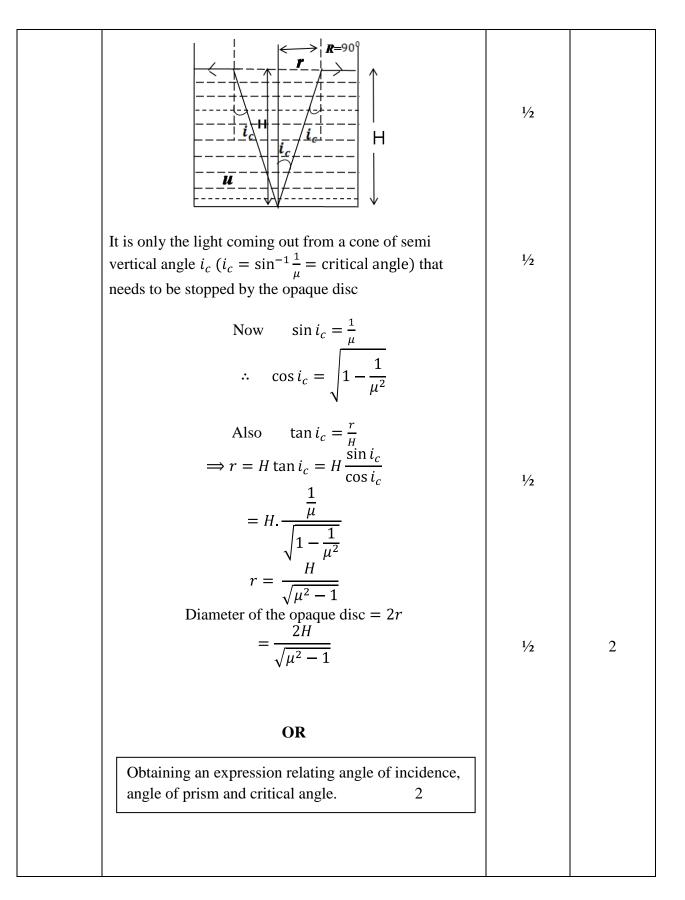
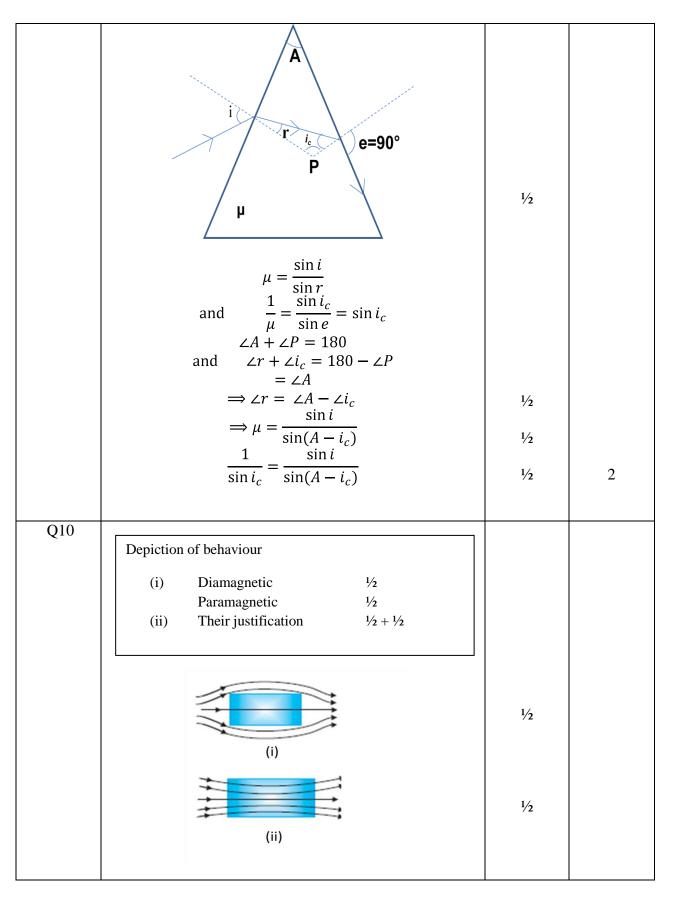
Strictly Confidential (For Internal and Restricted Use only) Senior School Certificate Examination

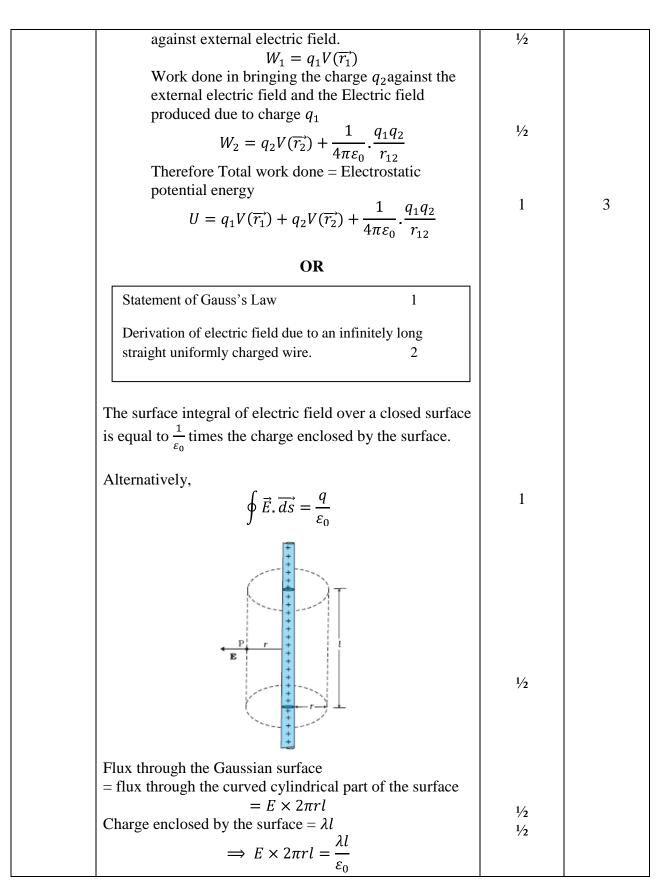

Marking Scheme - Physics (Code 55/1/1, Code 55/1/2, Code 55/1/3)

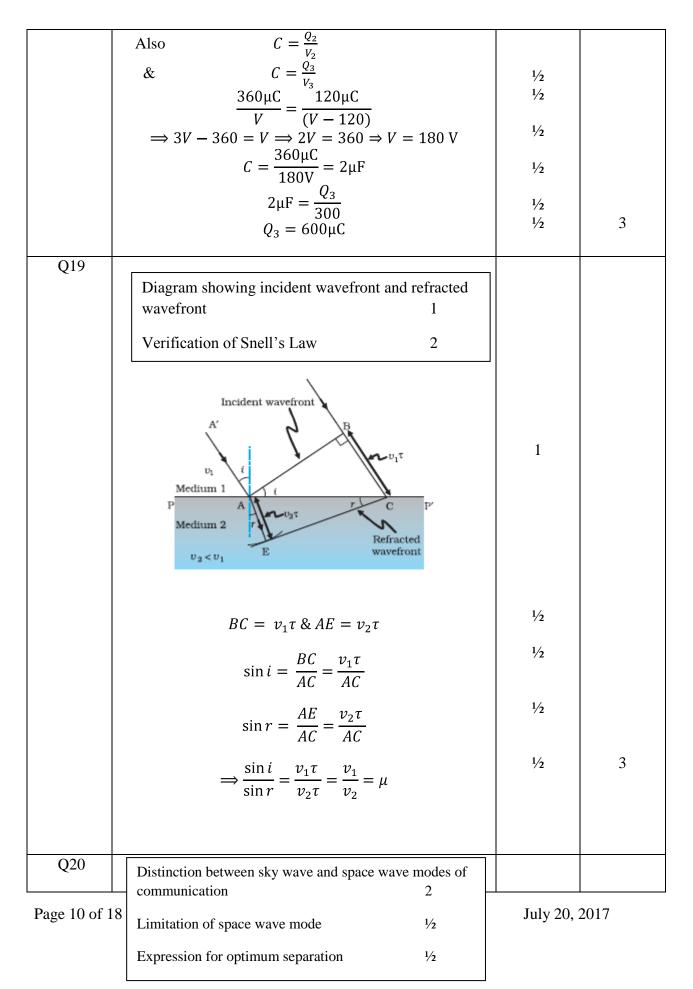

- 1. The marking scheme provides general guidelines to reduce subjectivity in the marking. The answers given in the marking scheme are suggested answers. The content is thus indicated. If a student has given any other answer, which is different from the one given in the marking scheme, but conveys the meaning correctly, such answers should be given full weightage.
- 2. In value based questions, any other individual response with suitable justification should also be accepted even if there is no reference to the text.
- 3. Evaluation is to be done as per instructions provided in the marking scheme. It should not be done according to one's own interpretation or any other consideration. Marking scheme should be adhered to and religiously followed.
- 4. If a question has parts, please award in the right hand side for each part. Marks awarded for different part of the question should then be totaled up and written in the left hand margin and circled.
- 5. If a question does not have any parts, marks are to be awarded in the left hand margin only.
- 6. If a candidate has attempted an extra question, marks obtained in the question attempted first should be retained and the other answer should be scored out.
- 7. No marks are to be deducted for the cumulative effect of an error. The student should be penalized only once.
- 8. Deduct ¹/₂ mark for writing wrong units, missing units, in the final answer to numerical problems.
- 9. Formula can be taken as implied from the calculations even if not explicitly written.
- 10. In short answer type question, asking for two features / characteristics / properties if a candidate writes three features, characteristics / properties or more, only the correct two should be evaluated.
- 11. Full marks should be awarded to a candidate if his / her answer in a numerical problem is close to the value given in the scheme.
- 12. In compliance to the judgement of the Hon'ble Supreme Court of India, Board has decided to provide photocopy of the answer book(s) to the candidates who will apply for it along with the requisite fee. Therefore, it is all the more important that the evaluation is done strictly as per the value points given in the marking scheme so that the Board could be in a position to defend the evaluation at any forum.
- 13. The Examiner shall also have to certify in the answer book that they have evaluated the answer book strictly in accordance with the value points given in the marking scheme and correct set of question paper.
- 14. Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the title paper, correctly totaled and written in figures and words.
- 15. In the past it has been observed that the following are the common types of errors committed by the Examiners
 - Leaving answer or part thereof unassessed in an answer script.
 - Giving more marks for an answer than assigned to it or deviation from the marking scheme.
 - Wrong transference of marks from the inside pages of the answer book to the title page.
 - Wrong question wise totaling on the title page.
 - Wrong totaling of marks of the two columns on the title page.
 - Wrong grand total.
 - Marks in words and figures not tallying.
 - Wrong transference to marks from the answer book to award list.
 - Answer marked as correct ($\sqrt{}$) but marks not awarded.
 - Half or part of answer marked correct ($\sqrt{}$) and the rest as wrong (×) but no marks awarded.
- 16. Any unassessed portion, non carrying over of marks to the title page or totaling error detected by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence in order to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously.

