MARKING SCHEME

SET 55/1/A

Q. No.	Expected Answer / Value Points	Marks	Total Marks
Section - A			
$\begin{aligned} & \hline \text { Set -1,Q1 } \\ & \text { Set- 2,Q5 } \\ & \text { Set-3, Q2 } \end{aligned}$	Dielectric Constant of a medium is the ratio of intensity of electric field in free space to that in the dielectric medium. Alternatively It is the ratio of capacitance of a capacitor with dielectric medium to that without dielectric medium. Alternatively Any other equivalent definition S.I. Unit : No Unit	$1 / 2$ $1 / 2$	1
$\begin{aligned} & \text { Set -1, Q2 } \\ & \text { Set-2, Q4 } \\ & \text { Set-3, Q5 } \end{aligned}$	$\mathrm{T}_{1}>\mathrm{T}_{2}$ Slope of T_{1} is higher than that of T_{2}. (or Resistance, at T_{1}, is higher than that of T_{2})	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$	1
$\begin{aligned} & \text { Set }-1, \text { Q3 } \\ & \text { Set- 2,Q2 } \\ & \text { Set-3, Q4 } \\ & \hline \end{aligned}$	No induced current hence no direction.	1/2, 1/2	1
$\begin{aligned} & \hline \text { Set -1, Q4 } \\ & \text { Set- 2,Q3 } \\ & \text { Set-3, Q1. } \end{aligned}$	Critical angle depends upon the refractive index (n) of the medium and refractive index is different for different colours of light.	$1 / 2+1 / 2$	1
$\begin{aligned} & \text { Set-1, Q5 } \\ & \text { Set- 2,Q1 } \\ & \text { Set-3, Q3. } \end{aligned}$	It rejects dc and sinusoids of frequency $\omega_{\mathrm{m}}, 2 \omega_{\mathrm{m}}$ and $2 \omega_{\mathrm{c}}$ and retain frequencies $\omega_{\mathrm{c}}, \omega_{\mathrm{c}} \pm \omega_{\mathrm{m}}$. (Alternatively: It allows only the desired/ required frequencies to pass through it)		1
Section - B			
Set -1, Q6 Set- 2,Q7 Set-3, Q10	Graph of V vs R 1 Graph of I vs R 1 (i) V vs R: $V=\frac{E R}{R+r}$ (ii) I vs R: $I=\frac{E}{R+r}$ (Award $1 / 2$ mark in each if child writes only formulae)	1	2

Ajmer SET I Page 1 of 15
Final Draft
17/3/2015
5:08 p.m.

$\begin{array}{\|l\|} \hline \text { Set -1, Q7 } \\ \text { Set- 2,Q10 } \\ \text { Set-3, Q8 } \end{array}$	de Broglie Relation Dependence of λ on n de Broglie wavelength $\lambda=\frac{h}{m v}$ $\therefore \lambda \propto \frac{1}{v} ; v \propto \frac{1}{n}$ $\therefore \lambda \propto n$ $\therefore d e$ Broglie wavelength will increase Alternative method As $2 \pi r_{n}=n \lambda ; \lambda=\frac{2 \pi r_{n}}{n}\left(\lambda \propto \frac{r_{n}}{n}\right)$ $\begin{aligned} & r_{n} \propto n^{2} \\ & \therefore \lambda \propto \frac{n^{2}}{n} \Rightarrow \lambda \propto n \end{aligned}$ $\therefore d e$ Broglie wavelength will increase (Note: Accept any other alternative method)	$\begin{aligned} & 1 / 2 \\ & 1 \\ & 1 / 2 \end{aligned}$ 1 $1 / 2$ $1 / 2$	2
$\begin{aligned} & \hline \text { Set -1, Q8 } \\ & \text { Set-2,Q6 } \\ & \text { Set-3, Q9 } \end{aligned}$	Definition of Wave front 1 Diagram 1 Wave front : It is the locus of points which oscillate in phase. Or It is a surface of constant phase. a) Characteristics \& reason b) Ratio of Velocity a) Frequency does not change, as frequency is a characteristic of the source of waves. (Alternatively: $\frac{v_{1}}{\lambda_{1}}=\frac{v_{2}}{\lambda_{2}}=n$) b) The ratio of velocities of wave in two media of refractive indices μ_{1} and μ_{2} is $\frac{\mu_{2}}{\mu_{1}}$. (Alternatively: $\frac{v_{1}}{v_{2}}=\frac{\mu_{1}}{\mu_{2}}$)	1 1 $1 / 2+1 / 2$ 1	2

