MARKING SCHEME SET 55/1/A

Q. No.	Expected Answer / Value Points	Marks	Total Marks
	Section - A		
Set -1,Q1 Set- 2,Q5 Set-3, Q2	Dielectric Constant of a medium is the ratio of intensity of electric field in free space to that in the dielectric medium. Alternatively It is the ratio of capacitance of a capacitor with dielectric medium to that without dielectric medium. Alternatively Any other equivalent definition	1/2	
	S.I. Unit : No Unit	1/2	1
Set -1, Q2 Set- 2, Q4 Set-3, Q5	$T_1 > T_2$ Slope of T_1 is higher than that of T_2 . (or Resistance, at T_1 , is higher than that of T_2)	1/2 1/2	1
Set -1, Q3 Set- 2,Q2 Set-3, Q4	No induced current hence no direction.	1/2 ,1/2	1
Set -1, Q4 Set- 2,Q3 Set-3, Q1.	Critical angle depends upon the refractive index (n) of the medium and refractive index is different for different colours of light.	¹ / ₂ + ¹ / ₂	1
Set -1, Q5 Set- 2,Q1 Set-3, Q3.	It rejects dc and sinusoids of frequency ω_m , $2\omega_m$ and $2\omega_c$ and retain frequencies ω_c , $\omega_c \pm \omega_m$. (Alternatively: It allows only the desired/ required frequencies to pass through it)		1
0 + 1 0 (Section - B		
Set -1, Q6 Set- 2,Q7 Set-3, Q10	Graph of V vs R Graph of I vs R (i) V vs R: $V = \frac{ER}{R+r}$	1	
	(ii) I vs R: $I = \frac{E}{R+r}$ (Award ¹ / ₂ mark in each if child writes only formulae)	1	2
	AjmerSET IPage 1 of 15Final Draft17/3/2015	5:08 p.1	n.

Set -1, Q7 Set- 2,Q10 Set-3, Q8	de Broglie Relation $\frac{1}{2}$ Dependence of λ on n 1de Broglie wavelength $\lambda = \frac{h}{mv}$ $\therefore \lambda \propto \frac{1}{v}$; $v \propto \frac{1}{n}$ $\therefore \lambda \propto n$ $\therefore de$ Broglie wavelength will increase	1/2 1 1/2	2
	Alternative method		
	As $2\pi r_n = n\lambda$; $\lambda = \frac{2\pi r_n}{n} (\lambda \propto \frac{r_n}{n})$	1	
	$r_n \propto n^2$ $\therefore \lambda \propto \frac{n^2}{2} \Rightarrow \lambda \propto n$	1/2	
	\therefore de Broglie wavelength will increase	1⁄2	2
	(Note: Accept any other alternative method)		
Set -1, Q8 Set- 2,Q6 Set- 3, Q9	Definition of Wave front 1 Diagram 1 Wave front : It is the locus of points which oscillate in phase. Or It is a surface of constant phase. Incident planewave Spherical wavefront of radius f Or a) Characteristics & reason $\frac{1}{2}+\frac{1}{2}$ b) Ratio of Velocity	1	2
	 a) Frequency does not change, as frequency is a characteristic of the source of waves. (Alternatively: v₁/λ₁ = v₂/λ₂ = n) b) The ratio of velocities of wave in two media of refractive indices μ₁ and μ₂ is μ₂/μ₁. (Alternatively: v₁/v₂ = μ₁) 	1/2+1/2	2

Set -1, Q9	Diagrams of AM and FM 1		
Set- 2,Q8	Reason 1		
Set-3, Q7			
	c (t) for AM 0-		
		1/2	
	0 0.5 1 1.5 2 2.5 5		
	$c_m(t)$ for FM O	1/2	
	-10 0.5 1 1.5 2 2.5 3	12	
	Why FM is preferred over AM'?		
	Low noise/ disturbance// reduced channel interference// more newer can be		
	transmitted// high fidelity.	1	2
	(Any one reason)		
Set -1,Q10	Eermula 14		
Set- 2,Q9	Calculation & result 1 ¹ / ₂		
Set-3, Q6	Distance of the closest approach		
	$r_{\rm c} = \frac{1}{2ze^2} \cdot \frac{2ze^2}{ze^2}$	1/2	
	$4\pi \in_0 E_{\infty}$		
	$2 \times 9 \times 10^9 \times 80 \times (1.6 \times 10^{-19})^2$	1	
	= 4.5 × 10 ⁶ × 1.6 × 10 ⁻¹⁹	1	
	$-5.12 \times 10^{-14} m$	1/2	2
	- 5.12 × 10 m		
	Section – C		
Set -1,Q11	Diagram 14		
Set- 2,Q20	Force on each arm		
Set-3, Q15	Calculation of moment of couple 1		
	Orientation in stable equilibrium		