Q. No.	Expected Answer/ Value Points	Marks	Total Marks
	SECTION A		
Q1	\uparrow		
	E $r > R$ R $r \rightarrow$	1	1
Q2	Number of photons emitted per second.	1	1
Q3	Relative permeability $\mu_r = \frac{L}{L_0} = \frac{2.8}{2.0 \times 10^{-3}}$	1/2	
	= 1400	1/2	1
Q4	Virtual/ erect/ diminished	1/2+1/2	1
Q5	No	1	1
	SECTION B		
Q6			
	Production of e m waves1Diagram depicting the oscillating electric and magnetic fields.1		
	Electromagnetic waves are produced due to oscillating/ accelerating charged particles.	1	

MARKING SCHEME

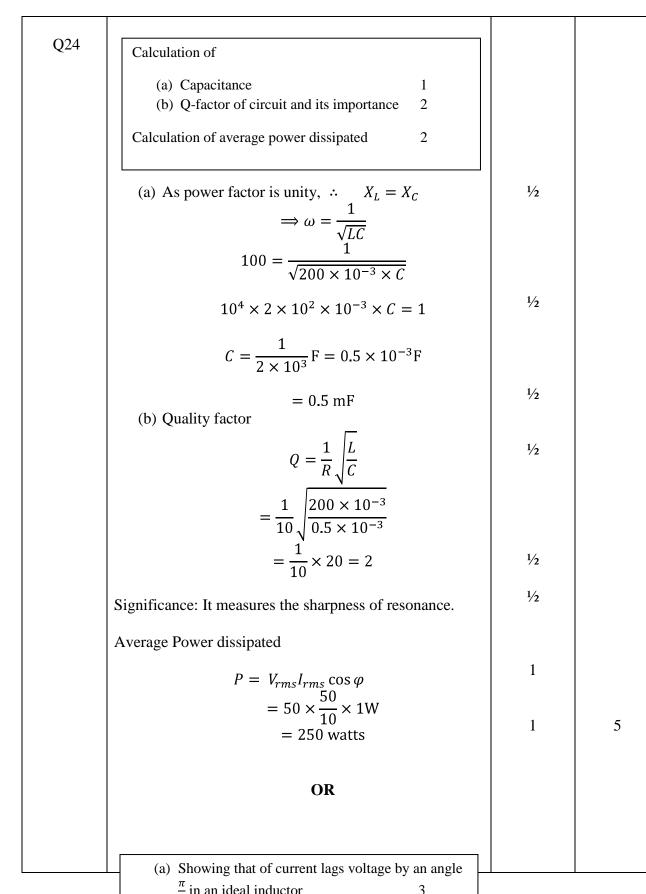
	Y B Z	1	2
Q7	Derivation of the expression for radius 2		
	Force experienced by charged particle in magnetic field $\vec{F} = q \ (\vec{v} \times \vec{B})$ As <i>v</i> and <i>B</i> are perpendicular, $F = qvB$ This force is perpendicular to the direction of velocity	1/2 1/2	
	and hence acts as centripetal force. $\frac{mv^2}{r} = qvB$ $r = \frac{mv}{qB}$	1⁄2 1⁄2	2
	ЧВ	, 2	2
Q8	Calculation of shortest wavelength1½Part of electromagnetic spectrum to which this wavelength belongs½		
	$\lambda^{-1} = R_H (\frac{1}{{n_f}^2} - \frac{1}{{n_i}^2})$	1⁄2	
	For shortest wavelength $n_i = \infty, n_f = 3$	1⁄2	
	$\therefore \ \lambda^{-1} = 1.1 \ \times \ 10^7 \left(\frac{1}{9}\right)$	1⁄2	
	$ \therefore \qquad \lambda = 8.18 \times 10^{-7} \text{m} \\ = 818 \text{ nm} $	1⁄2	2
Q9	Derivation of the expression of the diameter of opaque disc 2		



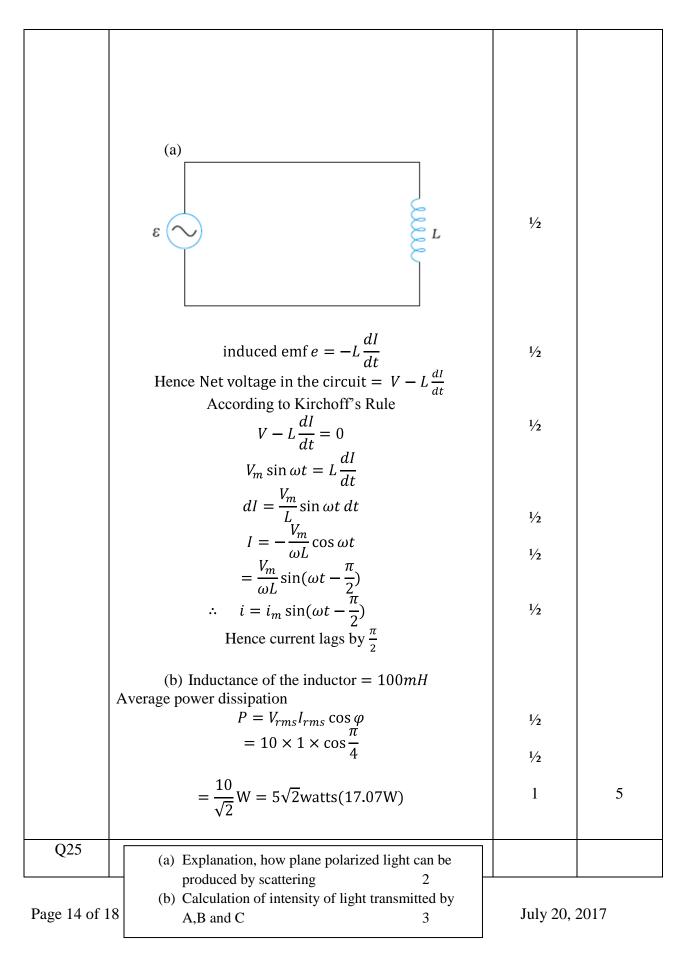

	The Field lines are repelled or expelled and the field inside the material is reduced.	1/2	
	In the presence of magnetic field, the individual atomic dipoles can get aligned in the direction of the applied magnetic field. Therefore, field lines get concentrated inside the material and the field inside is enhanced.	1⁄2	2
	SECTION C		
Q11			
	Drawing of Graph 1		
	Comparison and explanation of kinetic energy difference 2		
	difference 2		
		1	
	We have $\lambda = \frac{h}{\sqrt{2mqV}} = \frac{h}{\sqrt{2mK}}$	1/2	
	(K = qV = K.E.) Now $m_d > m_p$	1/2 1/2	
	$\therefore \text{For same } \lambda \text{, we must have} \\ K_p > K_d$	1/2	3
Q12	i.e. the proton has more kinetic energy		
Q12	Explanation of amplitude modulation 1		
	Calculation of modulation index 2		
	It is a process of superposition of a message signal over a carrier wave in which amplitude of the carrier wave is varied in accordance with the message/ information signal.	1	
	We are given that		

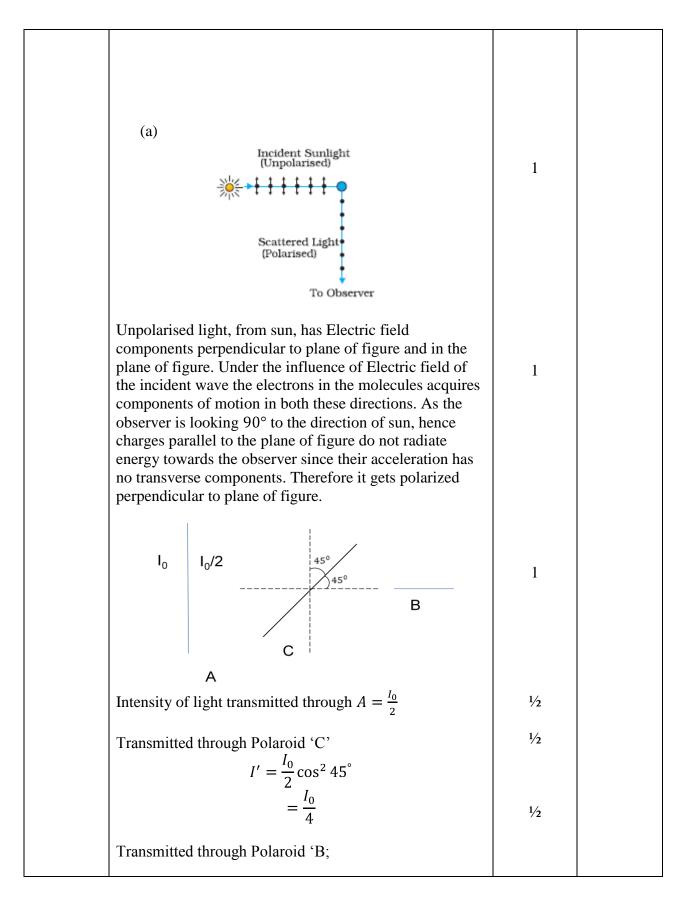
		,
$a_m + a_c = 10$ $a_c - a_m = 2$ $a_m = 4V$ $\mu = \frac{a_m}{a_c} = \frac{4}{6} = \frac{2}{3}$	1/2 1/2 1/2 1/2	3
Q13 Lorentz force ½ Expression in vector form ½ Identification of pair of vectors ½ Derivation of expression of force 1½		
Lorentz magnetic force is force experienced by a charged particle of charge 'q' moving in magnetic field \vec{B} with velocity \vec{v} . $\vec{F_m} = q(\vec{v} \times \vec{B})$ $\therefore \vec{F_m} \perp \vec{v}$ and $\vec{F_m} \perp \vec{B}$ [The student can write any one pair] Consider a conductor of uniform cross-sectional area A and length 'L' having number density of electrons as 'n' Total force on charge carriers in the conductor $\vec{F} = (nAL)q \ \vec{v_d} \times \vec{B}$	1/2 1/2 1/2	
But as $I\vec{L} = nqA\vec{v_d}L$ $\therefore \qquad \vec{F} = I\vec{L} \times \vec{B}$	1/2 1/2	3
Q14 Naming the optical instrument 1 Calculation of Magnifying Power 2		
Compound microscope Focal Length of objective lens $(f = \frac{1}{p})$ $f_0 = \frac{100}{50}$ cm = 2 cm	1	
$\int_{0}^{0} = 50^{-10} = 50^{-10}$	1⁄2	

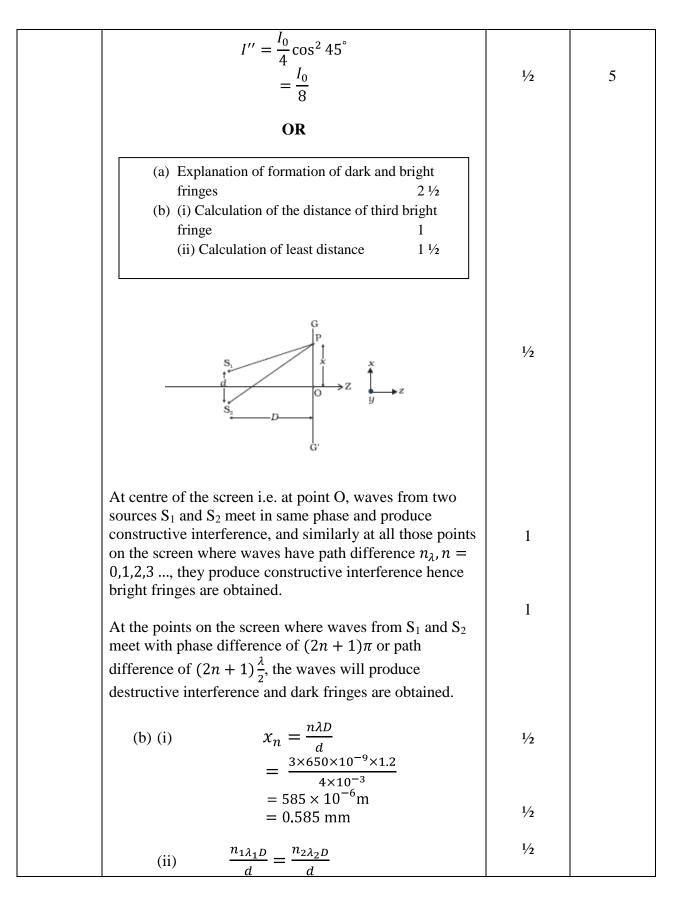
	Focal Length of eye lens		
	$f_e = \frac{100}{16}$ cm = 6.67 cm Magnifying Power	1⁄2	
	$m = \frac{L}{f_0} \times \frac{D}{f_e}$ $= \frac{16.25}{2.0} \times \frac{25}{6.67} = 30.45$	1⁄2	
	$= \frac{1000}{2.0} \times \frac{10}{6.67} = 30.45$	1/2	3
Q15	Explanation of two processes 1+1		
	Definition of barrier potential 1		
	Diffusion: It is the process of movement of majority charge carriers from their majority zone (.i.e., electrons from $n \rightarrow p$ and holes from $p \rightarrow n$) to the minority zone across the junction on account of different concentration gradient on the two sides of the junction.	1	
	<u>Drift:</u> Process of movement of minority charge carriers (i.e., holes from $n \rightarrow p$ and electrons from $p \rightarrow n$) due to the electric field developed at the junction.	1	
	Barrier potential: The loss of electrons from the n-region and gain of electrons by p-region causes a difference of potential across the junction, whose polarity is such as to oppose and then stop the further flow of charge carriers. This (stopping) potential is called Barrier potential.	1	3
Q16	a. Two properties 1/2+1/2 b. Derivation of expression for potential energy 2		
	a. (i) Electric field is in the direction in which potential decreases at the maximum rate	1⁄2	
	(ii) Magnitude of electric field is given by change in the magnitude of potential per unit displacement normal to a charged conducting surface. [Alternatively: award half mark of part 'a' if student writes only $E = -\frac{dV}{dr}$]	1⁄2	
	b. Work done in bringing the charge q_1 to a point		



