required$ (ii) Kinetic energy $Corbital \text{ radius (Formula and Result)}$ $Energy required$ (ii) For the hydrogen atom $E_n \mid \alpha = \frac{1}{n^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 26. (i) Formula $\frac{1}{2}$ Energy in the first excited state $\frac{1}{2}$ Energy required $\frac{1}{2}$ (ii) Kinetic energy $\frac{1}{2}$ Orbital radius (Formula and Result) $\frac{1}{2} + \frac{1}{2}$ (i) For the hydrogen atom $\frac{1}{2}$ a. $ E_n  \propto \frac{1}{n^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (i) Formula $\frac{1}{2}$ Energy in the first excited state $\frac{1}{2}$ Energy required $\frac{1}{2}$ (ii) Kinetic energy $\frac{1}{2}$ Orbital radius (Formula and Result) $\frac{1}{2} + \frac{1}{2}$ (i) For the hydrogen atom $a.  E_n  \propto \frac{1}{n^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Energy required $\frac{1}{2}$ (ii) Kinetic energy $\frac{1}{2}$ Orbital radius (Formula and Result) $\frac{1}{2} + \frac{1}{2}$ (i) For the hydrogen atom $a.  E_n  \propto \frac{1}{n^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (ii) Kinetic energy $\frac{1}{2}$ Orbital radius (Formula and Result) $\frac{1}{2} + \frac{1}{2}$ (i) For the hydrogen atom a. $ E_n  \propto \frac{1}{n^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (i) For the hydrogen atom a. $ E_n  \propto \frac{1}{n^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| a. $ E_n  \propto \frac{1}{n^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| h Hineray of tirst excited state =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| c. : Energy required = $[-3.4 - (13.6)eV] = 10.2 eV$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| a. Kinetic energy =  energy of 1st excited state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| = 3.4  eV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| b. Orbital radius in nth state $\propto n^2$<br>= $4 \times 0.53 \dot{A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| = 2.12  Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 27.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (a) Graph showing variation of intensity with $\theta$ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (b) Determination of values of $\theta$ and $\beta$ 1+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (a) The required graph would have the form shown as:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\frac{I_o}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\frac{\pi}{2}$ $\theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Using $I_2 = I_1 \cos^2 \theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

20th July, 2014 Final

Compartment Page No. 11

|     | (b) $I_1$ = Light transmitted by $P_1$ $I_3$ = Light transmitted by $P_3 = I_1 \cos^2 \beta$ $I_2$ = Light transmitted by $P_2 = I_3 \cos^2(\theta - \beta)$ Alternatively, (Award mark to student who indicates correct value of $I_1$ , $I_2$ and $I_3$ by making a diagram)             | 1/2        |   |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---|
|     | $\therefore I_2 = I_3$                                                                                                                                                                                                                                                                     |            |   |
|     | $I_1 \cos^2 \beta \cdot \cos^2 (\theta - \beta) = I_1 \cos^2 \beta$ $\theta = \beta$                                                                                                                                                                                                       | 1/2        |   |
|     | Also $I_1 = I_2$<br>$I_{1=} I_1 \cos^2 \beta \cdot \cos^2 (\theta - \beta)$                                                                                                                                                                                                                |            |   |
|     | or $\cos^2\theta = 1$                                                                                                                                                                                                                                                                      | 1/         |   |
|     | $\therefore \theta = 0^{\circ} \text{ or } \pi$ Therefore $\beta = 0^{\circ} \text{ or } \pi$                                                                                                                                                                                              | 1/2<br>1/2 | 3 |
| 20  | ,                                                                                                                                                                                                                                                                                          |            |   |
| 28. | (a) Circuit arrangement of p-n function in  (i) Forward biasing (ii) Reverse biasing VI characteristics Explanation 1/2 (b) Circuit diagram Explanation 2  (a)  (b) Voltmeter(V)  Milliammeter (mA)  Switch                                                                                | 1/2        |   |
|     | Forward biasing                                                                                                                                                                                                                                                                            |            |   |
|     | Voltmeter(V)  P n  Microammeter (µA)  Switch                                                                                                                                                                                                                                               | 1/2        |   |
|     | Reverse biasing The VI characteristics are obtained by connecting the battery, to the diode, through a potentiometer (or rheostat). The applied voltage to the diode is changed. The values of current, for different values of voltage, are noted and a graph between V and I is plotted. | 1          |   |


Compartment Page No. 12 20th July, 2014 Final



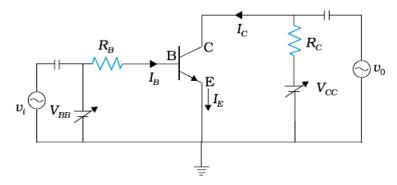
Compartment Page No. 13 20th July, 2014 Final

| (a) Circuit diagram              | 1   |  |
|----------------------------------|-----|--|
| Description of current formation | 1   |  |
| Deduction of $I_e = I_b + I_c$   | 1/2 |  |
| (b) Circuit diagram              | 1   |  |
| Working                          | 1 ½ |  |
|                                  |     |  |

a) The circuit diagram is shown here



The emitter-base junction, being forward biased, the majority charge carriers (electrons), from the emitter, flow into the base region constituting the emitter current( $I_E$ )


The base region, being very thin, only a (very) small fraction, of these charge carriers, swamps the holes present in the base region resulting in a (small) base current  $(I_B)$ .

The majority of these charge carriers, are attracted by the (reverse biased) collector. These make up the collector current( $I_C$ ).

It is clear, therefore, that

$$I_E = I_C + I_B$$

b) The circuit diagram, of a transistor, working as an amplifier, in its CE mode, is shown here.



If a small sinusoidal voltage is superimposed on the dc base bias by connecting the source of this signal in series with  $V_{BB}$  supply. Then the base current will have sinusoidal variations superposed on the values  $I_B$ . As a consequence the collector current also will have sinusoidal variation superimposed on the value of  $I_C$  producing in turn corresponding change in the output voltage  $V_o$ .

1

1

1/2

1

1 1/2

5

Compartment Page No. 14 20th July, 2014 Final

- (iii)Secondary current is small (**Any one**)
- d) Reason due to which energy loses may occur Flux leakage/resistance of the coils / eddy currents / Hysteresis (**Any two**)

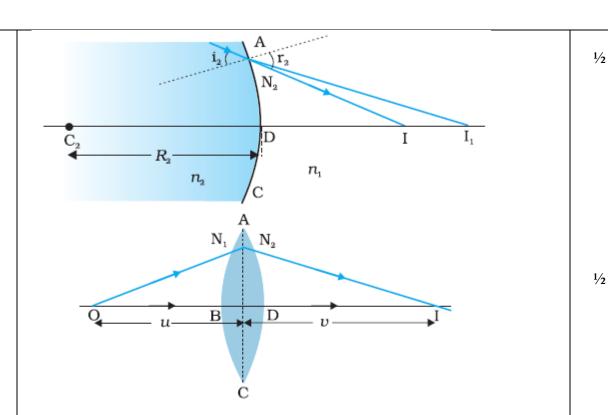
OR

1

 $\frac{1}{2}$ 

1/2

1/2


1/2

1/2

1/2

1/2 +1/2

|     | a) Derivation of the expressions for  i. Induced emf  ii. Induced current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |   |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|
|     | b) Expression for magnitude of force and its direction 1½ c) Expression for power 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |   |
|     | c) Expression for power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |   |
|     | a) In one revolution Change of area, $dA = \pi \ell^2$ $\therefore$ change of magnetic flux $d\phi = \overrightarrow{B} \cdot \overrightarrow{dA} = BdAcos0^o$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |   |
|     | $= B \pi \ell^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1/2 |   |
|     | Period of revolution T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1/2 |   |
|     | (i) Induced emf $\varepsilon = B\pi \ell^2/T = B\pi \ell^2 v$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1   |   |
|     | (ii) Induced current in the rod, $I = \frac{\varepsilon}{R} = \frac{\pi v B \ell^2}{R}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1/2 |   |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ,,, |   |
|     | [Note: Award 2 marks if the student derives the above relation using other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |   |
|     | method.] b) Force acting on the rod, $F = I \ell B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1/2 |   |
|     | $\pi_{12}R^2\ell^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1/  |   |
|     | $=rac{\pi vB^2\ell^3}{R}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1/2 |   |
|     | The external force required to rotate the rod opposes the Lorentz force acting on the rod / external force acts in the direction opposite to the Lorentz force                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1/2 |   |
|     | c) Power required to rotate the rod $P = F\theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1/2 |   |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 72  |   |
|     | $=\frac{\pi v B^2 \ell^3 v}{R}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1/2 | 5 |
| 30. | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |   |
|     | a) Ray diagram Derivation of lens maker's formula b) Calculation of radius of curvature  1 2 ½ 1 ½                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |   |
|     | $N_1$ $N_1$ $N_1$ $N_2$ $N_1$ $N_2$ $N_1$ $N_2$ $N_1$ $N_2$ $N_2$ $N_3$ $N_4$ $N_2$ $N_4$ $N_2$ $N_4$ $N_4$ $N_4$ $N_4$ $N_4$ $N_5$ | 1/2 |   |



The first refracting surface ABC forms the image  $I_1$  of the object O. The image  $I_1$  acts as a virtual object for the second refracting surface ADC which forms the real image I as shown in the diagram

For refraction at ABC
$$\frac{n_2}{v_1} - \frac{n_1}{u} = \frac{n_2 - n_1}{R_1} - \dots (i)$$

For refraction at ADC

$$\frac{n_2}{v} - \frac{n_1}{u} = \frac{n_1 - n_2}{R_{12}}$$
 ----- (ii)

Adding equation (i) and equation (ii)

$$\frac{n_1}{v} - \frac{n_1}{u} = (n_2 - n_1)(\frac{1}{R_1} - \frac{1}{R_2})$$
$$\frac{1}{v} - \frac{1}{u} = (\frac{n_2}{n_1} - 1)(\frac{1}{R_1} - \frac{1}{R_2})$$