| | | |
| :--- | :--- | :--- | :--- |
| | | |
| | Force on each perpendicular arm
 $F_{1}=F_{2}=I b B$ | $1 / 2$ |

	a) $\sin i_{c}=\frac{1}{\mu_{m g}}=\frac{\mu_{m}}{\mu_{g}}$ $\begin{aligned} & \Rightarrow \quad \mu_{m}=\mu_{g} \sin i_{c} \\ & =1.5 \times \frac{\sqrt{3}}{2} \quad\left(i_{c}=60^{\circ}\right) \\ & =1.299 \simeq 1.3 \end{aligned}$ (b) Alternatively	1/2	3
$\begin{aligned} & \hline \hline \text { Set-1,Q14 } \\ & \text { Set- 2,Q16 } \\ & \text { Set-3, Q18 } \end{aligned}$	Logic circuit - 1 Truth Table - 1 Identification - 1 To draw the logic circuit	1	
	Ajmer SET I Page 5 of 15 Final Draft		

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
Circuit Diagram \\
Description of Working- During the positive half of input ac diode \(D_{1}\) get forward bias and \(D_{2}\), reverse biased and during negative half of input ac, polarity get reversed, \(D_{2}\) get forward bias and \(D_{1}\) reverse bias. Hence, output is obtained across \(R_{L}\) during entire cycle of ac. \\
Wave forms \\
Input \\
Output \\
Characteristic property \\
Diode allows the current to pass only when it is forward based.
\end{tabular} \& 1

$1 / 2$

$1 / 2$
$1 / 2$

$1 / 2$
$1 / 2$
$1 / 2$ \& 3

\hline \[
$$
\begin{aligned}
& \text { Set -1,Q16 } \\
& \text { Set- 2,Q18 } \\
& \text { Set-3, Q12 }
\end{aligned}
$$

\] \& | Explanation of (i), (ii) and (iii) with justification 1×3 |
| :--- |
| (i) Drift velocity will become half as $v_{d} \propto V$ |
| (ii) Drift velocity will become half as $v_{d} \propto \frac{1}{L}$ |
| (iii) Drift velocity will remain the same as v_{d} is independent of diameter (D). | \& \[

$$
\begin{aligned}
& 1 / 2+1 / 2 \\
& 1 / 2+1 / 2 \\
& 1 / 2+1 / 2
\end{aligned}
$$
\] \& 3

\hline \[
$$
\begin{aligned}
& \text { Set -1,Q17 } \\
& \text { Set- 2,Q19 } \\
& \text { Set-3, Q13 }
\end{aligned}
$$

\] \& | Determination of magnetic field | $11 / 2$ |
| :--- | :--- |
| Determination of kinetic energy in MeV | $11 / 2$ | \& \&

