MARKING SCHEME

Q. No.	Expected Answer / Value Points	Marks	Total Marks
$\begin{aligned} & \text { Set1,Q1 } \\ & \text { Set2,Q4 } \\ & \text { Set3,Q2 } \\ & \hline \end{aligned}$	$\begin{array}{ll} \\ \text { Positive } & \text { SECTION (A) }\end{array}$	1	1
$\begin{aligned} & \hline \text { Set1,Q2 } \\ & \text { Set2,Q5 } \\ & \text { Set3,Q3 } \end{aligned}$	Electric flux remains unaffected. [NOTE: (As per the Hindi translation), change in Electric field is being asked, hence give credit if student writes answer as decreases]	1	1
$\begin{aligned} & \hline \text { Set1,Q3 } \\ & \text { Set2,Q1 } \\ & \text { Set3,Q5 } \end{aligned}$	A current carrying coil, in the presence of magnetic field, experiences a torque, which produces proportionate deflection. [Alternatively (deflection) $\theta \alpha \tau$ (Torque)]	1	1
$\begin{aligned} & \hline \text { Set1,Q4 } \\ & \text { Set2,Q2 } \\ & \text { Set3,Q4 } \end{aligned}$	Due to their short wavelengths, (they are suitable for radar system used in aircraft navigation).	1	1
$\begin{aligned} & \hline \text { Set1,Q5 } \\ & \text { Set2,Q3 } \\ & \text { Set3,Q1 } \end{aligned}$	Quality factor $\mathrm{Q}=\frac{\omega_{0}}{2 \Delta \omega}$, [Alternatively Quality factor $\mathrm{Q}=\frac{\omega_{0} L}{R}$, Alternatively, It gives the sharpness of the resonance circuit.] It has no unit.	$1 / 2$ $1 / 2$	1
$\begin{aligned} & \hline \text { Set1,Q6 } \\ & \text { Set2,Q9 } \\ & \text { Set3,Q7 } \end{aligned}$	SECTION (B) Explanation of the terms (i) Attenuation (ii) Demodulation		2
Set1,Q7 Set2,Q10 Set3,Q8	Plotting of graph $1 / 2+1 / 2$ Identification of line representing lower mass $1 / 2$ Reason $1 / 2$		

	SECTION (C)		
Set1,Q11 Set2,Q14 Set3,Q12	Net Electric Field at point $\mathrm{P}=\int_{o}^{2 \pi a} d E \cos \theta$ $d E=$ Electric field due to a small element having charge $\mathrm{d} q$ $=\frac{1}{4 \pi \varepsilon_{o}} \frac{d q}{r^{2}}$ Let $\lambda=$ Linear charge density $\begin{aligned} & =\frac{d q}{d l} \\ d q & =\lambda d l \end{aligned}$ Hence $E=\int_{o}^{2 \pi a} \frac{1}{4 \pi \varepsilon_{o}} \cdot \frac{\lambda d l}{r^{2}} \times \frac{x}{r}$, where $\cos \theta=\frac{x}{r}$ $\begin{aligned} & =\frac{\lambda x}{4 \pi \varepsilon_{o} r^{3}}(2 \pi a) \\ & =\frac{1}{4 \pi \varepsilon_{o}} \frac{Q x}{\left(x^{2}+a^{2}\right)^{\frac{3}{2}}}, \text { where total charge } Q=\lambda \times 2 \pi a \end{aligned}$ At large distance i.e. $\mathrm{x} \gg \mathrm{a}$ $E \simeq \frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{Q}{x^{2}}$ This is the Electric field due to a point charge at distance x. (NOTE: Award two marks for this question, if a student attempts this question but does not give the complete answer)	1/2	3
Set1,Q12 Set2,Q15 Set3,Q13	Three Characteristic features $1+1+1$ The three characteristic features which can't be explained by wave theory are: i. Kinetic energy of emitted electrons are found to be independent of intensity of incident light.	1	