We know If  $u = \infty$ , v = f

$$\frac{1}{v} - \frac{1}{u} = \frac{1}{f}$$

$$\frac{1}{f} = (n_2 - 1)(\frac{1}{R_1} - \frac{1}{R_2})$$

(b) 
$$\frac{1}{f} = (\mu - 1) \left( \frac{1}{R_1} - \frac{1}{R_2} \right)$$
  
 $\frac{1}{20} = (1.55 - 1) \left( \frac{1}{R} - \frac{1}{-R} \right)$ 

1/2

1/2

| $=0.55\times\frac{2}{R}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1/2                             |   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---|
| $R = 0.55 \times 2 \times 20 = 22 cm$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                               | 5 |
| OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ļ                               |   |
| (a) Labelled ray diagram  Derivation of expression for magnifying power  1 ½  (b) Determination of total magnification  2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |   |
| a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ļ                               |   |
| Objective $f_{\overline{o}}$ Eyepiece $f_{\overline{e}}$ $f$ | 1 ½                             |   |
| [Note: deduct ½ mark if not labelled]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 |   |
| Derivation Magnifying Power $M = \frac{\tan \beta}{\tan \alpha} \cong \frac{\beta}{\alpha}$ Final image is formed at infinity when the image $A'B'$ is formed by the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1/2                             |   |
| objective lens at the force of the eye piece                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                 |   |
| $m = \frac{h}{f_e} \times \frac{f_0}{h}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1/2                             |   |
| $=\frac{f_0}{c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1/2                             |   |
| b) Given $f_0 + f_e = 105$ , $f_0 = 20 f_e$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1/2                             |   |
| $20 f_e + f_e = 105$ $f_e = \frac{105}{21} = 5 cm$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |   |
| $f_e = \frac{1}{21} = 5 cm$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1/ <sub>2</sub> 1/ <sub>2</sub> |   |
| $f_0 = 20 \times 5 = 100 \text{ cm}$ $\therefore Magnification \ m = \frac{f_0}{f} = \frac{100}{5} = 20$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 | 5 |
| $f_e$ 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1/2                             | 5 |

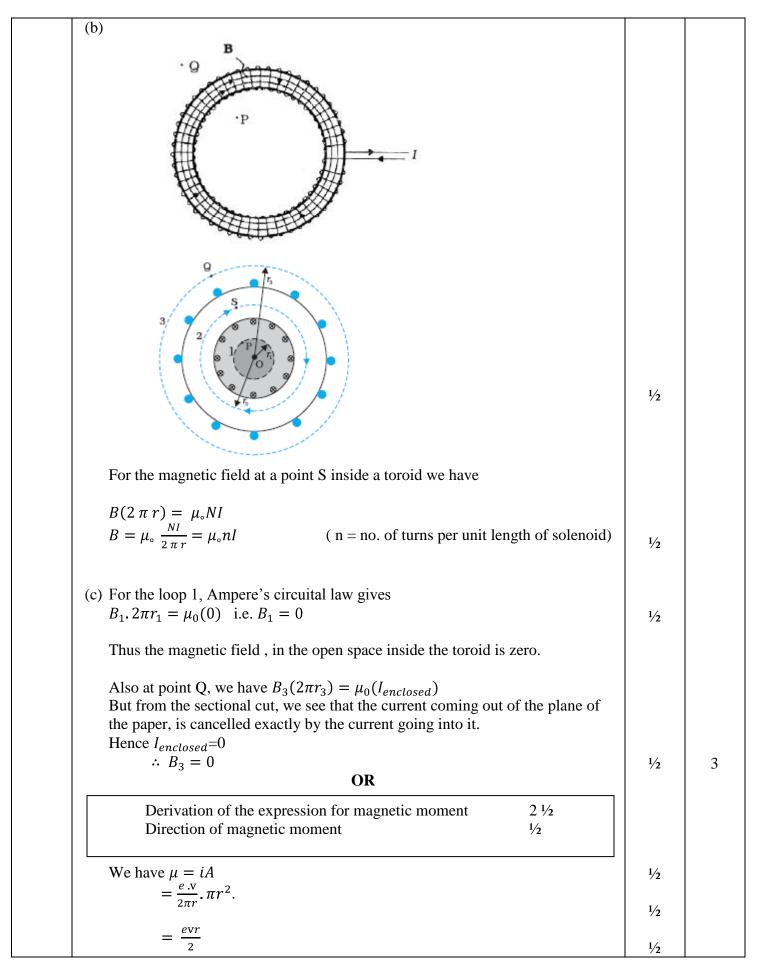
## MARKING SCHEME SET 55/3 (Compartment)

| Q.No. | SET 55/3 (Compartment)  Expected Answer/Value Points                                                                                                                                                                                                                                                                                                                                                                                             | Marks      | Total<br>Marks |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------|
| 1.    | Line B Since slope $(q/V)$ of B is lesser than that of A.                                                                                                                                                                                                                                                                                                                                                                                        | 1/2<br>1/2 | 1              |
| 2.    | Demodulation is the process of retrieval of information from the carrier wave at the                                                                                                                                                                                                                                                                                                                                                             | 1          | 1              |
| 3.    | Incident planewave                                                                                                                                                                                                                                                                                                                                                                                                                               | 1          | 1              |
|       | Spherical wavefront of radius R/2                                                                                                                                                                                                                                                                                                                                                                                                                |            | 1              |
| 4.    | A has positive polarity                                                                                                                                                                                                                                                                                                                                                                                                                          | 1          | 1              |
| 5.    | $v_d = \frac{eV}{m\ell} \tau$                                                                                                                                                                                                                                                                                                                                                                                                                    | 1          | 1              |
| 6.    | $v = \frac{E}{B}$ where $v$ is speed of electron  Alternatively: $ \overrightarrow{F_E}  =  \overrightarrow{F_B} $                                                                                                                                                                                                                                                                                                                               | 1          | 1              |
| 7.    | In point to point communication, communication takes place over a single link between a transmitter and a receiver.  In the broadcast mode, there are a large number of receivers corresponding to a single transmitter.                                                                                                                                                                                                                         | 1/2        | 1              |
| 8.    | With increase in temperature, the relaxation time ( average time between successive collisions) decreases and hence resistivity increases.<br>Alternatively: Resistivity $\rho\left(=\frac{m}{ne^2\tau}\right)$ increases as $\tau$ decreases with increase in temperature.                                                                                                                                                                      | 1          | 1              |
| 9     | (i) Statement of Biot Savart's law 1 (ii) Expression for magnetic field ½ (iii) Showing field lines ½  (i) According to Biot Savart's law, the magnetic field due to a current element $\overrightarrow{d\ell}$ carrying current I at a point with position $P$ vector $\overrightarrow{r}$ is given by $d\overrightarrow{B} = \frac{\mu_o}{4\pi} I\left[\frac{\overrightarrow{d\ell} \times \overrightarrow{r}}{ \overrightarrow{r} ^3}\right]$ | 1          |                |

|     |                                                                                                                                                                                                                                                 | 1        |   |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---|
|     | $\overrightarrow{d\ell}$ $\overrightarrow{r}$ $P$ (ii) $B = \frac{\mu_0 l}{2r}$ Field lines                                                                                                                                                     | 1/2      |   |
|     |                                                                                                                                                                                                                                                 | 1/2      | 2 |
| 10. | (a) Difference between a permanent magnet and an electromagnet $\frac{1}{2} + \frac{1}{2}$ (b) Any two properties of material $\frac{1}{2} + \frac{1}{2}$                                                                                       |          |   |
|     | a) An electromagnet consists of a core made of a ferromagnetic material placed inside a solenoid. It behaves like a strong magnet when current flows through the solenoid and effectively loses its magnetism when the current is switched off. | 1/2      |   |
|     | <ul><li>(i) A permanent magnet is also made up of a ferromagnetic material but it retains its magnetism at room temperature for a long time after being magnetized once.</li><li>b)</li></ul>                                                   | 1/2      |   |
|     | (i) High permeability (ii) Low retentivity (iii)Low coercivity (Any two)  [Note: Give ½ mark if the student just writes 'soft iron' is a suitable material for making electromagnets.]                                                          | 1/2+ 1/2 | 2 |
| 11. | Formula 1/2 Substitution and simplification 1 Result 1/2                                                                                                                                                                                        |          |   |
|     | $q \stackrel{\mathbf{P}}{\longleftarrow} x \stackrel{\mathbf{D}}{\longrightarrow} -2q$                                                                                                                                                          | 1/2      |   |
|     | Let P be the required point at a distance x from charge $q$ $\therefore \frac{1}{4\pi\epsilon_o} \frac{q}{x} + \frac{1}{4\pi\epsilon_o} \frac{(-2q)}{(d-x)} = 0$                                                                                | 1/2      |   |

|     | $\frac{1}{x} = \frac{2}{d-x}$                                                                            | 1/2                             |   |
|-----|----------------------------------------------------------------------------------------------------------|---------------------------------|---|
|     | $x = \frac{d}{3}$ required point is at a distance $\frac{d}{3}$ from charge $q$                          | 1/2                             |   |
|     | Alternatively:                                                                                           |                                 |   |
|     | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                    | 1/2                             |   |
|     | $\frac{1}{4\pi\varepsilon_0}\frac{q}{x} = \frac{1}{4\pi\varepsilon_0}\frac{2q}{d+x}$                     | 1/2                             |   |
|     | 2 x = x + d  or  x = d At distance d towards left of charge q                                            | 1/ <sub>2</sub> 1/ <sub>2</sub> | 2 |
|     | OR                                                                                                       | 72                              | 2 |
|     | (i) Work Done 1<br>(ii) Orientation 1                                                                    |                                 |   |
|     | (i) We have $W = \int_{\theta_1}^{\theta_2} \tau d\theta$                                                |                                 |   |
|     |                                                                                                          | 1/2                             |   |
|     | = -2 pE                                                                                                  | 1/2                             |   |
|     | (ii) $: \tau = PE \sin\theta$ for $\theta = \frac{\pi}{2}$ , $\tau$ is maximum <b>Alternatively:</b>     | 1                               |   |
|     | Antinatively.                                                                                            |                                 |   |
|     | 90°   +q                                                                                                 |                                 |   |
|     | $ \begin{array}{c c} \hline  & p \\  & \neg q \\ \hline \end{array} $                                    |                                 | 2 |
| 12. | One difference between $\varepsilon$ and V 1/2 VI Graph 1/2 Determination of 'r' and $\varepsilon$ 1     |                                 |   |
|     | Difference between $emf(\varepsilon)$ and terminal voltage (v)                                           |                                 |   |
|     | εmf terminal voltage                                                                                     |                                 |   |
|     | 1) It is the potential difference between two terminals of the cells between two terminals when          |                                 |   |
|     | when no current is drawn from it.  2) It is the cause.  current passes through it.  2) It is the effect. | 1/2                             |   |
|     |                                                                                                          |                                 |   |