\hline \& Ajmer SET I Page 7 of 15 Final Draft 17/3/2015 \& 5:08 \&

\hline
\end{tabular}

	$\text { Magnetic field } B=2 \pi m v / q$ $=\frac{2 \times 3.14 \times 1.67 \times 10^{-27} \times 10^{7}}{1.6 \times 10^{-19}}=0.66 T$ Final velocity of proton $v=R \times 2 \pi v=0.6 \times 2 \times 3.14 \times 10^{7}$ $=3.77 \times 10^{7} \mathrm{~m} / \mathrm{s}$ $\begin{aligned} & \text { Energy }=\frac{1}{2} m v^{2}=\frac{1}{2} \times 1.67 \times 10^{-27} \times\left(3.77 \times 10^{7}\right)^{2} j \\ & =7.4 \mathrm{MeV} \end{aligned}$	$1 / 2$ 1 $1 / 2$ $1 / 2$ $1 / 2$	3
Set -1,Q18 Set-2,Q11 Set-3, Q14	a) Calculation of distance of third bright fringe $\quad 1$ b) Calculation of distance from the central maxima 2 a) Distance of third bright fringe- $y_{3}=\frac{n \lambda D}{d}$ $\begin{aligned} = & \frac{3 \times 520 \times 10^{-9} \times 1}{1.5 \times 10^{-3}} \\ & =1.04 \times 10^{-3} \mathrm{~m} \simeq 1 \mathrm{~mm} \end{aligned}$ b) Let $n^{\text {th }}$ maxima of 650 nm coincides with the $(n+1)^{\text {th }}$ maxima of 520 nm $\begin{aligned} & \therefore n \times 650 \times 10^{-9}=(n+1) 520 \times 10^{-9} \\ & \Rightarrow n=4 \end{aligned}$ \therefore The least distance of the point is given by $\begin{aligned} & y=\frac{n D \lambda_{1}}{d} \\ & =\frac{4 \times 1 \times 650 \times 10^{-9}}{1.5 \times 10^{-3}} m=1.733 \times 10^{-3} \mathrm{~m} \simeq 1.7 \mathrm{~mm} \end{aligned}$	$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ 1	3
$\begin{aligned} & \hline \text { Set -1,Q19 } \\ & \text { Set- 2,Q12 } \\ & \text { Set-3, Q21 } \end{aligned}$	a) Pointing out and Reason of two processes $1+1$ b) Identification of radioactive radiations $1 / 2+1 / 2$ a) Nuclear fission of E to D and C ; as there is a increase in binding energy per nucleon b) Nuclear fusion of A and B into C; as there is a increase in binding energy per nucleon b) First step - α particle Second step $-\beta$ particle	$\begin{aligned} & 1 / 2+1 / 2 \\ & 1 / 2+1 / 2 \\ & \\ & 1 / 2 \\ & 1 / 2 \end{aligned}$	3

$\begin{array}{lllll}\text { Ajmer } & \text { SET I Page } 8 \text { of } 15 & \text { Final Draft } & \text { 17/3/2015 } & 5: 08 \text { p.m. }\end{array}$

\begin{tabular}{|c|c|c|c|}
\hline \& \& \& \\
\hline \begin{tabular}{l}
Set -1,Q20 \\
Set- 2,Q13 \\
Set-3, Q22
\end{tabular} \& \begin{tabular}{l}
\begin{tabular}{|ll|}
\hline Three modes of propagation \& \(11 / 2\) \\
Brief explanation of reflection by Ionosphere \& 1 \\
Effect of increased frequency range \& \(1 / 2\) \\
\hline
\end{tabular} \\
Three modes of propagation \\
i) Ground Waves \\
ii) Sky Waves \\
iii) Space Waves \\
Ionosphere acts as a reflector for the range of frequencies from few MHz to 30 MHz . The ionospheric layers bend the radio waves back to the Earth. \\
Waves of frequencies greater than 30 MHz penetrate the ionosphere and escape
\end{tabular} \& \begin{tabular}{l}
\[
\begin{array}{|l}
1 / 2 \\
1 / 2 \\
1 / 2
\end{array}
\] \\
1
\[
1 / 2
\]
\end{tabular} \& 3 \\
\hline \[
\begin{aligned}
\& \text { Set -1,Q21 } \\
\& \text { Set- 2,Q14 } \\
\& \text { Set-3, Q19 }
\end{aligned}
\] \& \begin{tabular}{l}
\begin{tabular}{|ll|}
\hline Definition of Stopping Potential and threshold frequency \& \(1+1\) \\
Determination using Einstein's Equation \& 1 \\
\hline
\end{tabular} \\
Stopping Potential: The minimum negative potential applied to the anode/ plate for which photoelectric current become zero. \\
Threshold frequency: The minimum (cut off) frequency of incident radiation, below which no emission of photoelectrons takes place. \\
By Einstein's Equation
\[
e V_{0}=h v-\phi_{o}
\] \\
For any given frequency \(v>v_{o}, V_{o}\) can be determined. \\
Stopping Potential \(\quad V_{0}=\left(\frac{h}{e}\right) v-\frac{\phi_{0}}{e}\)
\[
\text { as } \phi_{0}=h v_{0}
\] \\
Threshold frequency, \(\quad V_{0}=\frac{\phi_{0}}{h}\)
\end{tabular} \& 1
1
1