	ii. Below a certain frequency (threshold) there is no photo-emission. iii. Spontaneous emission of photo-electrons.	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	3
$\begin{array}{\|l\|l\|} \hline \text { Set1,Q13 } \\ \text { Set2,Q16 } \\ \text { Set3,Q11 } \end{array}$	a) Expression for the magnetic force b) Trace of paths Justification$\vec{F}=\mathrm{q}(\vec{v} \times \vec{B})$ (Give Full credit of this part even if a student writes: $F=\mathrm{q} v B \operatorname{Sin} \theta \text { and }$ Force (F) acts perpendicular to the plane containing \vec{v} and \vec{B}) Justification: Direction of force experienced by the particle will be according to the Fleming's Left hand rule / (any other alternative correct rule.)	1 $\begin{aligned} & 1 / 2+ \\ & 1 / 2+ \\ & 1 / 2 \end{aligned}$	3
$\begin{aligned} & \hline \text { Set1,Q14 } \\ & \text { Set2,Q11 } \\ & \text { Set3,Q15 } \end{aligned}$	(i) Definition of mutual inductance (ii) Calculation of change of flux linkage (i) Magnetic flux, linked with the secondary coil due to the unit current flowing in the primary coil, $\quad \phi_{2}=M I_{1}$ [Alternatively Induced emf associated with the secondary coil, for a unit rate of change of current in the primary coil. $\left.e_{2}=-M \frac{d I_{1}}{d t}\right]$ [Also accept the Definition of Mutual Induction, as per the Hindi translation of the question] [i.e. the phenomenon of production of induced emf in one coil due to change in current in neighbouring coil] (ii) Change of flux linkage	1	

\begin{tabular}{|c|c|c|c|}
\hline \& \[
\begin{aligned}
d \phi \& =M d I \\
\& =1.5 \times(20-0) \mathrm{W} \\
\& =30 \text { weber }
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 1 \\
\& 1 / 2 \\
\& 1 / 2
\end{aligned}
\] \& 3 \\
\hline \[
\begin{array}{|l}
\hline \text { Set1,Q15 } \\
\text { Set2,Q12 } \\
\text { Set3,Q14 }
\end{array}
\] \& \begin{tabular}{l}
(i) Calculation of capacitance of each capacitor \\
(ii) Calculation of potential difference \\
(iii)Estimation of ratio of electrostatic energy \\
i) Let \(C_{X}=C\) \\
\(C_{Y}=4 C\) (as it has a dielectric medium of \(\varepsilon_{r}=4\) \\
For series combination of two capacitors
\[
\begin{aligned}
\& \frac{1}{C}=\frac{1}{C_{X}}+\frac{1}{C_{Y}} \\
\& \Rightarrow \frac{1}{4 \mu F}=\frac{1}{C}+\frac{1}{4 C} \\
\& \frac{1}{4 \mu F}=\frac{5}{4 C} \\
\& \Rightarrow C=5 \mu F
\end{aligned}
\] \\
Hence \(C_{X}=5 \mu F\)
\[
\hat{C_{Y}}=20 \mu F
\] \\
ii) Total charge \(Q=C V\)
\[
=4 \mu \mathrm{~F} \times 15 \mathrm{~V}=60 \mu \mathrm{C}
\]
\[
\begin{aligned}
\& V_{X}=\frac{Q}{C_{X}}=\frac{60 \mu C}{5 \mu F}=12 \mathrm{~V} \\
\& V_{Y}=\frac{Q}{C_{Y}}=\frac{60 \mu C}{20 \mu F}=3 \mathrm{~V}
\end{aligned}
\] \\
iii) \(\frac{E_{x}}{E_{y}}=\frac{\frac{Q^{2}}{2 C_{X}}}{\frac{Q^{2}}{2 C_{Y}}}=\frac{C_{Y}}{C_{X}}=\frac{20}{5}=4: 1\) \\
(Also accept any other correct alternative method)
\end{tabular} \& \(1 / 2\)
\(1 / 2\)