|     | (Any one) or any other relevant difference                                                                                                                                                                            |            |   |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---|
|     | v one) of any one) of any one)                                                                                                                                                                                        | 1          |   |
| 13. | Negative of slope gives internal resistance.                                                                                                                                                                          | 1/2        | 2 |
| 13. | (i) AND gate Truth Table 1/2 Logic symbol 1/2 (ii) Output waveform 1                                                                                                                                                  |            |   |
|     | (i) For the AND gate:  Truth Table Logic Symbol  Input Output  A B Y  O O O  O 1 O  1 O O  1 1 1 1 1 B                                                                                                                | 1/2 +1/2   |   |
|     | (ii) Output Waveform:  t=0 1 2 3 4 5 6 7                                                                                                                                                                              | 1          | 2 |
| 14. | (a) Conditions (b) Formation of rainbow Diagram Explanation  The condition for observing a rainbow are:  i. The sun comes out after a rainfall.  ii. The observer stands with the sun towards his/her back. (any one) | 1/2<br>1/2 |   |


Compartment Page No. 4 20th July, 2014 Final

|     |                                                                                                                                                                                                                                                                                | T                 |   |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---|
|     | String Hard Raindrops Observer  40°  42°                                                                                                                                                                                                                                       | 1/2               |   |
| 15  | <ul> <li>Formation of a rainbow:</li> <li>→ The rays of light reach the observer through a refraction, followed by a reflection, followed by a refraction.</li> <li>→ Figure shows red light, from drop 1 and violet light from drop 2, reaching the observers eye.</li> </ul> | 1/2               | 2 |
| 15. | (i) Source frequency – Formula  Calculation and Result  (ii) Quality Factor – Formula  -Calculation and Result  1/2  -Calculation and Result                                                                                                                                   |                   |   |
|     | (i) $W_0 = \frac{1}{\sqrt{LC}}$<br>= $\frac{1}{\sqrt{80 \times 10^{-3} \times 50 \times 10^{-6}}} s^{-1} = 500 \ rad/s$                                                                                                                                                        | 1/2               |   |
|     | $or v_0 = \frac{1}{2\pi\sqrt{LC}} = \frac{500}{2\pi} Hz \approx 80 Hz$                                                                                                                                                                                                         | 1/2               |   |
|     | (ii) $Q = \frac{\omega_0 L}{R} = \frac{500 \times 80 \times 10^{-3}}{60} = \frac{4}{6} = \frac{2}{3} \approx 0.67$                                                                                                                                                             | 1/2 + 1/2         | 2 |
| 16. | De Broglie wavelength Calculation and Result  1½ 1½                                                                                                                                                                                                                            |                   |   |
|     | $\lambda = \frac{h}{mv}$ $6.63 \times 10^{-34}$ $66.3$                                                                                                                                                                                                                         | 1/2               |   |
|     | $= \frac{6.63 \times 10^{-34}}{9.1 \times 10^{-31} \times 2.5 \times 10^{8}} = \frac{66.3}{9.1 \times 2.5} \times 10^{-12} m$                                                                                                                                                  | 1/2               |   |
|     | $= 2.9 \times 10^{-12} m = 2.9 \ pm$                                                                                                                                                                                                                                           | 1                 | 2 |
| 17. |                                                                                                                                                                                                                                                                                |                   |   |
|     | Flux through $S_1$ , $\Phi_1 = \frac{Q}{\epsilon_0}$                                                                                                                                                                                                                           | 1/2               |   |
|     | Flux through $S_2$ , $\Phi_2 = \frac{Q+2Q}{\epsilon_o} = \frac{3Q}{\epsilon_o}$<br>Ratio of flux = 1:3<br>No change in flux through $S_1$ with dielectric medium inside the sphere $S_2$                                                                                       | 1/2<br>1/2<br>1/2 | 2 |

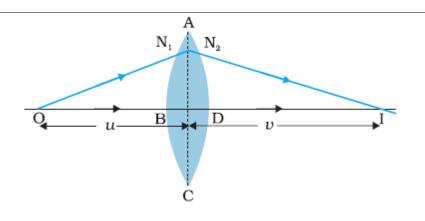
| 18. |                                                                                                                                                                                                                                                                                                                |         |          |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|
| 16. | (i) Definition of threshold frequency 1<br>(ii) Plotting of graph 1                                                                                                                                                                                                                                            |         |          |
|     | (i) The threshold frequency for a given photosensitive surface is the minimum value of frequency of incident light that can cause photoemission from it.                                                                                                                                                       | 1       |          |
|     | (ii) The required plot is as shown here:                                                                                                                                                                                                                                                                       |         |          |
|     | Stopping potential $I_2 > I_1$ $I_2$ $I_1$ Stopping potential $I_2 > I_1$ Collector plate potential                                                                                                                                                                                                            | 1       | 2        |
| 19. | (i) Definition of Mass Defect 1                                                                                                                                                                                                                                                                                | ]       |          |
|     | Relation of mass effect and binding energy ½                                                                                                                                                                                                                                                                   |         |          |
|     | (ii) Total mass of Reactants and Products  Mass defect  1/2                                                                                                                                                                                                                                                    |         |          |
|     | Q value ½                                                                                                                                                                                                                                                                                                      |         |          |
|     | (i) The mass defect of a nucleus equals the difference between the total mass of its constituents and the mass of the nucleus itself.  (Also accept $\Delta m = [Zm_p + (A - Z)m_n] - M$ )  Binding energy = $(Mass \ defect) \times c^2$ (ii) Total Mass of Products = $2 \times 2.0141024$ = $4.0282048 \ u$ | 1       |          |
|     | Total mass of reactants = $(1.00783 + 3.0160449) u$<br>= $4.023879 u$                                                                                                                                                                                                                                          |         |          |
|     | $\therefore Mass \ Defect = (-0.004325 \ u)$ $\therefore O \ malu_0 = -0.04325 \ \times 0.315 \ MeV$                                                                                                                                                                                                           | 1/2 1/2 |          |
|     |                                                                                                                                                                                                                                                                                                                |         |          |
|     | $\approx -4.03 \; MeV$                                                                                                                                                                                                                                                                                         | 1/2     | 3        |
|     |                                                                                                                                                                                                                                                                                                                |         |          |
|     | I                                                                                                                                                                                                                                                                                                              | 1       | <u> </u> |

Compartment Page No. 6 20th July, 2014 Final

|   | 3                                                                  |
|---|--------------------------------------------------------------------|
|   |                                                                    |
| ; |                                                                    |
| ; |                                                                    |
|   |                                                                    |
|   |                                                                    |
| ; | 3                                                                  |
|   |                                                                    |
|   |                                                                    |
|   | , 2<br>, 2<br>, 2<br>, 2<br>, 2<br>, 2<br>, 2<br>, 2<br>, 2<br>, 2 |



| -   |                                                                                                                     | _   | 1 |
|-----|---------------------------------------------------------------------------------------------------------------------|-----|---|
|     | $\ell = m v r$                                                                                                      |     |   |
|     | $vr = \frac{\ell}{}$                                                                                                | 1./ |   |
|     | m                                                                                                                   | 1/2 |   |
|     | $\vec{\mu} = \frac{-e\vec{l}}{2m}$                                                                                  | 1/2 |   |
|     | The direction of $\vec{\mu}$ is opposite to that of $\vec{l}$ because of the negative charge of the                 | 1/  | 2 |
|     | electron.                                                                                                           | 1/2 | 3 |
| 23. |                                                                                                                     |     |   |
|     | (a) Graph showing variation of intensity with $\theta$ 1<br>(b) Determination of values of $\theta$ and $\beta$ 1+1 |     |   |
|     | (a) The required graph would have the form shown as:                                                                |     |   |
|     | I                                                                                                                   |     |   |
|     | 1 h                                                                                                                 |     |   |
|     |                                                                                                                     |     |   |
|     | $\frac{I_o}{2}$                                                                                                     |     |   |
|     |                                                                                                                     |     |   |
|     |                                                                                                                     |     |   |
|     |                                                                                                                     |     |   |
|     |                                                                                                                     | 1   |   |
|     |                                                                                                                     | 1   |   |
|     | $\pi \xrightarrow{\pi} \theta$                                                                                      |     |   |
|     | $\frac{\kappa}{2}$                                                                                                  |     |   |
|     | 2                                                                                                                   |     |   |
|     | Using $I_2 = I_1 \cos^2 \theta$                                                                                     |     |   |
|     | (b) $I_1$ = Light transmitted by $P_1$                                                                              |     |   |
|     | $I_3 = \text{Light transmitted by } P_3 = I_1 \cos^2 \beta$                                                         |     |   |
|     | $I_2$ = Light transmitted by $P_2 = I_3 \cos^2(\theta - \beta)$                                                     | 1/2 |   |
|     | Alternatively, (Award mark to student who indicates correct value of                                                |     |   |
|     | $\overline{I_1, I_2}$ and $I_3$ by making a diagram)                                                                |     |   |
|     |                                                                                                                     |     |   |
|     | $\therefore I_2 = I_3$                                                                                              |     |   |
|     | $I_1 \cos^2 \beta \cdot \cos^2 (\theta - \beta) = I_1 \cos^2 \beta$                                                 |     |   |
|     | $\theta = \beta$                                                                                                    | 1/2 |   |
|     | Also $I_1 = I_2$                                                                                                    |     |   |
|     | $I_{1=}I_1\cos^2\beta.\cos^2(\theta-\beta)$                                                                         |     |   |
|     | or $\cos^2\theta = 1$                                                                                               | 1/2 |   |
|     | $\therefore \theta = 0^{\circ} \text{ or } \pi$                                                                     | 1/2 | 3 |
| 2.1 | Therefore $\beta = 0^{\circ}$ or $\pi$                                                                              | /2  | 3 |
| 24. | Δ Σ                                                                                                                 |     |   |
|     | (a) Derivation of the result $I = 4I_0 cos^2 \frac{\phi}{2}$                                                        |     |   |
|     | (b) Conditions for                                                                                                  |     |   |
|     | constructive and ½                                                                                                  |     |   |
|     | destructive interference ½                                                                                          |     |   |
|     |                                                                                                                     |     |   |
|     | (a) The resultant displacement is given by:                                                                         |     |   |
|     | $y = y_1 + y_2$                                                                                                     |     |   |
| I   | 1 / /1 . /4                                                                                                         | ı   | 1 |