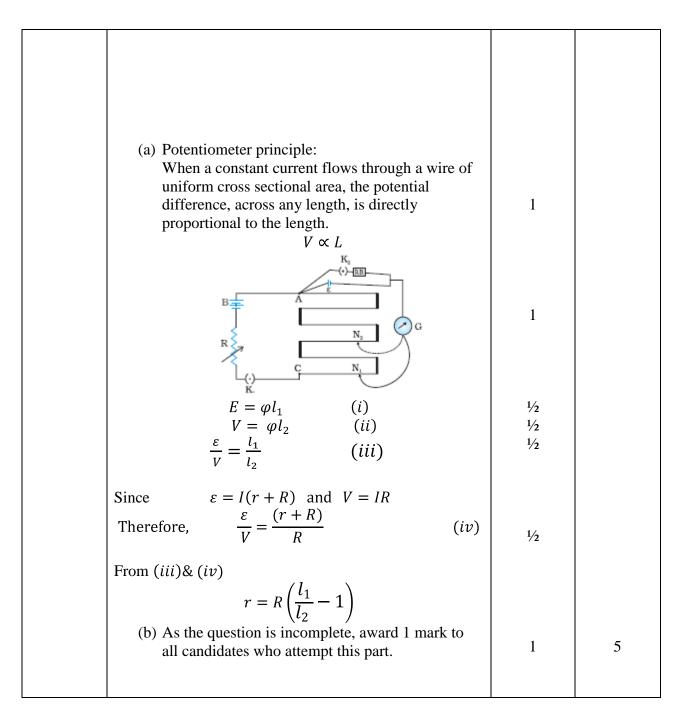
	$\implies E = \frac{\lambda}{2\pi\varepsilon_0 r}$	1⁄2	3
Q17	Statement of Lenz's Law1Explanation (with example)2		
	The Polarity of induced emf is such that it tends to produce a current which opposes the change in magnetic flux that produced it.	1	
	A)	1⁄2	
	(a) Number of the second secon	1⁄2	
	When the north pole of a bar magnet is pushed towards the close coil, the magnetic flux through coil increases and the current is induced in the coil in such a direction that it opposes the increase in flux. This is possible when the induced current in the coil is in the anticlockwise direction. Just the opposite happens when the north pole is moved away from the coil. In either case, it is the work done against the force of magnetic repulsion/attraction that gets 'converted' into	1⁄2 1⁄2	3
Q18	the induced emf. Calculation of V and unknown capacitance 2 Calculation of charge when voltage is increased by 120 V 1		
	Capacitance $C = \frac{Q_1}{V_1}$		

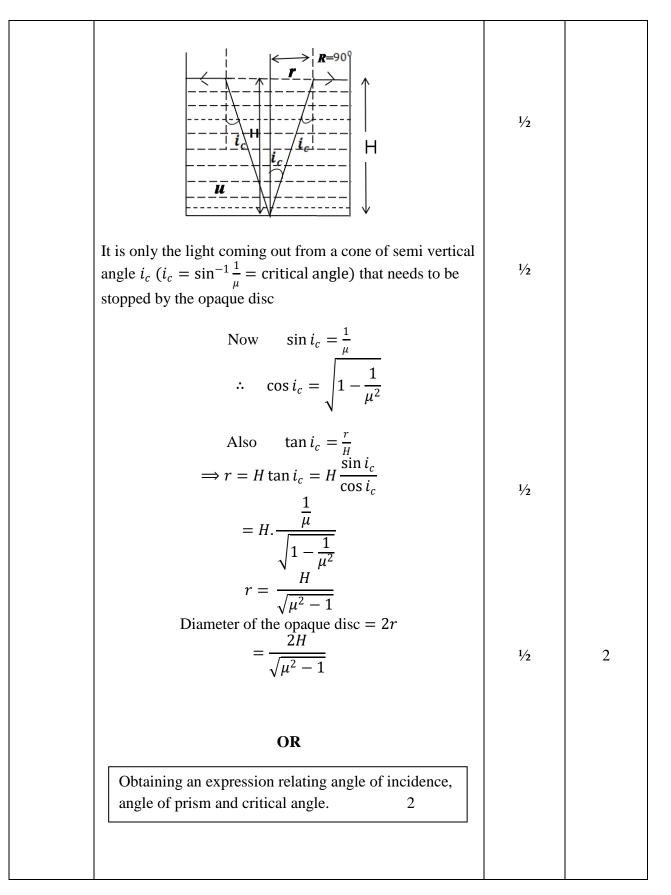

T			
	In sky wave mode of communication waves reach from transmitting antenna to receiving antenna through reflections from ionosphere, while in space wave mode of communications wave travel either directly from transmitter to receiver or through satellite.	1+1	
	Direct waves get blocked at some point due to the curvature of earth.	1⁄2	
	Optimum distance between transmitting and receiving antenna. $= \sqrt{2h_T R} + \sqrt{2h_R R}$	1⁄2	3
Q21	Drawing of output waveform1Identification of Logic gate1Truth Table1		
	1 0	1	
	NAND GATE	1	
	Truth Table		
	Inputs Output A B 1 1 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1	1	3
0.00			
Q22	Derivation of current density 2		
Page 11 of 1	8 Explanation with reason the change in mobility of electrons 1	July 20,	2017