	$\wedge^{\mathbf{F}_2}$		
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1⁄2	
	Force on each perpendicular arm $F_1 = F_2 = I b B$	1⁄2	
	Moment of couple = $I b B. a \sin \theta$ $\tau = I ab B \sin \theta$ $\tau = I AB a \sin \theta$	1 1⁄2	
	$\tau = IAB \sin\theta$ $\tau = IA \times B$ When the plane of the loop is perpendicular to the magnetic field, the loop will be in stable equilibrium $(\vec{A} \parallel \vec{B}), \Rightarrow \theta = 0^{\circ}$ (If the student follows the following approach, award ½ marks only) $\vec{M} =$ Equivalent magnetic moment of the planer loop = $I\vec{A}$ \therefore Torque = $\vec{M} \times \vec{B} = I\vec{A} \times \vec{B}$ $ Torque = IABsin\theta$	1⁄2	3
Set -1,Q12 Set- 2,Q21	Production of em waves 1		
Set-3, Q16	Source of energy1Identification1/2+1/2		
	Electromagnetic waves are produced by accelerated / oscillating charges which produces oscillating electric field and magnetic field (which regenerate each other). Source of the Energy: Energy of the accelerated charge. (or the source that	1	
	accelerates the charges)	1/2	
	(1) Infra red radiation (2) X - rays	1/2	3
Set -1,Q13 Set- 2,Q22 Set-3, Q17	a) To draw path of light ray in prism1/2Formula and calculation of refractive index of liquid11/2b) Tracing the path of the ray1		

	Truth Table		
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	
	Identification : AND gate	1	3
	Or		
	Identification of logic operation in circuit (a) & (b) $\frac{1}{2}+\frac{1}{2}$ Truth table for circuit (a) & (b) $\frac{1}{2}+\frac{1}{2}$ Identification of equivalent gates $\frac{1}{2}+\frac{1}{2}$		
	Logic Operation a) Y = A.B b) Y = A+B	1/2 1/2	
	Truth Table		
	a) $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1⁄2	
	b) $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1⁄2	
	Identification a) AND gate b) OR gate	1/2 1/2	3
Set -1,Q15 Set- 2,Q17 Set-3, Q11	Circuit diagram1Working1/2Wave forms and Input & Output1/2+1/2Characteristic property1/2		
		5 .00	

Ajmer SET I Page 7 of 15

Final Draft 17/3/2015 5:08 p.m.

	Magnetic field $B = 2\pi mv/q$ $= \frac{2 \times 3.14 \times 1.67 \times 10^{-27} \times 10^7}{1.6 \times 10^{-19}} = 0.66T$ Final velocity of proton $v = R \times 2\pi v = 0.6 \times 2 \times 3.14 \times 10^7$ $= 3.77 \times 10^7 m/s$ Energy $= \frac{1}{2}mv^2 = \frac{1}{2} \times 1.67 \times 10^{-27} \times (3.77 \times 10^7)^2 j$ = 7.4 MeV	1/2 1 1/2 1/2 1/2 1/2	3
Set -1,Q18 Set- 2,Q11 Set- 3, Q14	a) Calculation of distance of third bright fringe 1 b) Calculation of distance from the central maxima 2 a) Distance of third bright fringe- $y_3 = \frac{n\lambda D}{d}$	1⁄2	
	$=\frac{3 \times 520 \times 10^{-9} \times 1}{1.5 \times 10^{-3}}$ $= 1.04 \times 10^{-3} m \simeq 1 mm$ b). Let n^{th} maxima of $650nm$ coincides with the $(n + 1)^{th}$ maxima of	1/2	
	b) Let n - maxima of 050 nm concretes with the $(n + 1)$ - maxima of $520 nm$ $\therefore n \times 650 \times 10^{-9} = (n + 1)520 \times 10^{-9}$ $\Rightarrow n = 4$	1/2 1/2	
	∴ The least distance of the point is given by $y = \frac{nD\lambda_1}{d}$ $= \frac{4 \times 1 \times 650 \times 10^{-9}}{1.5 \times 10^{-3}} m = 1.733 \times 10^{-3} m \simeq 1.7mm$	1	3
Set -1,Q19 Set- 2,Q12 Set-3, Q21	a) Pointing out and Reason of two processes $1+1$ b) Identification of radioactive radiations $\frac{1}{2}+\frac{1}{2}$		
	a) Nuclear fission of E to D and C; as there is a increase in binding energy per nucleonb) Nuclear fusion of A and B into C; as there is a increase in binding energy per nucleon	$\frac{1}{2} + \frac{1}{2}$ $\frac{1}{2} + \frac{1}{2}$	
	b) First step - \propto particle Second step - β particle	1/2 1/2	3

Ajmer SET I Page 8 of 15

Final Draft 17/3/2015 5:08 p.m.