$11 / 2$

1
$1 / 2$ \& 3

\hline $$
\begin{aligned}
& \text { Set -1,Q22 } \\
& \text { Set- 2,Q15 } \\
& \text { Set-3, Q20 }
\end{aligned}
$$ \& \& \[

$$
\begin{aligned}
& 1 / 2 \\
& 1 / 2 \\
& 1 / 2 \\
& 1 / 2 \\
& 1 / 2 \\
& 1 / 2
\end{aligned}
$$
\] \& 3

\hline
\end{tabular}

$\begin{array}{lllll}\text { Ajmer } & \text { SET I } & \text { Page } 9 \text { of } 15 & \text { Final Draft } & \text { 17/3/2015 } \\ \text { 5:08 p.m. }\end{array}$

$\begin{aligned} & \text { Set -1,Q23 } \\ & \text { Set- 2,Q23 } \\ & \text { Set-3, Q23 } \end{aligned}$	(a) Naming the principle involved 1 (b) Explanation 1 (c) Two qualities 2 (a) Metal detector works on the principle of resonance in ac circuits. (b) When a person walks through the gate of a metal detector, the impedance of the circuit changes, resulting in significant change in current in the circuit that causes a sound to be emitted as an alarm. (c) Two qualities (i) Following the rules/regulations (ii) Responsible citizen (iii) Scientific temperament (iv) Knowledgable (Any two)	1 1 $1+1$	4
	Section - E		
Set -1,Q24 Set- 2,Q26 Set-3, Q25	(a) Drawing labeled ray diagram (b) Deducing relation between u, v and R (c) Obtaining condition for real image From the diagram : $\begin{aligned} & \angle i=\angle N O M+\angle N C M \\ & \angle r=\angle N C M-\angle N I M \end{aligned}$ By Snell's law, $n_{1} \sin i=n_{2} \sin r$ Substituting for i and r . and simplifying, we get $\frac{n_{1}}{O M}+\frac{n_{2}}{M I}=\frac{n_{2}-n_{1}}{M C}$ Substituting values of OM, MI and MC $\frac{n_{2}}{v}-\frac{n_{1}}{u}=\frac{n_{2}-n_{1}}{R}$	$11 / 2$ $1 / 2$	

	(ii) Will decrease with increase of the wavelength of the incident light as resolving power is inversely proportional to the wave length	1	
$\begin{aligned} & \text { Set -1,Q25 } \\ & \text { Set- 2,Q24 } \\ & \text { Set-3, Q26 } \end{aligned}$	(a) Faraday's law 1 (b) Explanation with example 2 (c) Derivation for induced emf 2 (a) Faraday's law - "The magnitude of the induced emf in a circuit is equal to the time rate of change of magnetic flux through the circuit." (Alternatively: Induced emf $=\frac{-d \emptyset}{d t}$) (b) A bar magnet experiences a repulsive force when brought near a closed coil and attractive force when moved away from the coil, due to induced current. Therefore, external work is required to be done in the process. (c) Since workdone is moving the charge ' q ' across the length ' 1 ' of the conductor is W=qvBl Since emf is the work done per unit charge $\begin{aligned} & \mathcal{E}=\frac{\mathrm{w}}{\mathrm{q}} \\ & \mathcal{E}=\mathrm{Blv} \end{aligned}$ OR (a) Derivation for the current using phasor diagram 1 Plot of graphs (i) and (ii) (b) Derivation for the average power Phasor diagram for the circuit: From the Phasor diagram: V makes an angle ' ωt ' with axis, current ' I ' lags behind the voltage ' V ' by $\frac{\pi}{2}$, (makes an angle of $-\left(\frac{\pi}{2}-w t\right)$ with the axis.) $\therefore, i=i_{m} \sin \left[-\left(\frac{\pi}{2}-\omega t\right)\right]=i_{m} \sin \left(\omega t-\frac{\pi}{2}\right)$ [Award this 1mark even if derivation is done by analytical method]		5