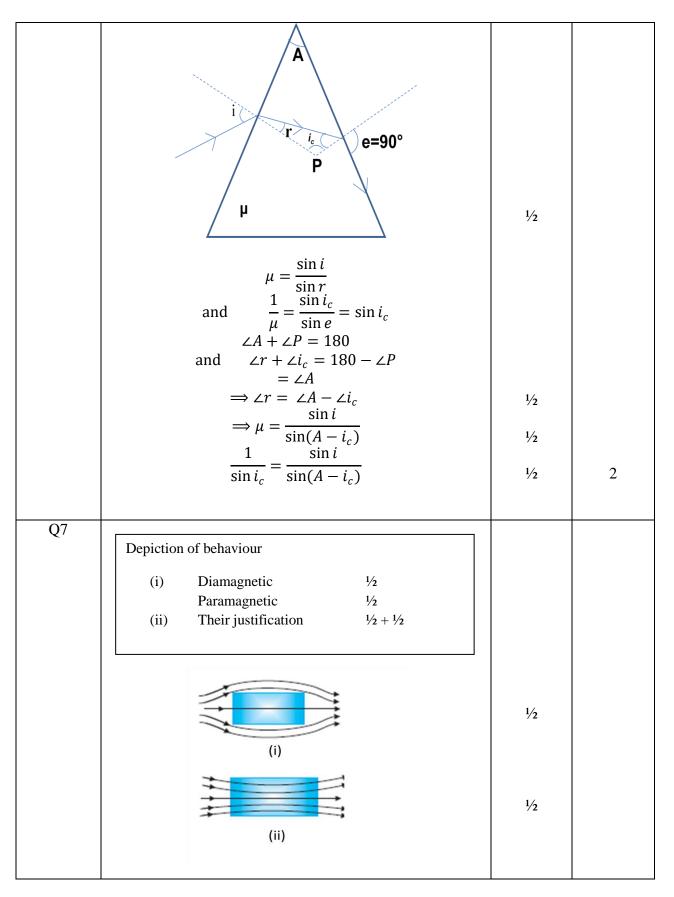

Using Ohm's law $V = IR = \frac{I\rho I}{A}$ Potential difference (V), across the ends of a conductor of length 'I', where field 'E' is applied, is given by $V = EI$ $\therefore EI = \frac{I\rho I}{A}$ But current density $J = \frac{1}{A}$ $EI = J\rho I = \frac{I}{\sigma}$ $\Rightarrow J = \sigma E$ No change mobility $\mu = \frac{v_d}{E}$ and $v_d = \frac{eV\tau}{ml}$ $\frac{v_2}{v_2}$ As potential is doubled, drift velocity also gets doubled, therefore, no change in mobility. $\frac{(1) \text{ Moral values of Prof. Srivastava} \frac{v_2 + v_2}{1}$ $(2) \text{ Relation between mean life & half life 1}$ $(3) Calculation of half life and initial activity 1+1$ $\frac{Care, concern, helping attitude}{[any two values]}$ $R = R_0(\frac{1}{2})^n \Rightarrow \frac{R_0}{R} = (2)^n$ $\frac{v_2}{v_2}$ $\frac{v_3}{4}$ $\frac{R_0}{10000} = (2)^2$ $\frac{v_4}{v_2}$ $\frac{v_5}{v_4}$ $\frac{v_6}{v_4}$				
$V = IR = \frac{I\rho l}{A}$ Potential difference (V), across the ends of a conductor of length 'l', where field 'E' is applied, is given by $V = El$ $\therefore El = \frac{I\rho l}{A}$ But current density $J = \frac{1}{A}$ $El = J\rho l = \frac{Jl}{\sigma}$ $\Rightarrow J = \sigma E$ No change $\frac{V_2}{mobility} \mu = \frac{v_a}{E} \text{ and } v_d = \frac{eV\tau}{ml}$ $\frac{V_2}{V_2}$ As potential is doubled, drift velocity also gets doubled, therefore, no change in mobility. $Q23$ $(1) \text{ Moral values of Prof. Srivastava}$ $\frac{V_2 + V_2}{V_2 + V_2}$ $(2) \text{ Relation between mean life & half life 1 (3) Calculation of half life and initial activity 1+1 Care, \text{ concern, helping attitude} [any two values] W_2 + V_2 Mean life = (half life/0.693)/(1.44 times half life) \left(= 1.44 \tau \frac{1}{2} \right) Half life = 10 howr (as per given information) R = R_0 (\frac{1}{2})^n \Rightarrow \frac{R_0}{R} = (2)^n \frac{V_2}{V_2} \frac{R_0}{10000} = (2)^2 \frac{V_2}{V_2} \frac{V_2}{V_2} \frac{V_3}{V_2}$				
$V = IR = \frac{I\rho l}{A}$ Potential difference (V), across the ends of a conductor of length 'l', where field 'E' is applied, is given by $V = El$ $\therefore El = \frac{I\rho l}{A}$ But current density $J = \frac{1}{A}$ $El = J\rho l = \frac{Jl}{\sigma}$ $\Rightarrow J = \sigma E$ No change $\frac{V_2}{W_2}$ As potential is doubled, drift velocity also gets doubled, therefore, no change in mobility. $\frac{V_2 + V_2}{V_2}$ $\frac{(1) \text{ Moral values of Prof. Srivastava} \frac{V_2 + V_2}{V_2 + V_2}$ $(2) \text{ Relation between mean life & half life 1}{(3) \text{ Calculation of half life and initial activity 1+1}}$ $Care, concern, helping attitude [any two values] R = R_0 (\frac{1}{2})^n \Rightarrow \frac{R_0}{R} = (2)^n \frac{V_2}{V_2} \frac{V_3}{V_2} \frac{R_0}{10000} = (2)^2 \frac{V_2}{V_2} \frac{V_2}{V_2} \frac{V_3}{V_2}$				
Potential difference (V), across the ends of a conductor of length 'l', where field 'E' is applied, is given by $V = El$ $\therefore El = \frac{I\rho l}{A}$ But current density $J = \frac{1}{A}$ $El = J\rho l = \frac{Jl}{\sigma}$ $\Rightarrow J = \sigma E$ No change $\frac{1}{\sqrt{2}}$ No change $\frac{\sqrt{2}}{E}$ $\frac{\sqrt{2}}{2}$ Mobility $\mu = \frac{v_a}{E}$ and $v_a = \frac{eV\tau}{ml}$ V2 $\frac{\sqrt{2}}{E}$ $\frac{\sqrt{2}}{2}$ As potential is doubled, drift velocity also gets doubled, therefore, no change in mobility. $\frac{\sqrt{2}}{2}$ Q23(1) Moral values of Prof. Srivastava (2) Relation between mean life & half life (2) Relation between mean life & half life (1) (3) Calculation of half life and initial activity 1+1 $\frac{1}{2}$ Care, concern, helping attitude [any two values] $\frac{1}{2} + \frac{1}{2}$ 1Half life = 10 hour (as per given information) $R = R_0(\frac{1}{2})^n \Rightarrow \frac{R_0}{R} = (2)^n$ $\frac{1}{\sqrt{2}}$ $\frac{R_0}{10000} = (2)^2$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ $\frac{R_0}{10000} = (2)^2$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$		•	1⁄2	
$El = J\rho l = \frac{J}{\sigma}$ $\Rightarrow J = \sigma E$ No change $Mobility \mu = \frac{v_a}{E} \text{and} v_a = \frac{eV\tau}{ml}$ V_2 As potential is doubled, drift velocity also gets doubled, V_2 As potential is doubled, drift velocity also gets doubled, V_2 V_2 As potential is doubled, drift velocity also gets doubled, V_2		Potential difference (V), across the ends of a conductor of length 'l', where field 'E' is applied, is given by V = El	1⁄2	
No change y_2 mobility $\mu = \frac{v_d}{E}$ and $v_d = \frac{eV\tau}{ml}$ y_2 As potential is doubled, drift velocity also gets doubled, therefore, no change in mobility. y_2 3Q23(1) Moral values of Prof. Srivastava $y_2 + y_2$ (2) Relation between mean life & half life1(3) Calculation of half life and initial activity 1+11Care, concern, helping attitude [any two values]Mean life = (half life/0.693)/(1.44 times half life) $\left(= 1.44 T_{\frac{1}{2}}\right)$ 1Half life = 10 hour (as per given information) $R = R_0(\frac{1}{2})^n \Rightarrow \frac{R_0}{R} = (2)^n$ y_2 $\frac{R_0}{10000} = (2)^2$ y_2 $\Rightarrow R_0 = 40000$ dps y_2			1⁄2	
Q23Image: Constraint of the effort, no change in mobility.Image: Constraint of the effort, no change in mobility.Q23(1) Moral values of Prof. Srivastava $\frac{1/2}{2} + \frac{1/2}{2}$ (2) Relation between mean life & half life 1 (3) Calculation of half life and initial activity 1+1Image: View of the effort		No change	1⁄2	
therefore, no change in mobility.SECTION DQ23(1) Moral values of Prof. Srivastava $\frac{1}{2} + \frac{1}{2}$ (2) Relation between mean life & half life 1 (3) Calculation of half life and initial activity 1+1Care, concern, helping attitude [any two values] Mean life = (half life/0.693)/(1.44 times half life) $\left(= 1.44 T_{\frac{1}{2}}\right)$ 1Half life = 10 hour (as per given information) $R = R_0(\frac{1}{2})^n \Rightarrow \frac{R_0}{R} = (2)^n$ $\frac{1}{2}$ $\frac{R_0}{10000} = (2)^2$ $\frac{1}{2}$ $\Rightarrow R_0 = 40000$ dps $\frac{1}{2}$		mobility $\mu = \frac{u}{E}$ and $v_d = \frac{u}{ml}$	1/2	
Q23 (1) Moral values of Prof. Srivastava $\frac{\frac{1}{2} + \frac{1}{2}}{2}$ (2) Relation between mean life & half life 1 (3) Calculation of half life and initial activity 1+1 Care, concern, helping attitude [any two values] Mean life = (half life/0.693)/(1.44 times half life) $\left(= 1.44 T_{\frac{1}{2}}\right)$ Half life = 10 hour (as per given information) $R = R_0(\frac{1}{2})^n \Rightarrow \frac{R_0}{R} = (2)^n$ $\frac{\frac{1}{2}}{\frac{1}{2}}$ $\Rightarrow R_0 = 40000 \text{ dps}$			1⁄2	3
(1) Moral values of Prof. Srivastava (2) Relation between mean life & half life 1 (3) Calculation of half life and initial activity 1+1 Care, concern, helping attitude [any two values] Mean life = (half life/0.693)/(1.44 times half life) $\begin{pmatrix} = 1.44 T_{\frac{1}{2}} \end{pmatrix}$ Half life = 10 hour (as per given information) $R = R_0(\frac{1}{2})^n \Rightarrow \frac{R_0}{R} = (2)^n$ $\frac{V_2}{V_2}$ $\frac{R_0}{10000} = (2)^2$ $\Rightarrow R_0 = 40000 \text{ dps}$ $\frac{V_2 + V_2}{V_2}$ $\frac{V_2}{V_2}$ $\frac{V_2}{V_2}$ $\frac{V_2}{V_2}$ $\frac{V_2}{V_2}$		SECTION D		
[any two values] Mean life = (half life/0.693)/(1.44 times half life) $\begin{pmatrix} = 1.44 T_{\frac{1}{2}} \end{pmatrix}$ Half life = 10 hour (as per given information) $R = R_0(\frac{1}{2})^n \Rightarrow \frac{R_0}{R} = (2)^n$ $\frac{1}{2}$ $\frac{R_0}{10000} = (2)^2$ $\frac{1}{2}$ $\frac{1}$	Q23	(2) Relation between mean life & half life 1		
$\begin{pmatrix} = 1.44 I_{\frac{1}{2}} \\ Half life = 10 hour (as per given information) \\ R = R_0 (\frac{1}{2})^n \Rightarrow \frac{R_0}{R} = (2)^n \\ \frac{R_0}{10000} = (2)^2 \\ \Rightarrow R_0 = 40000 \text{ dps} \\ \frac{1/2}{1/2} \\ 4 \end{pmatrix}$		[any two values]	¹ / ₂ + ¹ / ₂	
$R = R_0 (\frac{1}{2})^n \Longrightarrow \frac{R_0}{R} = (2)^n$ $\frac{1}{1/2}$ $\frac{R_0}{10000} = (2)^2$ $\frac{1}{1/2}$		$\left(=1.44 T_{\frac{1}{2}}\right)$	1	
$\frac{R_0}{10000} = (2)^2$ $\Rightarrow R_0 = 40000 \text{ dps}$ $\frac{1/2}{1/2}$ 4			1⁄2	
$\implies R_0 = 40000 \text{ dps} \qquad \qquad \begin{array}{c} 1/_2 \\ 1/_2 \\ 1/_2 \\ 4 \end{array}$		$\frac{R_0}{10000} = (2)^2$	1/2	
SECTION E				4
		SECTION E		



Page 13 of 18


July 20, 2017



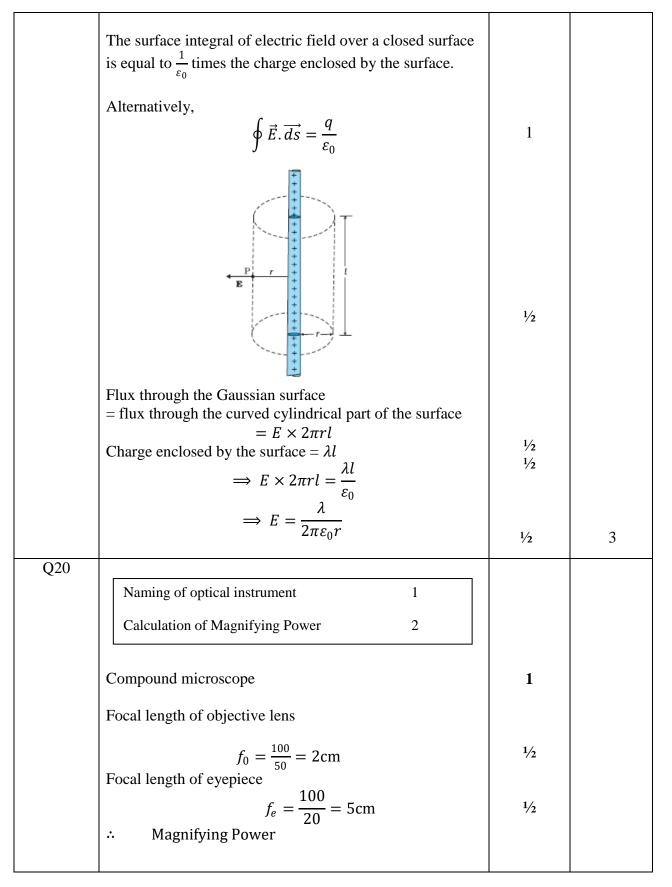

026	$\Rightarrow n_1 \lambda_1 = n_2 \lambda_2$ $\frac{n_1}{n_2} = \frac{\lambda_2}{\lambda_1} = \frac{520}{650} = \frac{4}{5}$ Therefore, 4 th bright fringe of $\lambda = 650$ mm will coincide with 5 th bright fringe 520mm. Least distance from central maximum where bright fringes of both wavelength coincide $= \frac{4 \times 650 \times 1.2 \times 10^{-9}}{4 \times 10^{-3}} \text{ m} = 780 \times 10^{-6} \text{ m} = 0.78 \text{ nm}$	1/2 1/2	5
Q26	 (a) Labelled circuit diagram of meter bridge & derivation of expression of R 3 (b) Meaning of end error and its correction ¹/₂ +¹/₂ Effect on balancing Length ¹/₂ Reason ¹/₂ (a) 		
	(iii) $ \begin{array}{c} $	1	
	The the bridge is balanced at null point. Therefore $\frac{R}{S} = \frac{l_1}{(100 - l_1)}$ $\implies R = S \frac{l_1}{(100 - l_1)}$	1 1	
	(b) The error which arises on account of resistance of copper strips and the connecting wire at both ends of the meter bridge is called end error. It is minimized by adjusting the balance point near the middle point of the bridge. No effect, as the bridge remains balanced.	1/2 1/2 1/2+1/2	5
	OR		
Page 17 of 1	(a) Statement of working Principle18Circuit diagram and determination of internal resistance3(b) (i) Effect of internal resistance1/2(ii) Series resistance1/2	July 20, 2	2017

Q. No.	Expected Answer/ Value Points	Marks	Total Marks
	SECTION A		
Q1	Virtual/ erect/ diminished	1/2+1/2	1
Q2	No	1	1
Q3			
	r > R	1	
	$R \qquad r \rightarrow$		1
Q4	Relative permeability $\mu_r = \frac{L}{L_0} = \frac{2.8}{2.0 \times 10^{-3}}$	1/2	
	= 1400	1/2	1
Q5	 (i) Energy of photoelectrons does not depend on intensity of incident light waves (ii) Photoelectric effect is instantaneous process (iii)Existence of threshold frequency (any one of above) 	1	1
	SECTION B		
Q6	Derivation of the expression of the diameter of opaque disc 2		

MARKING SCHEME

	The Field lines are repelled or expelled and the field inside the material is reduced.	1⁄2	
	In the presence of magnetic field, the individual atomic dipoles can get aligned in the direction of the applied magnetic field. Therefore, field lines get concentrated inside the material and the field inside is enhanced.	1⁄2	2
Q8	Production of e m waves 1		
	Diagram depicting the oscillating electric and magnetic fields. 1		
	Electromagnetic waves are produced due to oscillating/ accelerating charged particles.	1	
	Y B Z	1	2
Q9	Derivation of ratio of the radii of the circular paths 2		
	$r = \frac{mv}{qB}$ But $\frac{p^2}{2m} = k \implies p = \sqrt{2mk} = mv$	1⁄2	
	$\implies \frac{r_p}{r_{\alpha}} = \frac{\sqrt{2m_p k_p}/q_p B}{\sqrt{2m_{\alpha} k_{\alpha}}/q_{\alpha} B}$	1⁄2	
	$=\frac{q_{\propto}\sqrt{m_p}}{q_p\sqrt{m_{\propto}}}=\frac{q_{\propto}}{q_p}\sqrt{\frac{m_p}{m_{\propto}}}$		
	Since $q_{\alpha} = 2q_p$ $m_{\alpha} = 4m_p$	1⁄2	

