MARKING SCHEME

SET 55/1/1 (Compartment)

Q. No.	Expected Answer / Value Points	Marks	Total Marks
Section A			
$\begin{aligned} & \text { Set1,Q1 } \\ & \text { Set2,Q4 } \\ & \text { Set3,Q3 } \end{aligned}$	Kinetic energy will not be affected.	1	1
$\begin{aligned} & \text { Set1,Q2 } \\ & \text { Set2,Q5 } \\ & \text { Set3,Q4 } \end{aligned}$	Clockwise on the side of the observer. [Alternatively :The candidate who draws diagram with arrow indicating the direction correctly, may also be given full credit.]	1	1
$\begin{aligned} & \hline \text { Set1,Q3 } \\ & \text { Set2,Q1 } \\ & \text { Set3,Q5 } \\ & \hline \end{aligned}$	(i) Real (ii) magnified	$1 / 2+1 / 2$	1
$\begin{aligned} & \hline \text { Set1,Q4 } \\ & \text { Set2,Q2 } \\ & \text { Set3,Q1 } \end{aligned}$		1	1
$\begin{aligned} & \hline \text { Set1,Q5 } \\ & \text { Set2,Q3 } \\ & \text { Set3,Q2 } \end{aligned}$	To avoid overlapping of the two signals	1	1
Section B			
$\begin{aligned} & \text { Set1,Q6 } \\ & \text { Set2,Q10 } \\ & \text { Set3,Q8 } \end{aligned}$	Drift velocity $v_{d}=\frac{e E}{m} \tau(\tau=$ relaxation time $)$ The current $I=n e A v_{d}(n=$ number of charge carriers per unit volume.) $\begin{aligned} & j=\frac{n e^{2}}{m} \tau E \\ & j=\frac{1}{\rho} E \end{aligned}$	$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$	2
$\begin{aligned} & \hline \text { Set1,Q7 } \\ & \text { Set2,Q6 } \\ & \text { Set3,Q9 } \end{aligned}$	Unpolarised light and linearly polarized light $1 / 2+1 / 2$ Diagram \& description $1 / 2+1 / 2$ For unpolarised light electric vector associated with light, is oscillating randomly in all directions in a plane perpendicular to the direction of propagation of light. In linearly polarised light oscillating electric vector gets aligned along one direction perpendicular to the direction of propagation of light.	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$	

| | Explanation of conversion of mass into energy (vice versa)
 Example | | |
| :--- | :--- | :--- | :--- | :--- |
| | Since proton number and neutron number are conserved, the total rest mass of
 neutron and protons is the same on either side of the nuclear reaction. But
 total binding energy of nuclei on the left side need not be the same as that on
 the right hand side. The difference in binding energy causes a release of
 energy in the reaction.
 Example :
 ${ }_{1}^{2} \mathrm{H}+{ }_{1}^{2} \mathrm{H} \rightarrow{ }_{2}^{3} \mathrm{He}+{ }_{0}^{1} n+$ energy | 1 | |

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
\[
\begin{gathered}
\frac{q_{1}}{4 \pi \varepsilon_{o} R_{1}}=\frac{q_{2}}{4 \pi \varepsilon_{o} R_{1}} \Rightarrow \frac{q_{1}}{R_{1}}=\frac{q_{2}}{R_{2}} \\
\frac{\sigma_{1}}{\sigma_{2}}= \\
\frac{q_{1}}{4 \pi \varepsilon_{o} R_{1}{ }^{2}} \times \frac{4 \pi \varepsilon_{o} R_{2}{ }^{2}}{q_{2}} \\
=\frac{q_{1}}{q_{2}} \times \frac{R_{2}{ }^{2}}{R_{1}{ }^{2}} \\
=\frac{R_{1}}{R_{2}} \times \frac{R_{2}{ }^{2}}{R_{1}{ }^{2}}=\frac{R_{2}}{R_{1}}
\end{gathered}
\] \\
(b) Current
\end{tabular} \& \(1 / 2\)
\(1 / 2\)

$1 / 2$
$1 / 2$
1 \& 3

\hline \[
$$
\begin{aligned}
& \hline \text { Set1,Q13 } \\
& \text { Set2,Q22 } \\
& \text { Set3,Q19 }
\end{aligned}
$$

\] \& | Readings of ideal ammeter and ideal voltmeter in fig (a) and (b) $11 / 2+11 / 2$ |
| :--- |
| In circuit (a) |
| Total emf=15 V |
| Total Resistance $=2 \Omega$ |
| Current $i=(15 / 2) \mathrm{A}=7.5 \mathrm{~A}$ |
| Potential Difference between the terminals of 6 V battery $\begin{aligned} & V=E-i R \\ & =[6-(7.5 \times 1)] \mathrm{V} \\ & =-1.5 \mathrm{~V} \end{aligned}$ |
| In circuit (b) $\begin{aligned} \text { Effective emf } & =(9-6) \mathrm{V} \\ & =3 \mathrm{~V} \end{aligned}$ |
| Current $\mathrm{i}=(3 / 2) \mathrm{A}=1.5 \mathrm{~A}$ |
| Potential Difference across 6 V cell $\begin{aligned} & V=E+i R \\ & =6+1.5 \times 1 \\ & =7.5 \mathrm{~V} \end{aligned}$ |
| OR |
| Finding current through each resistor |
| Total emf in the circuit $=8 \mathrm{~V}-4 \mathrm{~V}=4 \mathrm{~V}$ |
| Total resistance of the circuit $=8 \Omega$ |
| Hence current flowing in the circuit $\mathrm{i}=\frac{V}{R}=\frac{4}{8} \mathrm{~A}=0.5 \mathrm{~A}$ |
| Current flowing through the resistors: |
| Current throgh $0.5 \Omega, 1.0 \Omega$ and 4.5Ω is 0.5 A |
| Current through 3.0Ω is $\frac{1}{3} \mathrm{~A}$ |
| Current through 6.0Ω is $\frac{1}{6} \mathrm{~A}$ | \& $1 / 2$