Set -1,Q20 Set- 2,Q13 Set- 3, Q22	Three modes of propagation1½Brief explanation of reflection by Ionosphere1Effect of increased frequency range½		
	Three modes of propagationi)Ground Wavesii)Sky Wavesiii)Space Waves	1/2 1/2 1/2	
	Ionosphere acts as a reflector for the range of frequencies from few MHz to 30 MHz . The ionospheric layers bend the radio waves back to the Earth.	1	
	Waves of frequencies greater than 30 MHz penetrate the ionosphere and escape	1⁄2	3
Set -1,Q21 Set- 2,Q14 Set-3, Q19	Definition of Stopping Potential and threshold frequency1+1Determination using Einstein's Equation1		
	Stopping Potential: The minimum negative potential applied to the anode/ plate for which photoelectric current become zero.	1	
	Threshold frequency: The minimum (cut off) frequency of incident radiation, below which no emission of photoelectrons takes place.	1	
	By Einstein's Equation $eV_0 = hv - \phi_0$ For any given frequency $v > v_o$, V_o can be determined.	1/2	
	Stopping Potential $V_0 = \left(\frac{h}{e}\right)v - \frac{\phi_0}{e}$		
	as $\phi_0 = hv_0$ Threshold frequency. $V_0 = \frac{\phi_0}{2}$	1/2	3
Set -1,Q22 Set- 2,Q15 Set-3, Q20	Calculation of voltage across each capacitor in (a), (b) and (c) $1\frac{1}{2}$ Explanation with reason for the change/no change $1\frac{1}{2}$		
	(a) $V_L = 3V$ $V_R = 3V$ (L: Left, R: Right) (b) $V_L = 6V$ $V_R = 3V$ (c) $V_L = 2V$ $V_R = 3V$ Reasons	1/2 1/2 1/2	
	(a) No change – (potential same on both capacitors as $(V_L = V_R)$) (b) Charge on left hand capacitor will decrease ($V_L > V_R$) (c) Charge on left hand capacitor will increase ($V_R > V_L$)	1/2 1/2 1/2	3

Ajmer SET I Page 9 of 15 Final Draft 17/3/2015 5:08 p.m.

Set -1,Q23 Set- 2,Q23 Set- 3, Q23	 (a) Naming the principle involved 1 (b) Explanation 1 (c) Two qualities 2 (a) Metal detector works on the principle of resonance in ac circuits. (b) When a person walks through the gate of a metal detector, the impedance of the circuit changes, resulting in significant change in current in the circuit that causes a sound to be emitted as an alarm. (c) Two qualities 	1	
	 (i) Following the rules/regulations (ii) Responsible citizen (iii) Scientific temperament (iv) Knowledgable (Any two) 	1+1	4
	Section - E	1	1
Set -1,Q24 Set- 2,Q26 Set-3, Q25	(a) Drawing labeled ray diagram $1\frac{1}{2}$ (b) Deducing relation between u , v and R $2\frac{1}{2}$ (c) Obtaining condition for real image 1	11/2	
	$ \angle i = \angle NOM + \angle NCM \angle r = \angle NCM - \angle NIM $	1/2 1/2	
	By Snell's law, $n_1 \sin i = n_2 \sin r$	1/2	
	Substituting for i and r. and simplifying, we get $\frac{n_1}{OM} + \frac{n_2}{MI} = \frac{n_2 - n_1}{MC}$	1⁄2	
	Substituting values of OM , MI and MC $\frac{n_2}{v} - \frac{n_1}{u} = \frac{n_2 - n_1}{R}$	1⁄2	