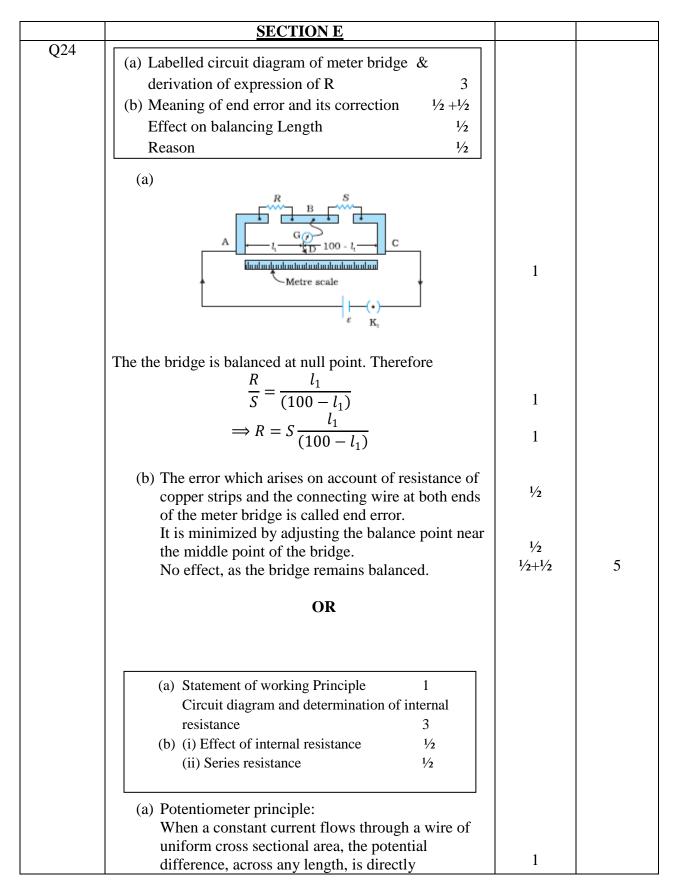
	$\Longrightarrow \frac{r_p}{r_{\infty}} = \frac{2q_p}{q_p} \sqrt{\frac{m_p}{4m_p}} = 1:1$	1⁄2	2
Q10	Calculation of shortest wavelength11/2Part of electromagnetic spectrum to which this wavelength belong1/2		
	$\frac{1}{\lambda} = R \left[\frac{1}{n_f^2} - \frac{1}{n_i^2} \right]$ For shortest wavelength in Brackett series $n_i = \infty, n_f = 4$ $\frac{1}{\lambda} = 1.1 \times 10^7 \left[\frac{1}{16} - \frac{1}{\infty} \right]$ $\lambda = \frac{16 \times 10^{-7}}{1.1} = 1454 \text{ nm}$	1/2 1/2	
	far Infrared region 1.1	1/2	2
Q11	SECTION CDiagram showing incident wavefront and refracted wavefront 1 Verification of Snell's Law 2 Incident wavefront wavefrontIncident wavefront wavefrontMedium 1 wavefront i <t< td=""><td>1</td><td></td></t<>	1	
	$BC = v_1 \tau \& AE = v_2 \tau$	1⁄2 1⁄2	

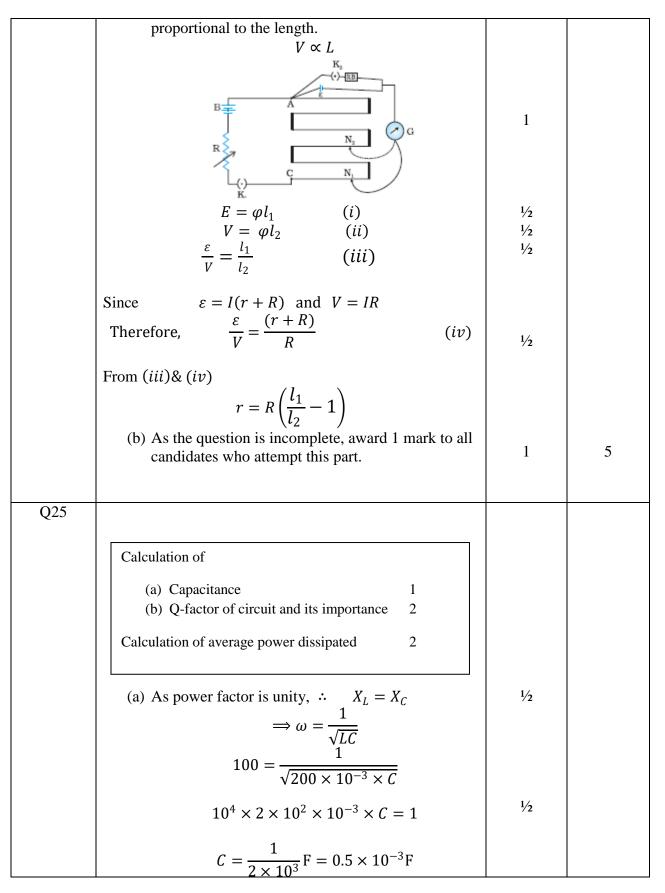

	BC = 12. T		
	$\sin i = \frac{BC}{AC} = \frac{v_1 \tau}{AC}$		
	$\sin r = \frac{AE}{AC} = \frac{v_2\tau}{AC}$	1/2	
	$\implies \frac{\sin i}{\sin r} = \frac{v_1 \tau}{v_2 \tau} = \frac{v_1}{v_2} = \mu$	1/2	3
Q12	Distinction between sky wave and space wave modes of communication 2		
	Limitation of space wave mode1/2Expression for optimum separation1/2		
	In sky wave mode of communication waves reach from transmitting antenna to receiving antenna through reflections from ionosphere, while in space wave mode of communications wave travel either directly from transmitter to receiver or through satellite.	1+1	
	Direct waves get blocked at some point due to the curvature of earth.	1/2	
	Optimum distance between transmitting and receiving antenna. = $\sqrt{2h_TR} + \sqrt{2h_RR}$	1/2	3
Q13	Drawing of output waveform 1 Identification of Logic gate 1 Truth Table 1 1 0 NAND GATE	1	
	Truth Table		

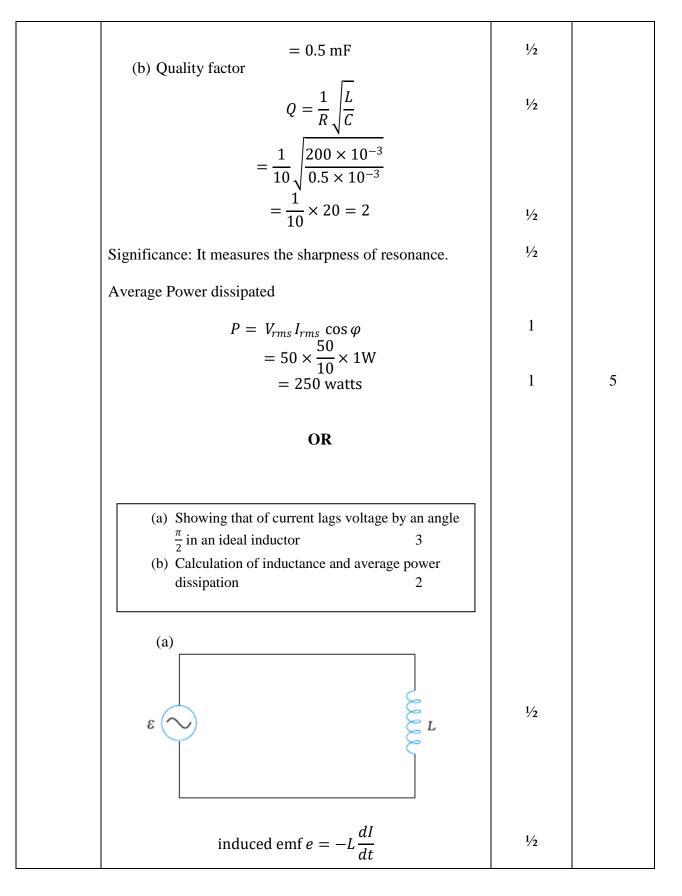
	Inpute		
	A B Output	1	
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
			3
	0 0 1		
Q14			
	Derivation of current density 2		
	Evelopetion with reason the change in mability of		
	Explanation with reason the change in mobility of		
	electrons 1		
	Using Ohm's law		
	-	1/2	
	$V = IR = \frac{I\rho l}{A}$	/ =	
	Potential difference (V), across the ends of a conductor of		
	length 'l', where field 'E' is applied, is given by		
	V = El		
	$\therefore Fl = \frac{I\rho l}{I\rho l}$	1/2	
	$\therefore El = \frac{I\rho l}{\frac{A}{I}}$		
	But current density $J = \frac{I}{A}$		
		1/2	
	$El = J\rho l = \frac{Jl}{\sigma}$ $\Rightarrow J = \sigma E$	/2	
	$\Rightarrow I = \sigma E^{O}$		
	No change	1/2	
	mobility $\mu = \frac{v_d}{E}$ and $v_d = \frac{eV\tau}{ml}$	1/2	
	As potential is doubled, drift velocity also gets doubled,	1/2	3
	therefore, no change in mobility.		
Q15			
X13	(a) Drawing of graph showing the variation 1		
	(b) Explanation of which particle has more		
	kinetic energy 2		
	(a) Wavelength of the particle is given by $\lambda =$		
	<u>h</u>		
	$\sqrt{2mqV}$		

	$ \begin{array}{c c} $	1	
	(b) for an electron and proton $q_p = q_e$	1/2	
	$m_p > m_e$ Since wavelength $\lambda = \frac{h}{\sqrt{2mqV}}$, and both particles have	1⁄2	
	same de Broglie wavelength, λ & Kinetic energy is given by qV $\therefore \frac{h}{\sqrt{2m_eKE_e}} = \frac{h}{\sqrt{2m_pKE_p}} \Longrightarrow m_e(KE)_e = m_p(KE)_p$	1/2	
	$\therefore \text{KE of electron will be more}$	1⁄2	3
Q16	Meaning of Attenuation and Demodulation1/2 +1/2Calculation of modulation index2		
	Attenuation: Loss of strength of the signal while propagating through a medium.	1/2	
	Demodulation: Detection of message signal from carrier singal.	1/2	
	$a_c + a_m = 12$ $a_c - a_m = 2$	1⁄2	

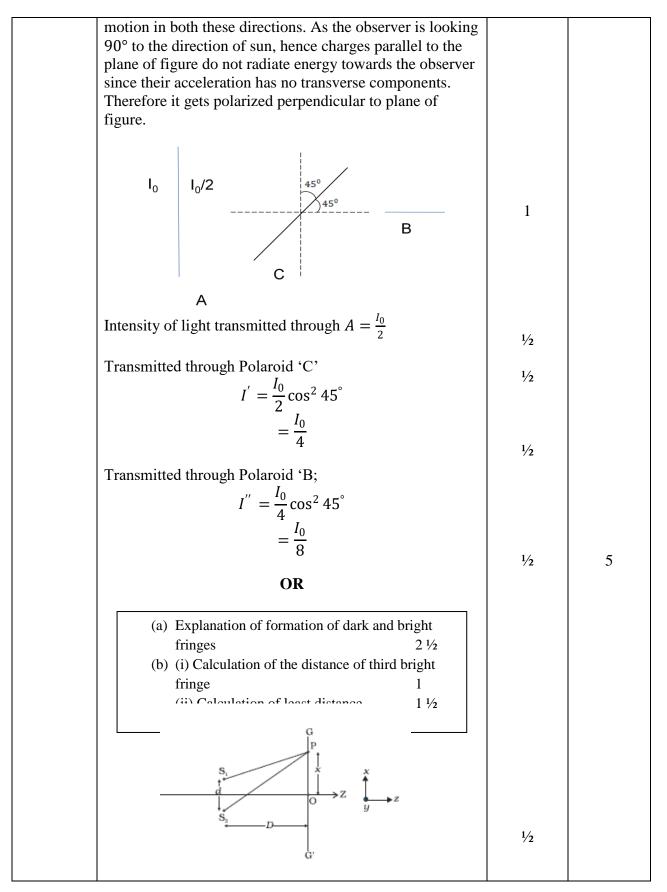
	$a_c = 7$ $a_m = 5$	1/2	
	Modulation index $\mu = \frac{a_m}{a_c} = \frac{5}{7}$	1/2+1/2	3
Q17	Definition of magnetic moment1Derivation of expression of magnetic field2		
	Magnetic moment of a current loop is equal to the product of current flowing in the loop and its area and its direction is along area vector as per the right handed screw rule.	1	
	Alternatively $\vec{m} = I\vec{A}$	1/2	
		1⁄2	
	Using Ampere's circuital law $\oint \vec{B} \cdot \vec{dl} = \mu_0 nhI$	1/2	
	$Bh = \mu_0 nhI$	1/2	3
Q18	$\implies B = \mu_0 n I$		
	Explanation of two processes1+1Definition of barrier potential1		
	Diffusion: It is the process of movement of majority charge carriers from their majority zone (.i.e., electrons from $n \rightarrow p$ and holes from $p \rightarrow n$) to the minority zone across the junction on account of different concentration	1	