1 \& 3 \\
\hline
\end{tabular}

Set1,Q16 Set2,Q13 Set3,Q17	Diagram showing attractive force on other wire. 1 Obtaining an expression for force. Definition of one ampere. As shown in Figure, the direction of force on conductor b is attractive [Alternatively: \vec{B} at a point on wire 2 , is along $-\widehat{k}$ $\therefore \vec{F}$, on wire 2 , due to the \vec{B}, is along $-\hat{\imath}$, i.e. towards wire1. Hence the force is attractive. Magnetic field, due to current in conductor a, $B_{1}=\frac{\mu_{0} I_{1}}{2 \pi d}$ The magnitude of force on a length L of conductor b, $\begin{gathered} F_{2}=I_{2} L B_{1} \\ F_{2}=\frac{\mu_{0} I_{1} I_{2} L}{2 \pi d} \end{gathered}$ One ampere is that steady current which, when maintained in each of the two very long, straight, parallel conductors, placed one meter apart in vacuum, would produce on each of these conductors a force equal to 2×10^{-7} newton per meter of their length.	1/2	3
Set1,Q17 Set2,Q20 Set3,Q18	Production of em waves Drawing of sketch of linearly polarized em waves 1 Indication of directions of oscillating electric and magnetic fields $1 / 2+1 / 2$ A charge oscillating with some frequency, produces an oscillating electric field in space, which in turn produces an oscillating magnetic		

	field perpendicular to the electric field, this process goes on repeating, producing em waves in space perpendicular to both the fields. Directions of \vec{E} and \vec{B} are perpendicular to each other and also perpendicular to direction of propagation of em waves. OR Maxwell's generalization of Ampere's Circuital law Showing that current produced, within the plates of a $\text { capacitor is } i=\epsilon_{0} \frac{d \phi_{\epsilon}}{d t}$ Ampere's circuital law is given by as $\phi \vec{B} \cdot \overrightarrow{d l}=\mu_{0} i_{c}$ But for a circuit containing capacitor, during its charging / discharging the current within the plates of the capacitor varies, (producing displacement current i_{d}). Therefore, the above equation, as generalized by Maxwell, is given as $\phi \vec{B} \cdot \overrightarrow{d l}=\mu_{0} i_{c}+\mu_{0} i_{d}$ During the process of charging of capacitor, electric flux $\left(\phi_{\epsilon}\right)$ between the plates of capacitor changes with time, which produces the current within the plates of capacitor. This current, being proportional to $\frac{d \phi_{\epsilon}}{d t}$, we have $i=\epsilon_{0} \frac{d \phi_{\epsilon}}{d t}$	1 1 $1 / 2+1 / 2$ 1 1 1	3
Set1,Q18 Set2,Q21 Set3,Q16	a) Explanation of any two factors justifying the need of modulation b) Two advantages of FM over AM $1 / 2+1 / 2$ a) A low frequency signal is modulated for the following purposes: (i) It reduces the wavelength of transmitted signal, and the minimum height of antenna for effective communication is $\lambda / 4$. Therefore height of antenna becomes practically achievable.	1	

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
(ii) Power radiated into the space by an antenna is inversely proportional to \(\lambda^{2}\). Therefore, the power radiated into the space increases and signal can travel larger distance. \\
(Give full credit of this part for any other correct answer) \\
b) \\
(i) High efficiency \\
(ii) Less noise \\
(iii) Maximum use of transmitted power (any two)
\end{tabular} \& 1
\[
1 / 2+1 / 2
\] \& 3 \\
\hline \[
\begin{array}{|l|}
\hline \text { Set1,Q19 } \\
\text { Set2,Q22 } \\
\text { Set3,Q20 }
\end{array}
\] \& \begin{tabular}{l}
(i) Function of three segments \\
(ii) Circuit diagram \\
Input and output characteristics \\
Emitter: Supplies the large number of majority charge carriers for the flow of current through the transistor. \\
Base : Controls the movement of charge carriers coming from emitter region \\
Collector: Collects a major portion of the majority carriers supplied by the emitter. \\
(NOTE: Also accept the following explanation of these parts of the transistor as asked in Hindi translation) \\
Emitter: Heavily doped and of moderate size. \\
Base: Central region, thin and lightly doped. \\
Collector: Moderately doped and large sized. \\
ii) \\
Input characteristics are obtained by recording the values of base current \(I_{B}\), for different values of \(V_{B E}\) at constant \(V_{C E}\) \\
Output characteristics are obtained by recording the values of \(I_{C}\) for different values of \(V_{C E}\) at constant \(I_{B}\)
\end{tabular} \& \(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\)