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
Graph showing variation of voltage and current as function of \(\omega t\) \\
Instantaneous power in LCR circuit:
\[
\begin{aligned}
\mathrm{p} \& =\mathrm{v} \times \mathrm{i} \\
\& =\mathrm{v}_{\mathrm{m}} \sin \omega \mathrm{t} \times \mathrm{i}_{\mathrm{m}} \sin (\omega \mathrm{t}+\varphi) \\
\mathrm{p} \& =\frac{v_{\mathrm{m}} i_{m}}{2}[\cos \varphi-\cos (2 \omega t+\varphi)]
\end{aligned}
\] \\
average power \(\mathrm{P}_{\mathrm{av}}=\frac{v_{m} i_{m}}{2} \cos \varphi\)
\[
\begin{array}{r}
\mathrm{P}_{\mathrm{av}}=\frac{v_{m}}{\sqrt{2}} \frac{i_{m}}{\sqrt{2}} \cos \varphi \\
P=V_{e f f} I_{e f f} \cos \phi
\end{array}
\]
\end{tabular} \& \begin{tabular}{l}
\[
1+1
\] \\
\(1 / 2\) \\
\(1 / 2\) \\
\(1 / 2\) \\
\(1 / 2\)
\end{tabular} \& 5 \\
\hline \[
\begin{aligned}
\& \text { Set-1,Q26 } \\
\& \text { Set- 2,Q25 } \\
\& \text { Set-3, Q24 }
\end{aligned}
\] \& \begin{tabular}{l}
\begin{tabular}{|ll|}
\hline a)Statement of Gauss law \& 1 \\
Explanation with diagram \& 1 \\
b)Magnitude and direction of net electric field in (i) and (ii) \& \(11 / 2+11 / 2\) \\
\hline
\end{tabular} \\
(a) Gauss Law: Electric flux through a closed surface is \(\frac{1}{\epsilon_{0}}\) times the total charge enclosed by the surface. \\
Alternatively: \(\phi=\frac{1}{\epsilon_{0}} \cdot q\) \\
The term q equals the sum of all charges enclosed by the surface and remain unchanged with the size and shape of the surface. \\
Alternatively- The total number of electric field lines emanating from the enclosed charge ' \(q\) ' are same for all surfaces \(1,2 \& 3\) \\
(b) We have \(\left|E_{1}\right|=\frac{\sigma}{\epsilon_{o}} ;\left|E_{2}\right|=\frac{2 \sigma}{\epsilon_{o}}\) \\
(i) Between the plates
\[
E_{\text {in }}=E_{1}+E_{2}
\]
\end{tabular} \& 1
\(11 / 2\)

$1 / 2$

$1 / 2$ \&

\hline
\end{tabular}

	$=\frac{\sigma}{2 \epsilon_{o}}+\frac{2 \sigma}{2 \epsilon_{o}}=\frac{3 \sigma}{2 \epsilon_{o}}$ (Directed towards sheet ' 2 ') (ii) Outside near the sheet ' 1 ' $\begin{array}{r} E_{\text {out }}=E_{2}-E_{1} \\ =\frac{2 \sigma}{2 \dot{\epsilon}_{o}}-\frac{\sigma}{2 \epsilon_{o}}=\frac{\sigma}{2 \epsilon_{o}} \end{array}$ (Directed towards sheet ' 2 ') OR a) Definition of electrostatic potential and SI unit Derivation for the electrostatic potential energy b) Equipotential surface for (i) \& (ii) a) Electrostatic potential : Work done by an external force in bringing a unit positive charge from infinity to the given point SI unit- volt or J/C) Net work done in moving charges $q_{1} . q_{2} \& q_{3}$ from infinity to A, B and C respectively $\begin{aligned} W & =0+q_{2} V_{13}+q_{3}\left(V_{13} V_{23}\right) \\ & =\frac{1}{4 \pi \epsilon_{0}} \frac{q_{1} q_{2}}{r_{12}}+\frac{1}{4 \pi \epsilon_{0}}\left(\frac{q_{1} q_{3}}{r_{13}}+\frac{q_{2} q_{3}}{r_{23}}\right) \end{aligned}$ But potential energy of the system is equal to the work done. $\therefore U=w=\frac{1}{4 \pi \epsilon_{0}}\left(\frac{q_{1} q_{2}}{r_{12}}+\frac{q_{1} q_{3}}{r_{13}}+\frac{q_{2} q_{3}}{r_{23}}\right)$ (Award these 1 mark if the student directly writes the expression for U) (b) Equipotential surface due to (i) An electric dipole	$1 / 2$	5
	Ajmer SET I Page 14 of 15 Final Draft 17/3/2015		