|     | $= a \cos \omega t + a \cos(\omega t + \phi)$                                                          | 1/2 |   |
|-----|--------------------------------------------------------------------------------------------------------|-----|---|
|     | $= a \cos \omega t (1 + \cos \phi) - a \sin \omega t \sin \phi$                                        |     |   |
|     | Put $R\cos\theta = a(1+\cos\phi)$                                                                      |     |   |
|     | $R\sin\theta = a\sin\phi$                                                                              | 1/2 |   |
|     | $R^2 = a^2(1 + \cos^2\phi + 2\cos\phi) + a^2\sin^2\phi$                                                |     |   |
|     | $= 2 a^{2} (1 + \cos \phi) = 4a^{2} \cos^{2} \frac{\phi}{2}$                                           | 1/2 |   |
|     |                                                                                                        |     |   |
|     | $\therefore I = R^2 = 4  a^2 \cos^2 \frac{\phi}{2} = 4  I_0 \cos^2 \frac{\phi}{2}$                     | 1/2 |   |
|     | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                   |     |   |
|     |                                                                                                        |     |   |
|     | For constructive interference,                                                                         |     |   |
|     | $\cos\frac{\phi}{2} = \pm 1  or  \frac{\phi}{2} = n \pi  or  \phi = 2n\pi$                             | 1/2 |   |
|     |                                                                                                        |     |   |
|     | For destructive interference,                                                                          |     |   |
|     | $\cos\frac{\phi}{2} = 0 \text{ or } \frac{\phi}{2} = (2n+1)\frac{\pi}{2} \text{ or } \phi = (2n+1)\pi$ | 1/2 | 3 |
|     | $\frac{2}{2} = \frac{2n+1}{2} = \frac{2n+1}{2}$                                                        | , - |   |
| 25. | (a) Reason for momentary deflection ½                                                                  |     |   |
|     | Deflection after the capacitor gets fully charged ½                                                    |     |   |
|     | (b) Explanation for modification in Ampere's circuital law 2                                           |     |   |
|     | (b) Explanation for modification in rampere 3 enegation law                                            |     |   |
|     |                                                                                                        |     |   |
|     | (a) The momentary deflection is due to the transient current flowing through                           | 1/2 |   |
|     | the circuit when the capacitor is getting charged.                                                     |     |   |
|     | The deflection would be zero when the capacitor gets fully charged.                                    | 1/2 |   |
|     | (b) We consider the charging of a capacitor when it is being charged by                                |     |   |
|     | connecting it to a dc source.                                                                          |     |   |
|     |                                                                                                        |     |   |
|     | p   +   P   + N-                                                                                       |     |   |
|     | P + M-   + M-   -                                                                                      |     |   |
|     | $(\overline{t})$ $+$ $ (0)$ $\rightarrow$ $(1)$ $+$ $ \rightarrow$                                     |     |   |
|     | (t) →   ▼   + -   → · · · · ·     +   -                                                                |     |   |
|     | VI = 1 YI = 1                                                                                          |     |   |
|     | + -                                                                                                    |     |   |
|     | 1+ -1                                                                                                  |     |   |
|     | C                                                                                                      |     |   |
|     | s                                                                                                      |     |   |
|     | + <del>    -</del>                                                                                     |     |   |
|     | PA M                                                                                                   |     |   |
|     | /₹\\ <del>-</del>                                                                                      |     |   |
|     | ((t) →   ▼     →   →                                                                                   |     |   |
|     | \/ <del>       </del>                                                                                  |     |   |
|     | Ĭ <del>  4</del>   →                                                                                   |     |   |
|     | <u> </u>                                                                                               |     |   |
|     | Ċ                                                                                                      |     |   |
|     | In Ampere's circuital law, namely                                                                      |     |   |
|     | $B(2\pi r) = \mu_0 i$                                                                                  |     |   |
|     | We have $i$ as non zero for surface (a) but zero for surface (c)                                       |     |   |
|     | Hence there is a contradiction in the value of B; calculated one way we have a                         | 1/2 |   |
|     | magnetic field at P but calculated another way we have $B=0$                                           | 1/2 |   |
|     | To remove this contradiction the concept of displacement current                                       | /2  |   |
|     | $(i_d = \varepsilon_0 \frac{d\phi_E}{dt} = i)$ was introduced                                          | 1/2 |   |
|     | $(a-c_0) = (a-c_0)$ was introduced                                                                     | /2  |   |

Compartment Page No. 10 20th July, 2014 Final

|     | and Ampere's circuital law was put in its generalized form namely                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |   |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---|
|     | $\oint_{B} \vec{dt} = \mu_0 i_c + \mu_0 \epsilon_0 \frac{d\phi_E}{dt}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1/2             |   |
|     | This form gives consistent results for values of B irrespective of which surface is used to calculate it.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 | 3 |
| 26. | (a) Principle of potentiometer $\frac{1}{2}$ Reason for Part (i), (ii) and (iii) $\frac{1}{2} + \frac{1}{2} + \frac{1}{2}$ (b) Graph 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |   |
|     | <ul> <li>a) Principle of potentiometer: The potential drop across the length of a steady current carrying wire of uniform cross section is proportional to the length of the wire.  i. We use a long wire to have a lower value of potential gradient (i.e. a lower 'least count' or greater sensitivity of the potentiometer ii. The area of cross section has to be uniform to get a 'uniform wire' as per the principle of the potentiometer / to ensure a constant value of resistance per unit length of the wire. iii. The emf of the driving cell has to be greater than the emf of the primary cells as otherwise no balance point would be obtained.</li> <li>b) Potential gradient K = V/L ∴ the required graph is as shown</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1/2 1/2 1/2 1/2 |   |
|     | $egin{array}{c} igwedge ig$ | 1               | 3 |
| 27. | (i) Magnitude of resultant field 2 (ii) Direction of Resultant field 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |   |
|     | (i) Magnitude $E_{AB}$ $E_{AC}$ $A$ $E_{AC}$ $A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1/2             |   |

|     | $ E_{AB}  = \frac{1}{4\pi\varepsilon_0} \frac{6q}{a^2} = 6E$ where $E = \frac{1}{4\pi\varepsilon_0} \frac{q}{a^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1/2 |   |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|
|     | $ E_{AC}  = \frac{1}{4\pi\varepsilon_0} \frac{8q}{a^2} = 8E$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1/2 |   |
|     | $E_{net} = \sqrt{(6E)^2 + (8E)^2 + 2(6E) \times (8E) \times \left(-\frac{1}{2}\right)}$ $= E\sqrt{52} = \frac{1}{4\pi\varepsilon_0} \frac{q\sqrt{52}}{a^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1/2 |   |
|     | (ii) Direction $\tan \alpha = \frac{E_{AB} \sin 120^{\circ}}{E_{AC} + E_{AB} \cos 120^{\circ}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1/2 |   |
|     | $= \frac{6E \times \sqrt{3}/2}{8E + 6E \left(-\frac{1}{2}\right)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |   |
|     | $\alpha = tan^{-1} \left( \frac{6\sqrt{3}}{10} \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1/2 | 3 |
| 28. | a) Ray diagram Derivation of lens maker's formula b) Calculation of radius of curvature  1 ½  1 ½  1 ½  1 ½                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1/2 |   |
|     | $n_1$ $n_2$ $n_2$ $n_3$ $n_4$ $n_4$ $n_5$ $n_5$ $n_6$ | 72  |   |
|     | $C_2$ $R_2$ $D$ $D$ $I$ $I_1$ $I_2$ $I$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1/2 |   |

Compartment Page No. 12 20th July, 2014 Final



1/2

The first refracting surface ABC forms the image  $I_1$  of the object O. The image  $I_1$  acts as a virtual object for the second refracting surface ADC which forms the real image I as shown in the diagram

For refraction at ABC

$$\frac{n_2}{v_1} - \frac{n_1}{u} = \frac{n_2 - n_1}{R_1} - \dots$$
 (i)

1/2

For refraction at ADC

$$\frac{n_2}{v} - \frac{n_1}{u} = \frac{n_1 - n_2}{R_{12}}$$
 ----- (ii)

1/2

Adding equation (i) and equation (ii)

$$\frac{n_1}{v} - \frac{n_1}{u} = (n_2 - n_1)(\frac{1}{R_1} - \frac{1}{R_2})$$

$$\frac{1}{v} - \frac{1}{u} = (\frac{n_2}{n_1} - 1)(\frac{1}{R_1} - \frac{1}{R_2})$$

1/2

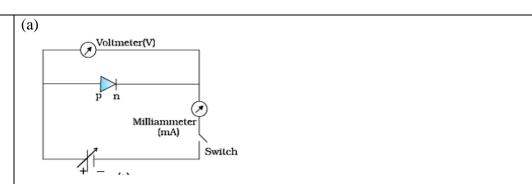
We know If 
$$u = \infty$$
,  $v = f$ 

$$\frac{1}{v} - \frac{1}{u} = \frac{1}{f}$$

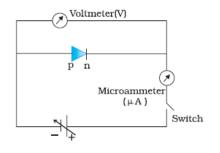
$$\frac{1}{f} = (n_2 - 1)(\frac{1}{R_1} - \frac{1}{R_2})$$