1 \& \\
\hline
\end{tabular}

	[Alternatively Also accept input/output characteristic curves for this part of the question.]		3
$\begin{array}{\|l\|} \hline \text { Set1,Q20 } \\ \text { Set2,Q17 } \\ \text { Set3,Q19 } \end{array}$	(ii) Reason for virtual image, through convex mirror a) Given $R=-20 \mathrm{~cm}$, and magnification $m=-2$ Focal length of the mirror $f=\frac{R}{2}=-10 \mathrm{~cm}$ $\begin{aligned} \text { Magnification (m) } & =-\frac{v}{u} \\ -2 & =-\frac{v}{u} \\ \Rightarrow v & =2 u \end{aligned}$ Using mirror formula $\begin{aligned} & \frac{1}{f}=\frac{1}{v}+\frac{1}{u} \\ & \Rightarrow-\frac{1}{10}=\frac{1}{2 u}+\frac{1}{u} \\ & \Rightarrow u=-15 \mathrm{~cm} \\ & \quad \therefore v=2 \times-15 \mathrm{~cm}=-30 \mathrm{~cm} \end{aligned}$ b) $\frac{1}{f}=\frac{1}{v}+\frac{1}{u}$ Using sign convention, for convex mirror, we have $f>0, \mathrm{u}<0$ From the formula $\frac{1}{v}=\frac{1}{f}-\frac{1}{u}$ $\because f$ is positive and u is negative, $\Rightarrow v$ is always positive, hence image is always virtual.	1/2	(3) ${ }^{\text {a }}$ (${ }^{\text {3 }}$
$\begin{array}{\|l\|} \hline \text { Set1,Q21 } \\ \text { Set2,Q18 } \\ \text { Set3,Q22 } \end{array}$	(i) Statement of Bohr's quantization condition $1 / 2$ de- Broglie explanation of stationary orbits 1 (ii) Relation between $\lambda_{1}, \lambda_{2}, \lambda_{3}$ $11 / 2$ (i) Only those orbits are stable for which the angular momentum, of revolving electron, is an integral multiple of $\frac{h}{2 \pi}$.		

	[Alternatively $L=\frac{n h}{2 \pi}$ i.e. angular momentum of orbiting electron is quantised.] According to de Broglie hypothesis Linear momentum $(p)=\frac{h}{\lambda}$ And for circular orbit $L=r_{n} p$ where ' r_{n} ' is the radius of quantized orbits. $=\frac{r h}{\lambda}$ Also $L=\frac{n h}{2 \pi}$ $\begin{gathered} \therefore \frac{r h}{\lambda}=\frac{n h}{2 \pi} \\ \Rightarrow 2 \pi r_{n}=n \lambda \end{gathered}$ \therefore Circumference of permitted orbits are integral multiples of the wavelength λ ii) $E_{C}-E_{B}=\frac{h c}{\lambda_{1}}$ $\begin{equation*} E_{B}-E_{A}=\frac{h c}{\lambda_{2}} \tag{i} \end{equation*}$ $E_{C}-E_{A}=\frac{h c}{\lambda_{3}} .$ Adding (i) \& (ii) $\begin{equation*} E_{C}-E_{A}=\frac{h c}{\lambda_{1}}+\frac{h c}{\lambda_{2}} \tag{iv} \end{equation*}$ Using equation (iii) and (iv) $\frac{h c}{\lambda_{3}}=\frac{h c}{\lambda_{1}}+\frac{h c}{\lambda_{2}} \Rightarrow \frac{1}{\lambda_{3}}=\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}}$	1/2	3
Set1,Q22 Set2,Q19 Set3,Q21	Drawing of Schematic ray diagram 2 Two advantages $1 / 2+1 / 2$	2	

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{ll}
(i) \& Large gathering power \\
(ii) \& Large magnifying power \\
(iii) \& No chromatic aberration \\
(iv) \& Spherical aberration is also removed \\
(v) \& Easy mechanical support \\
(vi) \& Large resolving power \\
\& (Any Two)
\end{tabular} \& \(1 / 2+1 / 2\) \& 3 \\
\hline \begin{tabular}{l}
Set1,Q23 \\
Set2,Q23 \\
Set3,Q23
\end{tabular} \& \begin{tabular}{l}
SECTION (D) \\
Answers of part (i), (ii), (iii) \(\quad 1+1+2\) \\
(i) Values displayed by Meeta: \\
Inquisitive/ Keen Observer/ Scientific temperament/ (Any other value.) \\
Values displayed by Father: \\
Encouraging/ Supportive /(Any other value) \\
(ii) Meeta's father explained that the traffic light is made up of tiny bulbs called light emitting diodes (LED) \\
(Also accept other relevant answers) \\
(iii)Light emitting diode \\
These diodes (LED's) operate under forward bias, due to which the majority charge carriers are sent from these majority zones to minority zones. Hence recombination occur near the junction boundary, which releases energy in the form of photons of light.
\end{tabular} \& 1
1
\(1 / 2\)