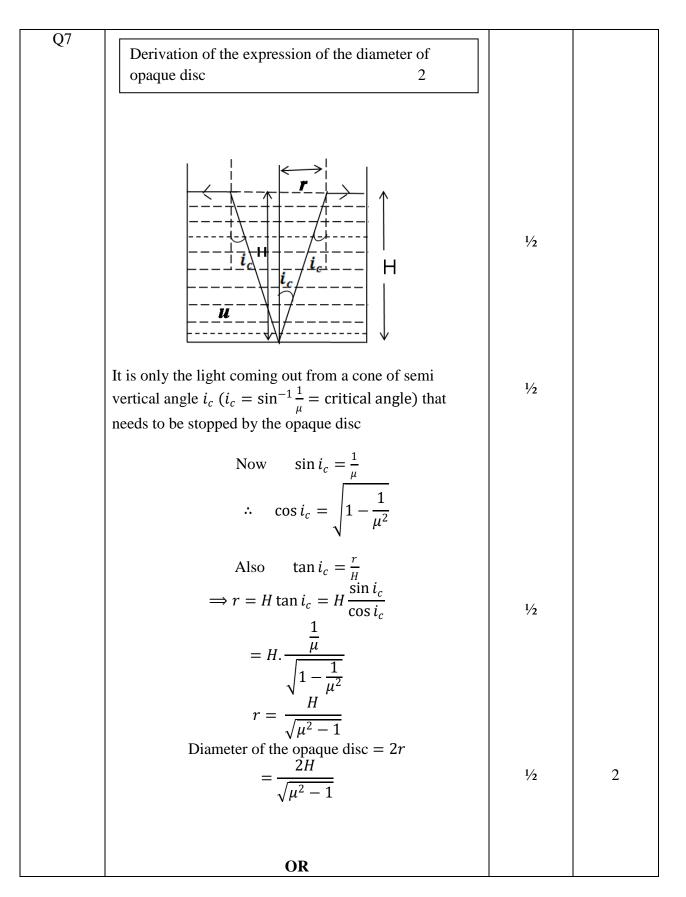

	gradient on the two sides of the junction.		
	<u>Drift:</u> Process of movement of minority charge carriers (i.e., holes from $n \rightarrow p$ and electrons from $p \rightarrow n$) due to the electric field developed at the junction.	1	
	Barrier potential: The loss of electrons from the n-region and gain of electrons by p-region causes a difference of potential across the junction, whose polarity is such as to oppose and then stop the further flow of charge carriers. This (stopping) potential is called Barrier potential.	1	3
Q19	a. Two properties 1/2+1/2 b. Derivation of expression for potential energy 2		
	a. (i) Electric field is in the direction in which potential decreases at the maximum rate	1⁄2	
	(ii) Magnitude of electric field is given by change in the magnitude of potential per unit displacement normal to a charged conducting surface. [Alternatively: award half mark of part 'a' if student writes only $E = -\frac{dV}{dr}$]	1⁄2	
	b. Work done in bringing the charge q_1 to a point against external electric field. $W_1 = q_1 V(\vec{r_1})$ Work done in bringing the charge q_2 against the external electric field and the Electric field	1⁄2	
	produced due to charge q_1 $W_2 = q_2 V(\vec{r_2}) + \frac{1}{4\pi\varepsilon_0} \cdot \frac{q_1 q_2}{r_{12}}$ Therefore Total work done = Electrostatic	1⁄2	
	potential energy $U = q_1 V(\vec{r_1}) + q_2 V(\vec{r_2}) + \frac{1}{4\pi\varepsilon_0} \cdot \frac{q_1 q_2}{r_{12}}$	1	3
	OR		
	Statement of Gauss's Law1Derivation of electric field due to an infinitely long straight uniformly charged wire.2		

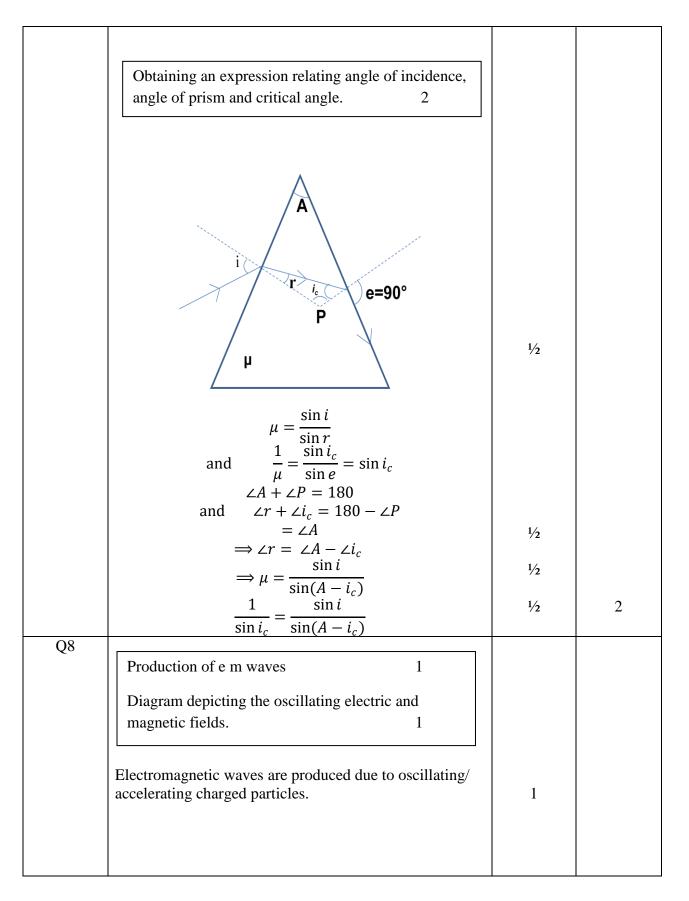


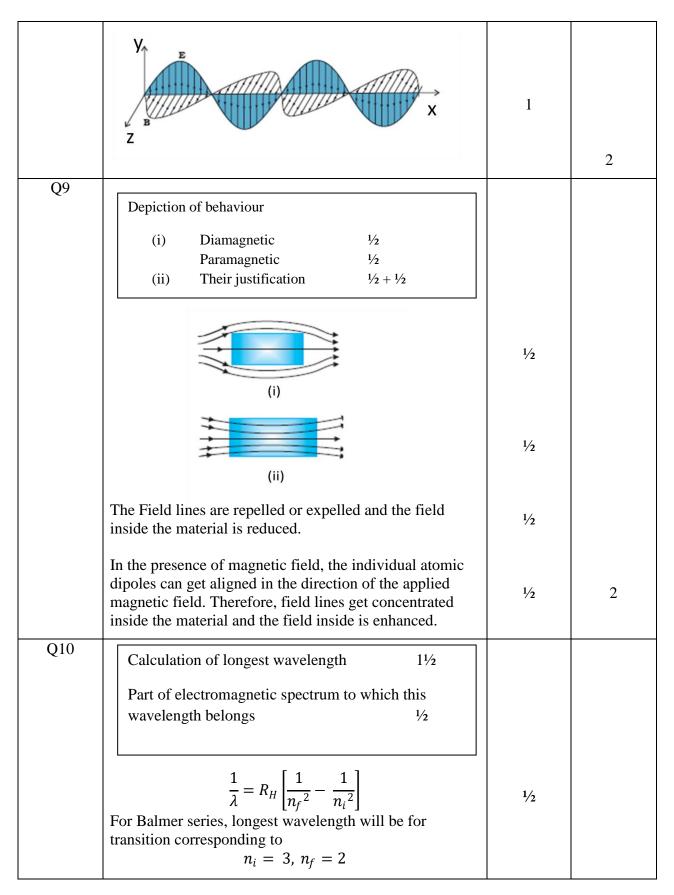

	$m = \frac{L}{f_0} \times \frac{D}{f_e}$	1/2	
	$=\frac{15}{2}\times\frac{25}{5}$	1/2	
	= 37.5	72	3
Q21	Statement of Lenz's Law 1		
	Explanation (with example) 2		
	The Polarity of induced emf is such that it tends to produce a current which opposes the change in magnetic flux that produced it.	1	
		1⁄2	
	(a) (b)	1⁄2	
	When the north pole of a bar magnet is pushed towards the close coil, the magnetic flux through coil increases and the current is induced in the coil in such a direction that it opposes the increase in flux. This is possible when the induced current in the coil is in the anticlockwise direction. Just the opposite happens when the north pole is moved away from the coil.	1⁄2	
	In either case, it is the work done against the force of magnetic repulsion/attraction that gets 'converted' into the induced emf.	1⁄2	3

Q22 Colorlation of V and unknown constitution 2		
Calculation of V and unknown capacitance 2		
Calculation of charge when voltage is increased		
by 80 V 1		
Capacitance of capacitor		
$C = \frac{Q_1}{V_1} = \frac{Q_2}{V_2} = \frac{Q_3}{V_3}$	1/2	
When potential 'V' is decreased by $80V$		
$\frac{240 \ \mu\text{C}}{V} = \frac{80 \ \mu\text{C}}{(V - 80)}$	1⁄2	
3V - 240 = V		
2V = 240		
<i>V</i> = 120 Volt	1/2	
Capacitance $C = \frac{240 \ \mu C}{120} = 2 \mu F$ Charge in the capacitor when voltage is increased by 80 V	1⁄2	
$Q_{3}^{'} = CV_{3}^{'}$ = 2\mu F \times (120 + 80)V = 400\mu C	1/2 1/2	3
Q23 (1) M l l SP (Si) (1) K (1)		
(1) Moral values of Prof. Srivastava $\frac{1}{2} + \frac{1}{2}$ (2) Relation between mean life & half life 1 (3) Calculation of half life and initial activity 1+1		
Care, concern, helping attitude		
[any two values]	1/2 +1/2	
Mean life = (half life/0.693)/(1.44 times half life) $\left(=1.44 T_{\frac{1}{2}}\right)$	1	
Half life = 10 hour (as per given information) $R = R_0 (\frac{1}{2})^n \Longrightarrow \frac{R_0}{R} = (2)^n$	1/2	
	1/2	
$\frac{R_0}{10000} = (2)^2$	1/2	
$\implies R_0 = 40000 \text{ dps}$	1/2	4

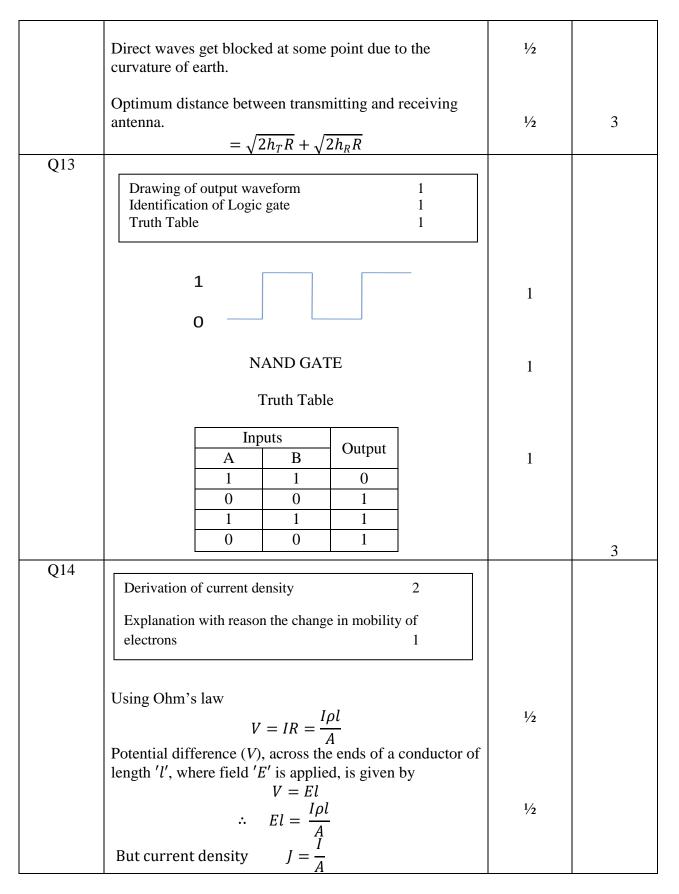

SET 55/1/2


r			,
	Hence Net voltage in the circuit = $V - L \frac{dI}{dt}$ According to Kirchoff's Rule $V - L \frac{dI}{dt} = 0$ $V_m \sin \omega t = L \frac{dI}{dt}$	1⁄2	
	$dI = \frac{V_m}{L}\sin\omega t dt$ $I = -\frac{V_m}{\omega L}\cos\omega t$	1⁄2 1⁄2	
	$= \frac{V_m}{\omega L} \sin(\omega t - \frac{\pi}{2})$ $\therefore i = i_m \sin(\omega t - \frac{\pi}{2})$ Hence current lags by $\frac{\pi}{2}$	1⁄2	
	(b) Inductance of the inductor = $100mH$ Average power dissipation $P = V_{rms} I_{rms} \cos \varphi$ = $10 \times 1 \times \cos \frac{\pi}{4}$	1⁄2 1⁄2	
	$=\frac{10}{\sqrt{2}}W=5\sqrt{2}watts(17.07W)$	1	5
Q26	 (a) Explanation, how plane polarized light can be produced by scattering 2 (b) Calculation of intensity of light transmitted by A,B and C 3 (a) 	1	
	Scattered Light (Polarised) To Observer		
	Unpolarised light, from sun, has Electric field components perpendicular to plane of figure and in the plane of figure. Under the influence of Electric field of the incident wave the electrons in the molecules acquires components of	1	