Ajmer SET I Page 10 of 15

	(ii) Will decrease with increase of the wavelength of the incident light as resolving power is inversely proportional to the wave length	1	
Set -1,Q25 Set- 2,Q24 Set-3, Q26	(a) Faraday's law1(b) Explanation with example2(c) Derivation for induced emf2		
	(a) Faraday's law – "The magnitude of the induced emf in a circuit is equal to the time rate of change of magnetic flux through the circuit." (Alternatively : Induced emf = $\frac{-d\phi}{dt}$)	1	
	 (b) A bar magnet experiences a repulsive force when brought near a closed coil and attractive force when moved away from the coil, due to induced current. Therefore, external work is required to be done in the process 	2	
	 (c) Since workdone is moving the charge 'q' across the length 'l' of the conductor is W=qvBl Since emf is the work done per unit charge 	1	
	$\mathcal{E} = \frac{w}{q}$ $\mathcal{E} = BIv$	1	5
	OR(a) Derivation for the current using phasor diagram1Plot of graphs (i) and (ii)1+1(b) Derivation for the average power2Phasor diagram for the circuit: $\mathbf{v}_{m} \sin \omega t_{i}$ <th>1/2</th> <th></th>	1/2	
		1/2	

Graph showing variation of voltage and current as function of ωt		
$\omega t_{1} \qquad \qquad$		
	1+1	
Instantaneous power in LCR circuit: $p = v \times i$ $= v_m \sin \omega t \times i_m \sin(\omega t + \varphi)$	1/2 1/2	
$p = \frac{v_m v_m}{2} \left[\cos \varphi - \cos(2\omega t + \varphi) \right]$ average power $P_{av} = \frac{v_m i_m}{2} \cos \varphi$	1./	
$P_{av} = \frac{v_m i_m}{\sqrt{2} \sqrt{2}} \cos \varphi$ $P = V_{eff} I_{eff} \cos \phi$	1/2 1/2	5
Set -1,Q26	/2	
Set- 2,Q25 Set-3, Q24a)Statement of Gauss law1Explanation with diagram1b)Magnitude and direction of net electric field in (i) and (ii)1½ +1 ½		
(a) Gauss Law: Electric flux through a closed surface is $\frac{1}{\epsilon_0}$ times the total charge enclosed by the surface.	1	
Alternatively: $\phi = \frac{1}{\epsilon_0} \cdot q$		
 The term q equals the sum of all charges enclosed by the surface and remain unchanged with the size and shape of the surface. Alternatively- The total number of electric field lines emanating from the enclosed charge 'q' are same for all surfaces 1,2 &3 	1⁄2	
	1⁄2	
(b) We have $ E_1 = \frac{\sigma}{\epsilon_o}$; $ E_2 = \frac{2\sigma}{\epsilon_o}$ (i) Between the plates	1	
$E_{in} = E_1 + E_2$ A image SET L. Prov 12 of 15	5.09 m	m

$=\frac{\sigma}{\sigma}+\frac{2\sigma}{\sigma}=\frac{3\sigma}{\sigma}$	1/2	
$2\epsilon_0 \cdot 2\epsilon_0 = 2\epsilon_0$ (Directed towards sheet '2')		
(ii) Outside near the sheet '1'	1/2	
$E_{out} = E_2 - E_1$		5
$=\frac{1}{2\epsilon_o}-\frac{1}{2\epsilon_o}=\frac{1}{2\epsilon_o}$		
(Directed towards sheet '2')		
OR		
a) Definition of electrostatic potential and SI unit $1+\frac{1}{2}$		
Derivation for the electrostatic potential energy $1+\frac{1}{2}$		5
b) Equipotential surface for (i) & (ii) 1+1		5
a) Electrostatic potential : Work done by an external force in bringing a		
unit positive charge from infinity to the given point	1	
SI unit- volt or J/C)		
Net work done in moving charges q_1 . q_2 & q_3 from infinity to A, B and	1/2	
C respectively	72	
$W = 0 + q_2 V_{13} + q_3 (V_{13} V_{23})$		
	1/2	
$= \frac{1}{4\pi\epsilon_0} \frac{q_1q_2}{r_{12}} + \frac{1}{4\pi\epsilon_0} \left(\frac{q_1q_3}{r_{13}} + \frac{q_2q_3}{r_{23}} \right)$	12	
	1/2	
But potential energy of the system is equal to the work		
$1 a_1a_2 a_2a_3 a_2a_3$		
$\therefore U = w = \frac{1}{4\pi c} \left(\frac{4142}{r} + \frac{4143}{r} + \frac{4243}{r} \right)$		
$4\pi\epsilon_0$ I_{12} I_{13} I_{23} (Award these 1 mark if the student directly writes the expression		
for U)	1/2	
(b) Equipotential surface due to		
(i) An electric dipole		
	1	
		I

Ajmer SET I Page 14 of 15

Final Draft 17/3/2015 5:08 p.m.

(ii) Two identical positive changes		
	1	5