$1 / 2$
1 \& 4 \\

\hline | Set1,Q24 |
| :--- |
| Set2,Q25 |
| Set3,Q26 | \& | SECTION (E) |
| :--- |
| (i) Obtaining expression for impedence \& phase angle Condition of current being in phase with voltage Naming of circuit condition |
| (ii) Calculation of P_{1} / P_{2} | \& \& \\

\hline
\end{tabular}

	$N_{s}=100 \times 100=10000$ b) Input Power $=$ Input voltage x current in primary $\begin{aligned} 1100 & =220 \times I_{p} \\ \Rightarrow I_{p} & =5 \mathrm{~A} \end{aligned}$ d) $\begin{aligned} & \frac{I_{P}}{I_{s}}=\frac{N_{S}}{N_{P}} \\ & \frac{5}{I_{s}}=100 \\ & \Rightarrow I_{S}=\frac{5}{100}=0.05 \mathrm{~A} \end{aligned}$ e) Power in secondary $=$ Power in Primary $=1100 \mathrm{~W}$		1/2	5
$\begin{aligned} & \hline \text { Set1,Q25 } \\ & \text { Set2,Q26 } \\ & \text { Set3,Q25 } \end{aligned}$	i) Deduce the conditions for a) constructive and b) destructive interference iraph showing the variation of intensity Three distinguishing features i) From figure Path difference $=\left(S_{2} P-S_{1} P\right)$ $\begin{aligned} & \left(S_{2} P\right)^{2}-\left(S_{1} P\right)^{2}=\left[D^{2}+\left(x+\frac{d}{2}\right)^{2}\right]-\left[D^{2}+\left(x-\frac{d}{2}\right)^{2}\right] \\ & \left(S_{2} P+S_{1} P\right)\left(S_{2} P-S_{1} P\right)=2 x d \end{aligned}$	$\begin{aligned} & 21 / 2 \\ & 1 \\ & 11 / 2 \end{aligned}$	1/2	
Page 15 of 19 Final Draft 11/03/16 11:30a.m				

| | | |
| :--- | :--- | :--- | :--- |

Also, $\mathrm{R}=\rho \frac{\ell}{A}$
Comparing (i) and (ii)

$$
\begin{equation*}
\rho=\frac{m}{n e^{2} \tau} \tag{ii}
\end{equation*}
$$

Resistivity of the material of a conductor depends on the relaxation time, i.e., temperature and the number density of electrons.
iii) Because constantan and manganin show very weak dependence of resistivity on temperature

OR

i) Working Principle of potentiometer $\quad 2$
ii) Calculation of potential gradient and balance length 3
i) When constant current flows through a conductor of uniform area of cross section, the potential difference, across a length 1 of the wire, is directly proportional to that length of the wire.
[$V \propto l$ (Provided current and area are constant]
ii) Current flowing in the potentiometer wire

$$
i=\frac{E}{R_{\text {total }}}=\frac{2.0}{15+10}=\frac{2}{25} \mathrm{~A}
$$

\therefore Potential difference across the two ends of the wire

$$
V_{A B}=\frac{2}{25} \times 10 \mathrm{~V}=\frac{20}{25}=0.8 \mathrm{volt}
$$

Hence potential gradient $\mathrm{K}=\frac{V_{A B}}{l_{A B}}=\frac{0.8}{1.0}=0.8 \mathrm{~V} / \mathrm{m}$
Current flowing in the circuit containing experimental cell,

$$
=\frac{1.5}{1.2+0.3}=1 \mathrm{~A}
$$

Hence, potential difference across length AO of the wire

$$
=0.3 \times 1 V=0.3 \mathrm{~V}
$$

$$
\Rightarrow 0.3=K \times l_{A O}
$$

$$
=0.8 \times l_{A O}
$$

$\Rightarrow l_{A O}=\frac{0.3}{0.8} \mathrm{~m}=0.375 \mathrm{~m}$
$=37.5 \mathrm{~cm}$