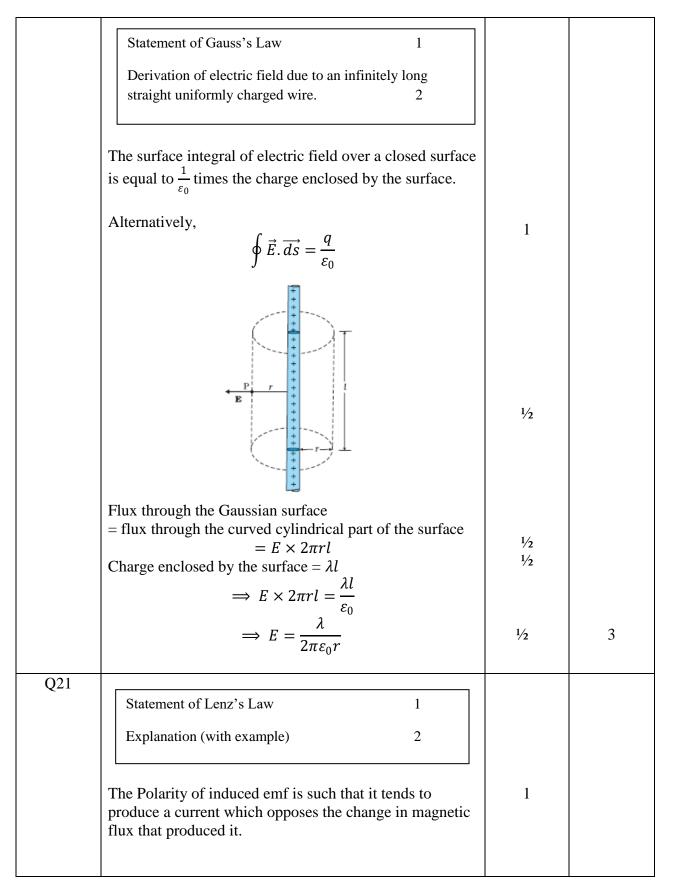



At centre of the screen i.e. at point O, waves from two sources S ₁ and S ₂ meet in same phase and produce constructive interference, and similarly at all those points on the screen where waves have path difference n_{λ} , $n =$ 0,1,2,3, they produce constructive interference hence bright fringes are obtained.	1	
At the points on the screen where waves from S_1 and S_2 meet with phase difference of $(2n + 1)\pi$ or path	1	
difference of $(2n + 1)\frac{\lambda}{2}$, the waves will produce		
destructive interference and dark fringes are obtained.		
(b) (i) $x_n = \frac{n\lambda D}{d}$ $= \frac{3 \times 650 \times 10^{-9} \times 1.2}{4 \times 10^{-3}}$ $= 585 \times 10^{-6} \text{m}$ $= 0.585 \text{ mm}$	1⁄2	
(ii) $\frac{n_{1\lambda_1 D}}{d} = \frac{n_{2\lambda_2 D}}{d}$	1⁄2	
$\frac{d}{\Longrightarrow} \frac{d}{n_1 \lambda_1} = \frac{n_2 \lambda_2}{n_2 \lambda_1}$ $\frac{n_1}{n_2} = \frac{\lambda_2}{\lambda_1} = \frac{520}{650} = \frac{4}{5}$	1⁄2	
Therefore, 4 th bright fringe of $\lambda = 650$ mm will coincide with 5 th bright fringe 520mm. Least distance from central maximum where bright fringes of both wavelength coincide	1⁄2	
$=\frac{4 \times 650 \times 1.2 \times 10^{-9}}{4 \times 10^{-3}} \text{ m} = 780 \times 10^{-6} \text{ m} = 0.78 \text{ nm}$	1⁄2	5

Q. No.	Expected Answer/ Value Points	Marks	Total Marks
	SECTION A		
Q1	No	1	1
Q2	Virtual/ erect/ diminished	1/2+1/2	1
Q3	Relative permeability $\mu_r = \frac{L}{L_0} = \frac{2.8}{2.0 \times 10^{-3}}$	1/2	
	= 1400	1/2	1
Q4	It does not affect the stopping potential.	1	1
Q5	$ \begin{array}{c} \uparrow \\ E \\ \hline \\ R \\ r \rightarrow \end{array} $	1	1
	SECTION B		
Q6	Derivation of the expression for radius 2 Force experienced by charged particle in magnetic field $\vec{F} = q \ (\vec{v} \times \vec{B})$ As <i>v</i> and <i>B</i> are perpendicular, $F = qvB$ This force is perpendicular to the direction of velocity and hence acts as centripetal force. $\frac{mv^2}{r} = qvB$ $r = \frac{mv}{qB}$	1/2 1/2 1/2 1/2	2

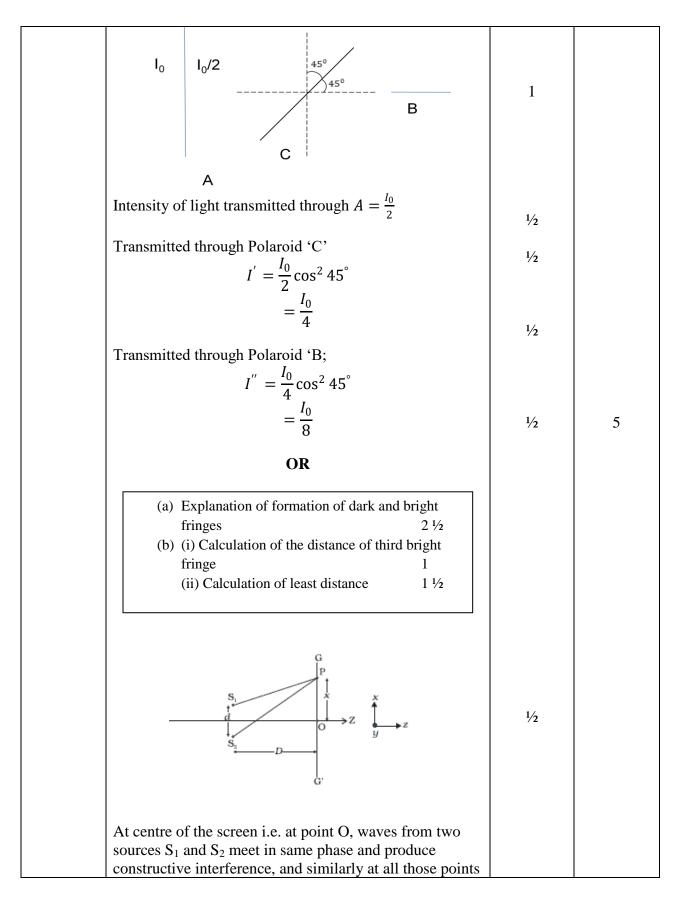

MARKING SCHEME

	$\frac{1}{\lambda} = 1.1 \times 10^7 \left(\frac{1}{2^2} - \frac{1}{3^2}\right)$ $\lambda = \frac{36 \times 10^{-7}}{5 \times 1.1} \text{ m}$	1⁄2	
	$= 6.545 \times 10^{-7} m$ = 654nm	1/2	
	Visible Part	1/2	2
	SECTION B		
Q11	Diagram showing incident and reflected wavefront 1Verification of laws of reflection2		
	M	1	
	Since time taken by waves from point B to C and from A to E is same $\therefore \qquad BC = AE = v\tau$	1⁄2	
	In $\triangle ABC$ and $\triangle AEC$ AC = AC (common) $\angle ABC = \angle AEC$ (90° each)	1/2	
	AE = BC $\therefore \Delta ABC \cong \Delta AEC$	1/2	
	Hence $\angle BAC = \angle ECA$ $\angle i = \angle r$	1/2	3
Q12	Distinction between sky wave and space wave modes of communication2Limitation of space wave mode1/2Expression for optimum separation1/2		
	In sky wave mode of communication waves reach from transmitting antenna to receiving antenna through reflections from ionosphere, while in space wave mode of communications wave travel either directly from transmitter to receiver or through satellite.	1+1	



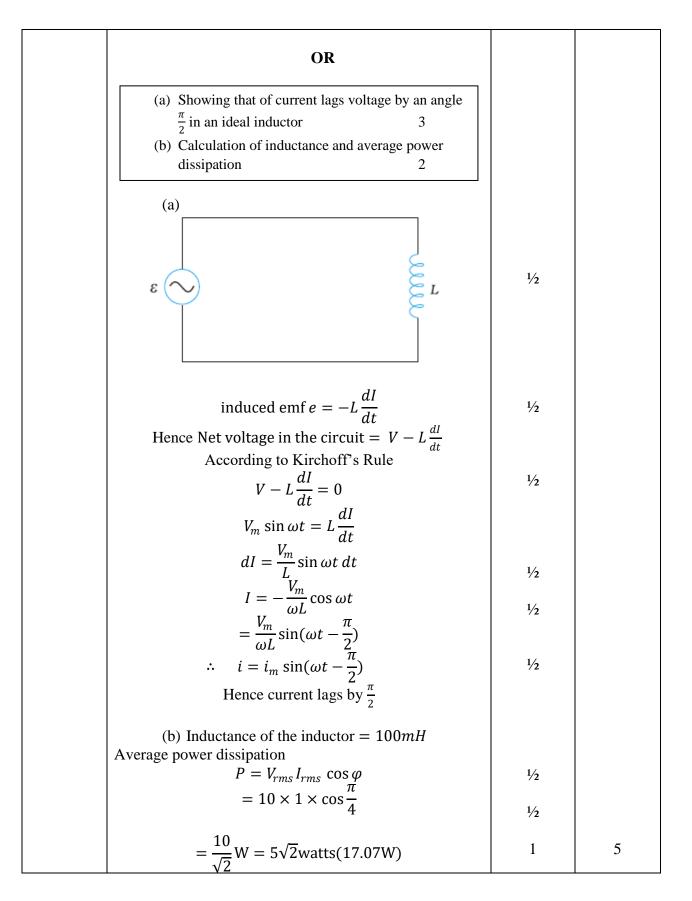
	$El = J\rho l = \frac{Jl}{\sigma}$ $\implies J = \sigma E$	1⁄2	
	$\Longrightarrow J = \sigma E^{\sigma}$		
	No change	1/2	
	mobility $\mu = \frac{v_d}{E}$ and $v_d = \frac{eV\tau}{ml}$	1⁄2	
	As potential is doubled, drift velocity also gets doubled, therefore, no change in mobility.	1⁄2	3
Q15			
	Drawing of graph showing the variation of λ and V_{-1}		
	Explanation of, which particle has more kinetic energy 2		
	$ \begin{bmatrix} \uparrow \\ \lambda \end{bmatrix} $	1	
	⊳ v		
	de Broglie wavelength, $\lambda = \frac{h}{\sqrt{2mqV}}$ and $KE = K = qV$	1⁄2	
	$\therefore \ \lambda = \frac{h}{\sqrt{2mK}}$ Since α particle and proton have same de Broglie wavelength 1 A°		
	$\therefore \sqrt{2m_p(K)_p} = \sqrt{2m_\alpha(K)_\alpha}$	1/2	
	$\implies m_p(K)_p = m_\alpha(K)_\alpha$		
	as $m_{\alpha} > m_p$	1/2	
	$\implies KE_p > KE_{\alpha}$ Proton has more Kinetic energy	1⁄2	3