1/2

(b) 
$$\frac{1}{f} = (\mu - 1) \left( \frac{1}{R_1} - \frac{1}{R_2} \right)$$
  
 $\frac{1}{20} = (1.55 - 1) \left( \frac{1}{R} - \frac{1}{-R} \right)$   
 $= 0.55 \times \frac{2}{R}$   
 $R = 0.55 \times 2 \times 20 = 22 \ cm$ 


1/2

1


5

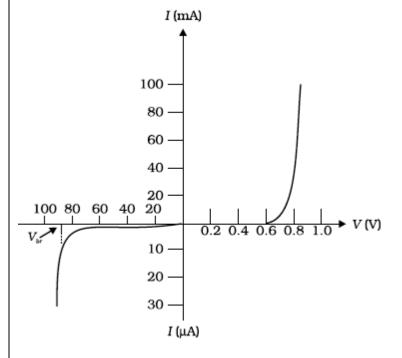
OR

|     |                                                                          | -   | I |
|-----|--------------------------------------------------------------------------|-----|---|
|     | (a) Labelled ray diagram 1 ½                                             |     |   |
|     | Derivation of expression for magnifying power 1½                         |     |   |
|     | (b) Determination of total magnification 2                               |     |   |
|     |                                                                          |     |   |
|     | a)                                                                       |     |   |
|     | Objective $f_{\overline{o}}$ Eyepiece                                    |     |   |
|     | ←-fe                                                                     |     |   |
|     | O B' E                                                                   |     |   |
|     | h B                                                                      | 1 ½ |   |
|     | A                                                                        |     |   |
|     |                                                                          |     |   |
|     |                                                                          |     |   |
|     |                                                                          |     |   |
|     | [Note: deduct ½ mark if not labelled]                                    |     |   |
|     | Derivation Derivation                                                    |     |   |
|     | Magnifying Power                                                         |     |   |
|     | $M = \frac{\tan \beta}{\tan \alpha} \cong \frac{\beta}{\alpha}$          | 1/2 |   |
|     | Final image is formed at infinity when the image $A'B'$ is formed by the | /2  |   |
|     | objective lens at the force of the eye piece                             |     |   |
|     | $m = \frac{h}{f_e} \times \frac{f_0}{h}$ $= \frac{f_0}{f_e}$             |     |   |
|     | $f_{e}$ $h$                                                              | 1/2 |   |
|     | $=\frac{J_0}{c}$                                                         | 1/2 |   |
|     | Je                                                                       | /2  |   |
|     | b) Given                                                                 |     |   |
|     | $f_0 + f_e = 105$ , $f_0 = 20 f_e$                                       |     |   |
|     | $20 f_e + f_e = 105$                                                     | 1/2 |   |
|     | $f_e = \frac{105}{21} = 5 \ cm$                                          | 1/2 |   |
|     | $\int_{0}^{\pi} \frac{21}{f_0 = 20 \times 5 = 100 \ cm}$                 | 1/2 |   |
|     | $f_0 = 20 \times 3 = 100  \text{cm}$                                     | '-  |   |
|     | $\therefore Magnification \ m = \frac{f_0}{f_e} = \frac{100}{5} = 20$    | 1/2 | 5 |
| 29. |                                                                          |     |   |
|     | (a) Circuit arrangement of p-n function in (i) Forward biasing ½         |     |   |
|     | (ii) Reverse biasing ½                                                   |     |   |
|     | VI characteristics 1                                                     |     |   |
|     | Explanation ½                                                            |     |   |
|     | (b) Circuit diagram Explanation  1/2  2                                  |     |   |
|     | Explanation 2                                                            |     |   |
|     |                                                                          |     |   |
|     |                                                                          |     |   |
|     |                                                                          |     |   |
|     |                                                                          |     |   |
|     |                                                                          |     |   |



## Forward biasing



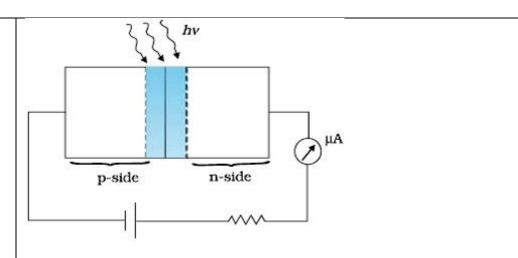

1/2

1/2

## **Reverse biasing**

The VI characteristics are obtained by connecting the battery, to the diode, through a potentiometer (or rheostat). The applied voltage to the diode is changed. The values of current, for different values of voltage, are noted and a graph between V and I is plotted.

The V-I characteristics ,of a diode, have the form shown here.




(b) The circuit diagram, for the photodiode, is shown here.

Compartment Page No. 15 20th July, 2014 Final

1

1/2+1/2



1/2

1/2

1/2

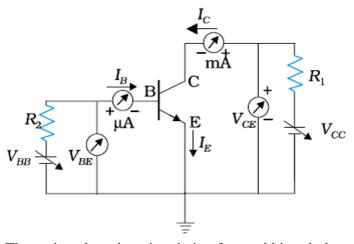
1/2

1

1

5

The photodiode is illuminated by optical signal, whose photon energy is greater than the energy gap of the semicoinductor used.


The electric field, at the junction, seperates the electrons and holes and thus gives rise to an emf.

When an external load is connected, a (photo) current flows through it. The magnitude of this current is proportional to the intensity of light incident on the photodiode.

## OR

| 1   |
|-----|
| 1   |
| 1/2 |
| 1   |
| 1 ½ |
|     |

a) The circuit diagram is shown here



The emitter-base junction, being forward biased, the majority charge carriers (electrons), from the emitter, flow into the base region constituting the emitter current( $I_E$ )

The base region, being very thin, only a (very) small fraction, of these charge carriers, swamps the holes present in the base region resulting in a (small) base current  $(I_B)$ .

The majority of these charge carriers, are attracted by the (reverse biased) collector. These make up the collector current( $I_C$ ).

Compartment Page No. 16 20th July, 2014 Final

|     | It is clear, therefore, that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |   |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---|
|     | $I_E = I_C + I_B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1/2    |   |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |   |
|     | b) The circuit diagram, of a transistor, working as an amplifier, in its CE mode,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |   |
|     | is shown here.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |   |
|     | $V_{l}$ $V_{BB}$ $I_{B}$ $I_{C}$ $I_{$ | 1      |   |
|     | If a small sinusoidal voltage is superimposed on the dc base bias by connecting the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |   |
|     | source of this signal in series with $V_{BB}$ supply. Then the base current will have                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 1/2  |   |
|     | sinusoidal variations superposed on the values $I_B$ . As a consequence the collector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |   |
|     | current also will have sinusoidal variation superimposed on the value of $I_C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        | _ |
|     | producing in turn corresponding change in the output voltage $V_o$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | 5 |
| 30. | (a) Schematic arrangement  (b) Principle of a transformer  Obtaining expression  (i) $\frac{V_1}{V_2} = \frac{N_1}{N_2}$ 1  (ii) $\frac{V_1}{V_2} = \frac{l_2}{l_1}$ 1  (c) Assumptions (any one)  (d) Two reasons for energy losses  1  2  3  3  4  1  1  1  1  1  1  1  1  1  1  1  1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1      |   |
|     | b) Principle of a transformer: when alternating current flows through the primary coil, an emf is induced in the neighbouring (secondary) coil  (i) Let $\frac{d\phi}{dt}$ be the tare of charge of flux through each turn of the primary and the secondary coil $\frac{e_1}{e_2} = -N_1 \frac{d\phi}{dt} / -N_2 \frac{d\phi}{dt} = \frac{N_1}{N_2}$ or $\frac{V_1}{V_2} = \frac{N_1}{N_2}$ (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ½<br>½ |   |

| (ii) But for an ideal transformer $V_1I_1 = V_2I_2$ $\frac{V_1}{V_2} = \frac{I_2}{I_1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                       |                |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------|---|
| From equation (1) and (2 $\frac{V_1}{V_2} = \frac{N_1}{N_2} = \frac{I_2}{I_1}$ c) Main assumptions (i) The primary resistance and current are small (ii) The flux linked with the primary and secondary coils is same / there is no leakage of flux from the core. (iii)Secondary current is small (Any one)  d) Reason due to which energy loses may occur Flux leakage/resistance of the coils / eddy currents / Hysteresis (Any two)  OR  a) Derivation of the expressions for i. Induced emf ii. Induced current b) Expression for magnitude of force and its direction c) Expression for power  a) In one revolution  Change of area, $dA = \pi \ell^2$ $\therefore$ change of magnetic flux $d\phi = \vec{B} \cdot \vec{A} \vec{A} = BA \cos \theta^0$ $= B \pi \ell^2$ Period of revolution T (i) Induced emf $\epsilon = B\pi \ell^2/T = B\pi \ell^2 v$ (ii) Induced current in the rod, $I = \frac{\varepsilon}{R} = \frac{\pi v B \ell^2}{R}$ [Note: Award 2 marks if the student derives the above relation using other method.] b) Force acting on the rod, $F = I\ell B$ $= \frac{\pi v B^2 \ell^3}{R}$ The external force required to rotate the rod opposes the Lorentz force acting on the rod / external force acts in the direction opposite to the Lorentz force c) Power required to rotate the rod P = $F\vartheta$                           | (ii) But for an ideal transformer $V_1I_1 = V_2I_2$                                   | 1/2            |   |
| From equation (1) and (2 $\frac{V_1}{V_2} = \frac{N_1}{N_2} = \frac{I_2}{I_1}$ c) Main assumptions (i) The primary resistance and current are small (ii) The flux linked with the primary and secondary coils is same / there is no leakage of flux from the core. (iii)Secondary current is small (Any one)  d) Reason due to which energy loses may occur Flux leakage/resistance of the coils / eddy currents / Hysteresis (Any two)  OR  a) Derivation of the expressions for i. Induced emf ii. Induced current b) Expression for magnitude of force and its direction c) Expression for power  a) In one revolution  Change of area, $dA = \pi \ell^2$ $\therefore$ change of magnetic flux $d\phi = \vec{B} \cdot \vec{A} \vec{A} = BA \cos \theta^0$ $= B \pi \ell^2$ Period of revolution T (i) Induced emf $\epsilon = B\pi \ell^2/T = B\pi \ell^2 v$ (ii) Induced current in the rod, $I = \frac{\varepsilon}{R} = \frac{\pi v B \ell^2}{R}$ [Note: Award 2 marks if the student derives the above relation using other method.] b) Force acting on the rod, $F = I\ell B$ $= \frac{\pi v B^2 \ell^3}{R}$ The external force required to rotate the rod opposes the Lorentz force acting on the rod / external force acts in the direction opposite to the Lorentz force c) Power required to rotate the rod P = $F\vartheta$                           | $\frac{V_1}{V_1} = \frac{I_2}{V_1} = \frac{I_2}{V_1}$                                 |                |   |
| From equation (1) and (2 $\frac{V_1-N_1}{V_2}N_2 = \frac{b_2}{b_2}$ c) Main assumptions (i) The primary resistance and current are small (ii) The flux linked with the primary and secondary coils is same / there is no leakage of flux from the core. (iii)Secondary current is small (Any one)  d) Reason due to which energy loses may occur Flux leakage/resistance of the coils / eddy currents / Hysteresis (Any two)  OR  a) Derivation of the expressions for 2 ½  i. Induced emf ii. Induced emf ii. Induced current b) Expression for magnitude of force and its direction 1½ c) Expression for power  a) In one revolution Change of area, $dA = \pi \ell^2$ ∴ change of magnetic flux $d\phi = \overrightarrow{B} \cdot \overrightarrow{AA} = BdA\cos\theta^0$ $= B \pi \ell^2$ Period of revolution T (i) Induced emf $\varepsilon = B\pi\ell^2/T = B\pi\ell^2\nu$ (ii) Induced current in the rod, $1 = \frac{\varepsilon}{R} = \frac{\pi \nu B \ell^2}{R}$   1  [Note: Award 2 marks if the student derives the above relation using other method.] b) Force acting on the rod, $F = I\ell B$ $= \frac{\pi \nu B^2 \ell^3}{R}$ The external force required to rotate the rod opposes the Lorentz force acting on the rod / external force acts in the direction opposite to the Lorentz force c) Power required to rotate the rod $P = F\vartheta$ | $V_2 = I_1$                                                                           |                |   |
| c) Main assumptions (i) The primary resistance and current are small (ii) The flux linked with the primary and secondary coils is same / there is no leakage of flux from the core. (iii)Secondary current is small (Any one)  d) Reason due to which energy loses may occur Flux leakage/resistance of the coils / eddy currents / Hysteresis (Any two) OR  a) Derivation of the expressions for i. Induced emf ii. Induced emf ii. Induced current b) Expression for magnitude of force and its direction c) Expression for power  a) In one revolution Change of area, $dA = \pi \ell^2$ $\therefore$ change of magnetic flux $d\phi = \vec{B} \cdot \vec{l} \cdot \vec{l} = B\pi \ell^2$ Period of revolution T (i) Induced emf $\epsilon = B\pi \ell^2/T = B\pi \ell^2 \nu$ (ii) Induced current in the rod, $I = \frac{\epsilon}{R} = \frac{\pi \nu B \ell^2}{R}$ [Note: Award 2 marks if the student derives the above relation using other method.] b) Force acting on the rod, $F = I\ell B$ $= \frac{\pi \nu B^2 \ell^3}{R}$ The external force required to rotate the rod opposes the Lorentz force acting on the rod / external force acts in the direction opposite to the Lorentz force c) Power required to rotate the rod $P = F\theta$                                                                                                            |                                                                                       | 1/2            |   |
| c) Main assumptions (i) The primary resistance and current are small (ii) The flux linked with the primary and secondary coils is same / there is no leakage of flux from the core. (iii)Secondary current is small (Any one)  d) Reason due to which energy loses may occur Flux leakage/resistance of the coils / eddy currents / Hysteresis (Any two)  OR  a) Derivation of the expressions for i. Induced emf ii. Induced current b) Expression for magnitude of force and its direction c) Expression for power  a) In one revolution  Change of area, $dA = \pi \ell^2$ $\therefore$ change of magnetic flux $d\phi = \overrightarrow{B} \cdot \overrightarrow{dA} = BdAcos0^o$ $= B \pi \ell^2$ Period of revolution T (i) Induced emf $\varepsilon = B\pi \ell^2/T = B\pi \ell^2 v$ (ii) Induced current in the rod, $I = \frac{\varepsilon}{R} = \frac{\pi v B \ell^2}{R}$ [Note: Award 2 marks if the student derives the above relation using other method.] b) Force acting on the rod, $F = I \ell B$ $= \frac{\pi v B^2 \ell^3}{R}$ The external force required to rotate the rod opposes the Lorentz force acting on the rod / external force acts in the direction opposite to the Lorentz force c) Power required to rotate the rod $P = F \theta$                                                                                                |                                                                                       |                |   |
| c) Main assumptions (i) The primary resistance and current are small (ii) The flux linked with the primary and secondary coils is same / there is no leakage of flux from the core. (iii)Secondary current is small (Any one)  d) Reason due to which energy loses may occur Flux leakage/resistance of the coils / eddy currents / Hysteresis (Any two)  OR  a) Derivation of the expressions for i. Induced emf ii. Induced current b) Expression for magnitude of force and its direction c) Expression for power  a) In one revolution  Change of area, $dA = \pi \ell^2$ $\therefore$ change of magnetic flux $d\phi = \overrightarrow{B} \cdot \overrightarrow{dA} = BdAcos0^o$ $= B \pi \ell^2$ Period of revolution T (i) Induced emf $\varepsilon = B\pi \ell^2/T = B\pi \ell^2 v$ (ii) Induced current in the rod, $I = \frac{\varepsilon}{R} = \frac{\pi v B \ell^2}{R}$ [Note: Award 2 marks if the student derives the above relation using other method.] b) Force acting on the rod, $F = I \ell B$ $= \frac{\pi v B^2 \ell^3}{R}$ The external force required to rotate the rod opposes the Lorentz force acting on the rod / external force acts in the direction opposite to the Lorentz force c) Power required to rotate the rod $P = F \theta$                                                                                                | $\frac{V_1}{V_1} = \frac{N_1}{V_1} = \frac{I_2}{V_1}$                                 | 1./            |   |
| (i) The primary resistance and current are small (ii) The flux linked with the primary and secondary coils is same / there is no leakage of flux from the core. (iii)Secondary current is small (Any one)  d) Reason due to which energy loses may occur Flux leakage/resistance of the coils / eddy currents / Hysteresis (Any two)  OR  a) Derivation of the expressions for 2 ½  i. Induced emf ii. Induced current b) Expression for magnitude of force and its direction 1½ c) Expression for power  a) In one revolution  Change of area , $dA = \pi \ell^2$ ∴ change of magnetic flux $d\phi = \overline{B} \cdot \overline{dA} = BdA\cos 0^{\circ}$ $= B \pi \ell^{2}$ Period of revolution T (i) Induced current in the rod, $I = \frac{\varepsilon}{R} = \frac{\pi v B \ell^{2} v}{R}$ [Note: Award 2 marks if the student derives the above relation using other method.] b) Force acting on the rod, $F = I \ell B$ $= \frac{\pi v B^{2} \ell^{3}}{R}$ The external force required to rotate the rod opposes the Lorentz force acting on the rod / external force acts in the direction opposite to the Lorentz force c) Power required to rotate the rod $P = F\theta$                                                                                                                                                                                |                                                                                       | 1/2            |   |
| (ii) The flux linked with the primary and secondary coils is same / there is no leakage of flux from the core. (iii)Secondary current is small (Any one)  d) Reason due to which energy loses may occur Flux leakage/resistance of the coils / eddy currents / Hysteresis (Any two)  OR  a) Derivation of the expressions for 2 ½  i. Induced emf ii. Induced current b) Expression for magnitude of force and its direction 1½ c) Expression for power 1  a) In one revolution  Change of area , $dA = \pi \ell^2$ ∴ change of magnetic flux $d\phi = \overline{B}. \overline{dA} = BdA\cos 0^{\circ}$ $= B \pi \ell^{2}$ Period of revolution T (i) Induced emf $\varepsilon = B\pi \ell^{2}/T = B\pi \ell^{2}v$ (ii) Induced emf $\varepsilon = B\pi \ell^{2}/T = B\pi \ell^{2}v$ (ii) Induced current in the rod, $I = \frac{\varepsilon}{R} = \frac{\pi vB \ell^{2}}{R}$ [Note: Award 2 marks if the student derives the above relation using other method.] b) Force acting on the rod, $F = I\ell B$ $= \frac{\pi vB^{2}\ell^{3}}{R}$ The external force required to rotate the rod opposes the Lorentz force acting on the rod / external force acts in the direction opposite to the Lorentz force c) Power required to rotate the rod $P = F\vartheta$                                                                                                   | ,                                                                                     |                |   |