Q16	Function of Repeater and receiver $\frac{1}{2} + \frac{1}{2}$		
	Calculation of modulation index 2		
	Repeater: Enhances / extends the range of communication	1/2	
	Receiver: Extracts the desired message signals from the received signals	1/2	
	$a_c + a_m = 15 \mathrm{V}$ $a_c - a_m = 3 \mathrm{V}$	1⁄2	
	$\Rightarrow a_c = 9V \\ a_m = 6V$	1/2 1/2	
	Modulation index $\mu = \frac{a_m}{a_c} = \frac{6}{9} = \frac{2}{3}$	1/2	3
Q17	Definition of magnetic moment 1 Derivation of expression of torque acting on a current loop 2 Magnetic moment is defined as the product of the current flowing in a loop and its area and it is directed along the area vector as per the right handed screw rule. (Alternatively $\vec{m} = I\vec{A}$) (Alternatively $\vec{m} = I\vec{A}$)	1	


	The forces on arms AB and CD are $\overrightarrow{F_1}$ and $\overrightarrow{F_2}$ with magnitude <i>IbB</i> and acting in opposite direction along different lines of actions. Hence they produce a torque. $F_1 = F_2 = IbB$ Torque $\tau = F_1\left(\frac{a}{2}\sin\theta\right) + F_2\left(\frac{a}{2}\sin\theta\right)$ $= IbaB\sin\theta$ $= IAB\sin\theta$ where area $A = ab$ In vector form, $\vec{\tau} = \vec{m} \times \vec{B}$	1/2 1/2 1/2	3
Q18	Naming of optical instrument1Calculation of magnifying Power2		
	Compound microscope	1	
	Focal Length of objective lens $(f = \frac{1}{p})$ $f_0 = \frac{100}{50} \text{ cm} = 2 \text{ cm}$ Focal Length of eye lens	1⁄2	
	$f_e = \frac{100}{12.5}$ cm = 8 cm	1/2	
	Magnifying Power $m = \frac{L}{f_0} \times \frac{D}{f_e}$ $= \frac{20}{2} \times \frac{25}{8} = 31.25$	1/2 1/2	
	$=\frac{1}{2} \times \frac{1}{8} = 31.25$	/2	3
Q19	Explanation of two processes1+1Definition of barrier potential1		
	Diffusion: It is the process of movement of majority charge carriers from their majority zone (.i.e., electrons from $n \rightarrow p$ and holes from $p \rightarrow n$) to the minority zone across the junction on account of different concentration	1	

	gradient on the two sides of the junction.		
	<u>Drift</u> : Process of movement of minority charge carriers (i.e., holes from $n \rightarrow p$ and electrons from $p \rightarrow n$) due to the electric field developed at the junction.	1	
	Barrier potential: The loss of electrons from the n-region and gain of electrons by p-region causes a difference of potential across the junction, whose polarity is such as to oppose and then stop the further flow of charge carriers. This (stopping) potential is called Barrier potential.	1	3
Q20	a. Two properties $\frac{1}{2} + \frac{1}{2}$ b. Derivation of expression for potential energy 2		
	a. (i) Electric field is in the direction in which potential decreases at the maximum rate	1⁄2	
	(ii) Magnitude of electric field is given by change in the magnitude of potential per unit displacement normal to a charged conducting surface. [Alternatively: award half mark of part 'a' if student writes only $E = -\frac{dV}{dr}$]	1∕2	
	b. Work done in bringing the charge q_1 to a point against external electric field. $W_1 = q_1 V(\vec{r_1})$ Work done in bringing the charge q_2 against the external electric field and the Electric field	1⁄2	
	produced due to charge q_1 $W_2 = q_2 V(\vec{r_2}) + \frac{1}{4\pi\varepsilon_0} \cdot \frac{q_1 q_2}{r_{12}}$	1⁄2	
	Therefore Total work done = Electrostatic potential energy $U = q_1 V(\vec{r_1}) + q_2 V(\vec{r_2}) + \frac{1}{4\pi\varepsilon_0} \cdot \frac{q_1 q_2}{r_{12}}$	1	3
	OR		

	N (a)	1⁄2	
	(b)	1⁄2	
	When the north pole of a bar magnet is pushed towards the close coil, the magnetic flux through coil increases and the current is induced in the coil in such a direction that it opposes the increase in flux. This is possible when the induced current in the coil is in the anticlockwise direction. Just the opposite happens when the north pole is moved away from the coil. In either case, it is the work done against the force of	1⁄2	
	magnetic repulsion/attraction that gets 'converted' into the induced emf.	1/2	3
Q22	Calculation of V and unknown capacitance2Calculation of charge when voltage is increasedby 40 V1		
	$C = \frac{Q_1}{V_1} = \frac{Q_2}{V_2} = \frac{Q_3}{V_3}$	1/2	
	$\therefore C = \frac{120\mu C}{V} = \frac{40\mu C}{(V-40)}$ $\implies 3V - 120 = V$	1/2	
	2V = 120 volt $V = 60 volt$	1/2	
	$\therefore \text{ Capacitance, } C = \frac{120\mu\text{C}}{60\text{V}} = 2\mu\text{F}$ Charge stored in the capacitor when voltage is increased by 40 V	1/2	
	$Q_3 = 2\mu C \times (60 + 40)V = 200\mu C$	$\frac{1}{2} + \frac{1}{2}$	3


022			
Q23	(1) Moral values of Prof. Srivastava $\frac{1}{2} + \frac{1}{2}$		
	(2) Relation between mean life & half life 1		
	(3) Calculation of half life and initial activity 1+1		
	Care, concern, helping attitude		
	[any two values]	1/2 + 1/2	
	Mean life = $(half life/0.693)/(1.44 times half life)$		
	$(= 1.44 T_{\frac{1}{2}})$	1	
	× 2/		
	Half life $= 10$ hour (as per given information)		
	$R = R_0(\frac{1}{2})^n \Longrightarrow \frac{R_0}{R} = (2)^n$	1/2	
	$K = K_0(\frac{1}{2}) \longrightarrow \frac{1}{R} = (2)$		
		1/2	
	$\frac{R_0}{10000} = (2)^2$		
	$\frac{10000}{10000} = (2)$		
		1⁄2	
	$\Rightarrow R_0 = 40000 \text{ dps}$	1/2	4
Q24	(a) E-stanting have along a large dlight and he		
	(a) Explanation, how plane polarized light can be		
	produced by scattering 2		
	(b) Calculation of intensity of light transmitted by		
	A,B and C 3		
	(a)		
	Incident Sunlight (Unpolarised)	1	
	Scattered Light		
	(Polarised)		
	To Observer		
	Unpolarised light, from sun, has Electric field		
	components perpendicular to plane of figure and in the		
	plane of figure. Under the influence of Electric field of	1	
	the incident wave the electrons in the molecules acquires	1	
	components of motion in both these directions. As the		
	observer is looking 90° to the direction of sun, hence		
	e		
	charges parallel to the plane of figure do not radiate		
	energy towards the observer since their acceleration has		
	no transverse components. Therefore it gets polarized		
	perpendicular to plane of figure.		

	on the screen where waves have path difference n_{λ} , $n = 0,1,2,3$, they produce constructive interference hence bright fringes are obtained.	1	
	At the points on the screen where waves from S_1 and S_2 meet with phase difference of $(2n + 1)\pi$ or path difference of $(2n + 1)\frac{\lambda}{2}$, the waves will produce destructive interference and dark fringes are obtained.	1	
	(b) (i) $x_n = \frac{n\lambda D}{d} = \frac{3 \times 650 \times 10^{-9} \times 1.2}{4 \times 10^{-3}} = 585 \times 10^{-6} \text{m} = 0.585 \text{ mm}$	1⁄2	
	(ii) $\frac{n_{1\lambda_1 D}}{d} = \frac{n_{2\lambda_2 D}}{d}$	1/2	
	(ii) $\frac{1}{d} - \frac{1}{d}$ $\implies n_1 \lambda_1 = n_2 \lambda_2$ $\frac{n_1}{n_2} = \frac{\lambda_2}{\lambda_1} = \frac{520}{650} = \frac{4}{5}$	1⁄2	
	Therefore, 4 th bright fringe of $\lambda = 650$ mm will coincide with 5 th bright fringe 520mm. Least distance from central maximum where bright fringes of both wavelength coincide	1∕2	
	$=\frac{4\times650\times1.2\times10^{-9}}{4\times10^{-3}}$ m = 780 × 10 ⁻⁶ m = 0.78nm	1⁄2	5
Q25	 (a) Labelled circuit diagram of meter bridge & derivation of expression of R 3 (b) Meaning of end error and its correction ¹/₂ +¹/₂ Effect on balancing Length ¹/₂ Reason ¹/₂ (a) 		
	$\begin{array}{c} R \\ R $	1	

		1
The the bridge is balanced at null point. Therefore		
$\frac{R}{S} = \frac{l_1}{(100 - l_1)}$		
$S (100 - l_1)$	1	
$\implies R = S \frac{l_1^{1/2}}{(100 - l_1)}$	1	
$(100 - l_1)$	1	
(b) The error which arises on account of resistance of	1/2	
copper strips and the connecting wire at both ends	/2	
of the meter bridge is called end error.		
It is minimized by adjusting the balance point	1/2	
near the middle point of the bridge.	1/2+1/2	5
No effect, as the bridge remains balanced.		_
OR		
(a) Statement of working Principle 1		
Circuit diagram and determination of internal		
resistance 3		
(b) (i) Effect of internal resistance $\frac{1}{2}$		
(ii) Series resistance ¹ / ₂		
(a) Potentiometer principle:		
When a constant current flows through a wire of		
uniform cross sectional area, the potential		
difference, across any length, is directly	1	
proportional to the length.		
$V \propto L$		
B A	1	
	1	
$E = \varphi l_1 \tag{i}$	1/2	
$V = \varphi l_2 \qquad (ii)$	1/2	
εl_1	1/2	
$\frac{\varepsilon}{V} = \frac{l_1}{l_2} $ (iii)		
Since $\varepsilon = I(r+R)$ and $V = IR$		
Therefore, $\frac{\varepsilon}{V} = \frac{(r+R)}{R}$ (<i>iv</i>)	1/2	
V R	/ 2	
From (iii) & (iv)		

	(b) As the question is incomplete, award 1 mark to all candidates who attempt this part.	1	5
Q26			
	Calculation of		
	(a) Capacitance 1		
	(b) Q-factor of circuit and its importance 2		
	Calculation of average power dissipated 2		
	(a) As power factor is unity, $\therefore X_L = X_C$	1⁄2	
	(a) As power factor is unity, $\therefore X_L = X_C$ $\Rightarrow \omega = \frac{1}{\sqrt{LC}}$ $100 = \frac{1}{\sqrt{200 \times 10^{-3} \times C}}$		
	$100 = \frac{1}{\sqrt{200 \times 10^{-3} \times C}}$		
	$10^4 \times 2 \times 10^2 \times 10^{-3} \times C = 1$	1/2	
	$C = \frac{1}{2 \times 10^3} \mathrm{F} = 0.5 \times 10^{-3} \mathrm{F}$		
	= 0.5 mF (b) Quality factor	1⁄2	
	$Q = \frac{1}{R} \sqrt{\frac{L}{C}}$	1⁄2	
	$= \frac{1}{10} \sqrt{\frac{200 \times 10^{-3}}{0.5 \times 10^{-3}}}$ $= \frac{1}{10} \times 20 = 2$		
	$=\frac{1}{10}\times 20=2$	1⁄2	
	Significance: It measures the sharpness of resonance.	1/2	
	Average Power dissipated		
	$P = V_{rms} I_{rms} \cos \varphi$	1	
	$P = V_{rms} I_{rms} \cos \varphi$ = 50 × $\frac{50}{10}$ × 1W = 250 watts	1	5