| is no leakage of flux from the core.  (iii)Secondary current is small  (Any one)  d) Reason due to which energy loses may occur  Flux leakage/resistance of the coils / eddy currents / Hysteresis (Any two)  OR  a) Derivation of the expressions for 2 ½  i. Induced emf  ii. Induced emf  ii. Induced current  b) Expression for magnitude of force and its direction 1½  c) Expression for power 1  a) In one revolution  Change of area , $dA = \pi \ell^2$ $\therefore$ change of magnetic flux $d\phi = \overline{B} \cdot dA = BdA\cos 0^{\circ}$ $= B \pi \ell^2$ Period of revolution T  (i) Induced emf $\varepsilon = B\pi \ell^2/T = B\pi \ell^2 \nu$ (ii) Induced current in the rod, $I = \frac{\varepsilon}{R} = \frac{\pi \nu B \ell^2}{R}$ [Note: Award 2 marks if the student derives the above relation using other method.]  b) Force acting on the rod, $F = l\ell B$ $= \frac{\pi \nu B^2 \ell^3}{R}$ The external force required to rotate the rod opposes the Lorentz force acting on the rod / external force acts in the direction opposite to the Lorentz force  c) Power required to rotate the rod $P = F\vartheta$                                                                                                                                                                                                                  |                                                                                       |                |   |
| (iii)Secondary current is small (Any one)  d) Reason due to which energy loses may occur Flux leakage/resistance of the coils / eddy currents / Hysteresis (Any two)  OR  a) Derivation of the expressions for i. Induced emf ii. Induced current b) Expression for magnitude of force and its direction c) Expression for power  a) In one revolution Change of area, $dA = \pi \ell^2$ $\therefore$ change of magnetic flux $d\phi = \vec{B} \cdot \vec{A}\vec{A} = BdA\cos^0$ $= B \pi \ell^2$ Period of revolution T (i) Induced emf $\epsilon = B\pi \ell^2/T = B\pi \ell^2 v$ (ii) Induced current in the rod, $I = \frac{\epsilon}{R} = \frac{\pi v B \ell^2}{R}$ [Note: Award 2 marks if the student derives the above relation using other method.] b) Force acting on the rod, $F = I\ell B$ $= \frac{\pi v B^2 \ell^3}{R}$ The external force required to rotate the rod opposes the Lorentz force acting on the rod / external force acts in the direction opposite to the Lorentz force c) Power required to rotate the rod $P = F\theta$                                                                                                                                                                                                                                                                                                             |                                                                                       |                |   |
| (Any one)  d) Reason due to which energy loses may occur    Flux leakage/resistance of the coils / eddy currents / Hysteresis (Any two)  OR  a) Derivation of the expressions for 2 ½  i. Induced emf ii. Induced current b) Expression for magnitude of force and its direction 1½ c) Expression for power 1  a) In one revolution  Change of area , $dA = \pi \ell^2$ ∴ change of magnetic flux $d\phi = \overline{B} \cdot \overline{AA} = BACoso0^{\circ}$ $= B \pi \ell^2$ Period of revolution T (i) Induced emf $\varepsilon = B\pi \ell^2/T = B\pi \ell^2 v$ (ii) Induced current in the rod, $I = \frac{\varepsilon}{R} = \frac{\pi v B \ell^2}{R}$ [Note: Award 2 marks if the student derives the above relation using other method.] b) Force acting on the rod, $F = I \ell B$ $= \frac{\pi v B^2 \ell^3}{R}$ The external force required to rotate the rod opposes the Lorentz force acting on the rod / external force acts in the direction opposite to the Lorentz force c) Power required to rotate the rod $P = F \theta$                                                                                                                                                                                                                                                                                                                       | <del>-</del>                                                                          | 1/4            |   |
| d) Reason due to which energy loses may occur Flux leakage/resistance of the coils / eddy currents / Hysteresis ( <b>Any two</b> )  OR  a) Derivation of the expressions for i. Induced emf ii. Induced current b) Expression for magnitude of force and its direction 1½ c) Expression for power 1  a) In one revolution  Change of area, $dA = \pi \ell^2$ $\therefore$ change of magnetic flux $d\phi = \overrightarrow{B} \cdot d\overrightarrow{A} = BdA\cos\theta^0$ $= B\pi\ell^2$ Period of revolution T (i) Induced emf $\varepsilon = B\pi\ell^2/T = B\pi\ell^2v$ $= B\pi\ell^2$ Period of revolution the rod, $I = \frac{\varepsilon}{R} = \frac{\pi vB\ell^2}{R}$ [Note: <b>Award 2 marks if the student derives the above relation using other method.</b> ] b) Force acting on the rod, $F = I\ell B$ $= \frac{\pi vB^2\ell^3}{R}$ The external force required to rotate the rod opposes the Lorentz force acting on the rod / external force acts in the direction opposite to the Lorentz force c) Power required to rotate the rod $P = F\vartheta$                                                                                                                                                                                                                                                                                               |                                                                                       | 72             |   |
| Flux leakage/resistance of the coils / eddy currents / Hysteresis ( <b>Any two</b> )  OR  a) Derivation of the expressions for  i. Induced emf  ii. Induced current b) Expression for magnitude of force and its direction c) Expression for power  a) In one revolution  Change of area, $dA = \pi \ell^2$ $\therefore$ change of magnetic flux $d\phi = \overrightarrow{B} \cdot \overrightarrow{dA} = BdA\cos 0^{\circ}$ $= B \pi \ell^{2}$ Period of revolution T  (i) Induced emf $\varepsilon = B\pi \ell^{2}/T = B\pi \ell^{2}v$ (ii) Induced current in the rod, $I = \frac{\varepsilon}{R} = \frac{\pi vB\ell^{2}}{R}$ [Note: Award 2 marks if the student derives the above relation using other method.] b) Force acting on the rod, $F = l\ell B$ $= \frac{\pi vB^{2}\ell^{3}}{R}$ The external force required to rotate the rod opposes the Lorentz force acting on the rod / external force acts in the direction opposite to the Lorentz force c) Power required to rotate the rod $P = F\vartheta$                                                                                                                                                                                                                                                                                                                                                 | (Any one)                                                                             |                |   |
| Flux leakage/resistance of the coils / eddy currents / Hysteresis ( <b>Any two</b> )  OR  a) Derivation of the expressions for i. Induced emf ii. Induced current b) Expression for magnitude of force and its direction c) Expression for power  a) In one revolution  Change of area, $dA = \pi \ell^2$ $\therefore$ change of magnetic flux $d\phi = \overrightarrow{B} \cdot \overrightarrow{AA} = BdA\cos 0^{\circ}$ $= B \pi \ell^{2}$ Period of revolution T  (i) Induced emf $\varepsilon = B\pi \ell^{2}/T = B\pi \ell^{2}v$ (ii) Induced current in the rod, $I = \frac{\varepsilon}{R} = \frac{\pi vB\ell^{2}}{R}$ [Note: <b>Award 2 marks if the student derives the above relation using other method.</b> ] b) Force acting on the rod, $F = I\ell B$ $= \frac{\pi vB^{2}\ell^{3}}{R}$ The external force required to rotate the rod opposes the Lorentz force acting on the rod / external force acts in the direction opposite to the Lorentz force c) Power required to rotate the rod $P = F\vartheta$                                                                                                                                                                                                                                                                                                                                           | d) Reason due to which energy loses may occur                                         |                |   |
| a) Derivation of the expressions for  i. Induced emf ii. Induced current b) Expression for magnitude of force and its direction c) Expression for power  a) In one revolution Change of area , $dA = \pi \ell^2$ $\therefore$ change of magnetic flux $d\phi = \overrightarrow{B} \cdot \overrightarrow{AA} = BdAcos0^{\circ}$ $= B \pi \ell^2$ Period of revolution T (i) Induced emf $\varepsilon = B\pi \ell^2/T = B\pi \ell^2 v$ $(ii) Induced current in the rod, I = \frac{\varepsilon}{R} = \frac{\pi vB\ell^2}{R}$ [Note: Award 2 marks if the student derives the above relation using other method.] b) Force acting on the rod, $F = I\ell B$ $= \frac{\pi vB^2 \ell^3}{R}$ The external force required to rotate the rod opposes the Lorentz force acting on the rod / external force acts in the direction opposite to the Lorentz force c) Power required to rotate the rod $P = F\theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                       | 1/2 +1/2       | 5 |
| i. Induced emf ii. Induced current b) Expression for magnitude of force and its direction c) Expression for power  a) In one revolution Change of area, $dA = \pi \ell^2$ $\therefore$ change of magnetic flux $d\phi = \overrightarrow{B} \cdot \overrightarrow{dA} = BdAcos0^o$ $= B\pi\ell^2$ Period of revolution T  (i) Induced emf $\varepsilon = B\pi\ell^2/T = B\pi\ell^2v$ (ii) Induced current in the rod, $I = \frac{\varepsilon}{R} = \frac{\pi vB\ell^2}{R}$ [Note: Award 2 marks if the student derives the above relation using other method.] b) Force acting on the rod, $F = I\ell B$ $= \frac{\pi vB^2\ell^3}{R}$ The external force required to rotate the rod opposes the Lorentz force acting on the rod / external force acts in the direction opposite to the Lorentz force c) Power required to rotate the rod $P = F\vartheta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                       | /2 1/2         | 3 |
| i. Induced emf ii. Induced current b) Expression for magnitude of force and its direction 1½ c) Expression for power 1  a) In one revolution Change of area, $dA = \pi \ell^2$ $\therefore$ change of magnetic flux $d\phi = \overrightarrow{B} \cdot \overrightarrow{dA} = BdA\cos 0^{\circ}$ $= B\pi\ell^2$ Period of revolution T  (i) Induced emf $\varepsilon = B\pi\ell^2/T = B\pi\ell^2v$ (ii) Induced current in the rod, $I = \frac{\varepsilon}{R} = \frac{\pi vB\ell^2}{R}$ [Note: Award 2 marks if the student derives the above relation using other method.] b) Force acting on the rod, $F = I\ell B$ $= \frac{\pi vB^2\ell^3}{R}$ The external force required to rotate the rod opposes the Lorentz force acting on the rod / external force acts in the direction opposite to the Lorentz force c) Power required to rotate the rod $P = F\vartheta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                       |                |   |
| ii. Induced current b) Expression for magnitude of force and its direction c) Expression for power  1  a) In one revolution Change of area, $dA = \pi \ell^2$ $\therefore$ change of magnetic flux $d\phi = \overrightarrow{B} \cdot \overrightarrow{dA} = BdA\cos 0^\circ$ $= B\pi\ell^2$ Period of revolution T  (i) Induced emf $\varepsilon = B\pi\ell^2/T = B\pi\ell^2v$ (ii) Induced current in the rod, $I = \frac{\varepsilon}{R} = \frac{\pi vB\ell^2}{R}$ [Note: Award 2 marks if the student derives the above relation using other method.] b) Force acting on the rod, $F = I\ell B$ $= \frac{\pi vB^2\ell^3}{R}$ The external force required to rotate the rod opposes the Lorentz force acting on the rod / external force acts in the direction opposite to the Lorentz force c) Power required to rotate the rod $F = F\vartheta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                       |                |   |
| b) Expression for magnitude of force and its direction $1\frac{1}{2}$ c) Expression for power $1$ a) In one revolution Change of area , $dA = \pi \ell^2$ $\therefore$ change of magnetic flux $d\phi = \overrightarrow{B} \cdot \overrightarrow{dA} = BdA\cos 0^o$ $= B \pi \ell^2$ Period of revolution T (i) Induced emf $\varepsilon = B\pi \ell^2/T = B\pi \ell^2 v$ $(ii) Induced current in the rod, I = \frac{\varepsilon}{R} = \frac{\pi vB\ell^2}{R}$ [Note: Award 2 marks if the student derives the above relation using other method.] b) Force acting on the rod, $F = I\ell B$ $= \frac{\pi vB^2 \ell^3}{R}$ The external force required to rotate the rod opposes the Lorentz force acting on the rod / external force acts in the direction opposite to the Lorentz force c) Power required to rotate the rod $P = F\vartheta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                       |                |   |
| a) In one revolution Change of area , $dA = \pi \ell^2$ $\therefore$ change of magnetic flux $d\phi = \overrightarrow{B} \cdot \overrightarrow{dA} = BdA\cos 0^o$ $= B \pi \ell^2$ Period of revolution T (i) Induced emf $\varepsilon = B\pi \ell^2/T = B\pi \ell^2 v$ (ii) Induced current in the rod, $I = \frac{\varepsilon}{R} = \frac{\pi vB\ell^2}{R}$ [Note: Award 2 marks if the student derives the above relation using other method.] b) Force acting on the rod, $F = I\ell B$ $= \frac{\pi vB^2\ell^3}{R}$ The external force required to rotate the rod opposes the Lorentz force acting on the rod / external force acts in the direction opposite to the Lorentz force c) Power required to rotate the rod $P = F\vartheta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                       |                |   |
| a) In one revolution Change of area , $dA = \pi \ell^2$ $\therefore$ change of magnetic flux $d\phi = \overrightarrow{B} \cdot \overrightarrow{dA} = BdA\cos 0^{\circ} \qquad \qquad \frac{1}{2}$ $= B \pi \ell^2 \qquad \qquad \frac{1}{2}$ Period of revolution T  (i) Induced emf $\varepsilon = B\pi \ell^2/T = B\pi \ell^2 v$ (ii) Induced current in the rod, $I = \frac{\varepsilon}{R} = \frac{\pi v B \ell^2}{R}$ [Note: Award 2 marks if the student derives the above relation using other method.]  b) Force acting on the rod, $F = I\ell B$ $= \frac{\pi v B^2 \ell^3}{R}$ The external force required to rotate the rod opposes the Lorentz force acting on the rod / external force acts in the direction opposite to the Lorentz force c) Power required to rotate the rod $P = F\vartheta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                       |                |   |
| Change of area , $dA = \pi \ell^2$ $\therefore$ change of magnetic flux $d\phi = \overrightarrow{B} \cdot \overrightarrow{dA} = \operatorname{BdAcos}0^{\circ}$ $= B \pi \ell^2$ Period of revolution T  (i) Induced emf $\varepsilon = B\pi \ell^2/T = B\pi \ell^2 v$ [Note: Award 2 marks if the student derives the above relation using other method.]  b) Force acting on the rod, $F = I\ell B$ $= \frac{\pi v B^2 \ell^3}{R}$ The external force required to rotate the rod opposes the Lorentz force acting on the rod / external force acts in the direction opposite to the Lorentz force  c) Power required to rotate the rod $P = F\vartheta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | c) Expression for power                                                               |                |   |
| Change of area , $dA = \pi \ell^2$ $\therefore$ change of magnetic flux $d\phi = \overrightarrow{B} \cdot \overrightarrow{dA} = \operatorname{BdAcos}0^{\circ}$ $= B \pi \ell^2$ Period of revolution T  (i) Induced emf $\varepsilon = B\pi \ell^2/T = B\pi \ell^2 v$ [ii) Induced current in the rod, $I = \frac{\varepsilon}{R} = \frac{\pi v B \ell^2}{R}$ [Note: Award 2 marks if the student derives the above relation using other method.]  b) Force acting on the rod, $F = I\ell B$ $= \frac{\pi v B^2 \ell^3}{R}$ The external force required to rotate the rod opposes the Lorentz force acting on the rod / external force acts in the direction opposite to the Lorentz force  c) Power required to rotate the rod $P = F\vartheta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | a) In one revolution                                                                  |                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                       |                |   |
| $d\phi = \overrightarrow{B}.\overrightarrow{dA} = \operatorname{BdAcos0^o} $ $= B \pi \ell^2$ Period of revolution T (i) Induced emf $\varepsilon = B\pi \ell^2/T = B\pi \ell^2 v$ $(ii) Induced current in the rod, I = \frac{\varepsilon}{R} = \frac{\pi v B \ell^2}{R}$ [Note: Award 2 marks if the student derives the above relation using other method.] b) Force acting on the rod, $F = I\ell B$ $= \frac{\pi v B^2 \ell^3}{R}$ The external force required to rotate the rod opposes the Lorentz force acting on the rod / external force acts in the direction opposite to the Lorentz force c) Power required to rotate the rod $P = F\vartheta$ $\frac{1/2}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                       |                |   |
| $= B \pi \ell^2$ Period of revolution T  (i) Induced emf $\varepsilon = B\pi \ell^2/T = B\pi \ell^2 v$ (ii) Induced current in the rod, $I = \frac{\varepsilon}{R} = \frac{\pi v B \ell^2}{R}$ [Note: Award 2 marks if the student derives the above relation using other method.]  b) Force acting on the rod, $F = I\ell B$ $= \frac{\pi v B^2 \ell^3}{R}$ The external force required to rotate the rod opposes the Lorentz force acting on the rod / external force acts in the direction opposite to the Lorentz force  c) Power required to rotate the rod $P = F\vartheta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                       | 1/2            |   |
| Period of revolution T  (i) Induced emf $\varepsilon = B\pi\ell^2/T = B\pi\ell^2v$ (ii) Induced current in the rod, $I = \frac{\varepsilon}{R} = \frac{\pi vB\ell^2}{R}$ [Note: Award 2 marks if the student derives the above relation using other method.]  b) Force acting on the rod, $F = I\ell B$ $= \frac{\pi vB^2\ell^3}{R}$ The external force required to rotate the rod opposes the Lorentz force acting on the rod / external force acts in the direction opposite to the Lorentz force  c) Power required to rotate the rod $P = F\theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                       |                |   |
| (i) Induced emf $\varepsilon = B\pi\ell^2/T = B\pi\ell^2v$ (ii) Induced current in the rod, $I = \frac{\varepsilon}{R} = \frac{\pi vB\ell^2}{R}$ [Note: Award 2 marks if the student derives the above relation using other method.]  b) Force acting on the rod, $F = I\ell B$ $= \frac{\pi vB^2\ell^3}{R}$ The external force required to rotate the rod opposes the Lorentz force acting on the rod / external force acts in the direction opposite to the Lorentz force  c) Power required to rotate the rod $P = F\vartheta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                       | , -            |   |
| (ii) Induced current in the rod, $I = \frac{\varepsilon}{R} = \frac{\pi v B \ell^2}{R}$ [Note: Award 2 marks if the student derives the above relation using other method.]  b) Force acting on the rod, $F = I\ell B$ $= \frac{\pi v B^2 \ell^3}{R}$ The external force required to rotate the rod opposes the Lorentz force acting on the rod / external force acts in the direction opposite to the Lorentz force  c) Power required to rotate the rod $P = F \theta$ 1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                       | 1              |   |
| [Note: Award 2 marks if the student derives the above relation using other method.] b) Force acting on the rod, $F = I\ell B$ $= \frac{\pi v B^2 \ell^3}{R}$ The external force required to rotate the rod opposes the Lorentz force acting on the rod / external force acts in the direction opposite to the Lorentz force c) Power required to rotate the rod $P = F\theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                       |                |   |
| method.] b) Force acting on the rod, $F = I\ell B$ $= \frac{\pi v B^2 \ell^3}{R}$ The external force required to rotate the rod opposes the Lorentz force acting on the rod / external force acts in the direction opposite to the Lorentz force c) Power required to rotate the rod $P = F \vartheta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (ii) Induced current in the rod, $I = \frac{c}{D} = \frac{hVBV}{D}$                   | 1/2            |   |
| method.] b) Force acting on the rod, $F = I\ell B$ $= \frac{\pi v B^2 \ell^3}{R}$ The external force required to rotate the rod opposes the Lorentz force acting on the rod / external force acts in the direction opposite to the Lorentz force c) Power required to rotate the rod $P = F\theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | [Note: Award 2 marks if the student derives the above relation using other            |                |   |
| $= \frac{\pi v B^2 \ell^3}{R}$ The external force required to rotate the rod opposes the Lorentz force acting on the rod / external force acts in the direction opposite to the Lorentz force c) Power required to rotate the rod $P = F\theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                       |                |   |
| $= \frac{\pi v B^2 \ell^3}{R}$ The external force required to rotate the rod opposes the Lorentz force acting on the rod / external force acts in the direction opposite to the Lorentz force c) Power required to rotate the rod $P = F \theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | b) Force acting on the rod, $F = I \ell B$                                            | 1/             |   |
| The external force required to rotate the rod opposes the Lorentz force acting on the rod / external force acts in the direction opposite to the Lorentz force c) Power required to rotate the rod $P = F\theta$ $1/2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\pi v B^2 \ell^3$                                                                    |                |   |
| rod / external force acts in the direction opposite to the Lorentz force c) Power required to rotate the rod $P = F\vartheta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $=\frac{R}{R}$                                                                        | 1/2            |   |
| rod / external force acts in the direction opposite to the Lorentz force c) Power required to rotate the rod $P = F\theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | The external force required to rotate the rod opposes the Lorentz force acting on the |                |   |
| c) Power required to rotate the rod $P = F\theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                     | 1/2            |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                       | 72             |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $P = F\vartheta$                                                                      | 1/2            |   |
| $  \pi v B^2 \ell^3 v  $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\pi v B^2 \ell^3 v$                                                                  | - <del>-</del> |   |
| $={R}$ 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $=\frac{R}{R}$                                                                        | 1/2            | 5 |

Compartment Page No. 18 20th July, 2014 Final