$1 / 2$
1
1 \& 3

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
For the solenoid : \\
Inductance, \(L=\mu_{0} n^{2} A l\); also \(\mathrm{B}=\mu_{0} n I\)
\[
\begin{aligned}
\& \therefore \mathrm{W}=U_{B}=\frac{1}{2} L I^{2} \\
\& \begin{aligned}
\& \frac{1}{2}\left(\mu_{o} n^{2} A l\right)\left(\frac{B}{\mu_{o} n}\right)^{2} \\
\& \quad=\frac{B^{2} A l}{2 \mu_{o}} \\
\& \Rightarrow \text { Magnetic energy per unt volume }=\frac{B^{2}}{2 \mu_{o}}
\end{aligned}
\end{aligned}
\] \\
Also, Electrostatic energy stored per unit volume \(=\frac{1}{2} \varepsilon_{o} E^{2}\)
\end{tabular} \& \(1 / 2\)

$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$ \& 3

\hline \[
$$
\begin{aligned}
& \hline \text { Set 1,Q16 } \\
& \text { Set2,Q13 } \\
& \text { Set3,Q22 }
\end{aligned}
$$

\] \& | (i) Calculation of rms value of current 2
 (ii) Calculation of total average power consumed. 1 |
| :--- |
| (i) $\begin{aligned} & X_{L}=\omega L=100 \times 80 \times 10^{-3}=8 \Omega \\ & X_{C}=\frac{1}{\omega C}=\frac{1}{100 \times 250 \times 10^{-6}} \Omega \\ & \quad=40 \Omega \end{aligned}$ |
| Total Impedence $(\mathrm{Z})=X_{C}-X_{L}$ $=32 \Omega$ $I_{r m s}=\frac{240}{32} \mathrm{~A}=7.5 \mathrm{~A}$ |
| (ii) Average power consumed $=0$ |
| (As there is no ohmic resistance in the current.) | \& $1 / 2$

$1 / 2$

$1 / 2$
$1 / 2$
$1 / 2$
1 \& 3

\hline \[
$$
\begin{aligned}
& \hline \text { Set1,Q17 } \\
& \text { Set2,Q14 } \\
& \text { Set3,Q11 }
\end{aligned}
$$

\] \& | Answers of part (i) and (ii) |
| :--- |
| $1^{1 / 2}+1^{1 / 2}$ |
| (i) It absorbs ultraviolet radiations from sun and prevents them from reaching on the earth's surface causing damage to life. |
| Identification : ultraviolet radiations |
| one correct application (=sanitization, forensics) |
| (ii) Water molecules present in most materials readily absorbs infra red waves. Hence, their thermal motion increases. Therefore, they heat their surroundings. |
| They are produced by hot bodies and molecules. Incoming visible light is absorbed by earth's surface and radiated as infra red radiations. These radiation are trapped by green house gases. | \& $1 / 2$

$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$ \& 3

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Set 1,Q18 \\
Set2,Q15 \\
Set3,Q12
\end{tabular} \& \begin{tabular}{l}
\begin{tabular}{ll}
\hline Definition of critical angle \& \(1 / 2\) \\
Drawing of Ray diagram \& 1 \\
Calculation of area of water surface. \& \(11 / 2\) \\
\hline
\end{tabular} \\
For an incident ray, travelling from an optically denser medium to optically rarer medium, the angle of incidence, for which the angle of refraction is \(90^{\circ}\), is called the critical angle. \\
Alternatively: \(\mu=\frac{1}{\sin i_{c}}\)
\[
i_{c}=\sin ^{-1}\left(\frac{1}{\mu}\right)
\]
\[
\begin{aligned}
\& \mu=\frac{1}{\sin i_{c}} \\
\& \sin i_{c}=\frac{3}{4} \\
\& \cos i_{c}=\frac{\sqrt{7}}{4} \\
\& \tan i_{c}=\frac{3}{\sqrt{7}}
\end{aligned}
\] \\
From figure,
\[
\tan i_{c}=\frac{x}{7} \Rightarrow \frac{3}{\sqrt{7}} \Rightarrow \frac{x}{7} \Rightarrow \mathrm{x}=3 \sqrt{7} \mathrm{~cm}
\] \\
Area \(=\pi x^{2}=63 \pi \mathrm{~cm}^{2}\)
\end{tabular} \& 1/2 \& 3 \\
\hline \[
\begin{aligned}
\& \text { Set1,Q19 } \\
\& \text { Set2,Q16 } \\
\& \text { Set3,Q13 }
\end{aligned}
\] \& \begin{tabular}{l}
Selection of lens for objective and eyepiece of \\
(i) Telescope \\
(ii) Microscope \\
(i) Telescope \\
\(L_{2}\) : objective \\
\(L_{3}\) : eyepiece \\
Reason \\
: Light gathering power and magnifying power will be larger. \\
(ii) Microscope \\
\(L_{3}\) : objective \\
\(L_{1}\) : eyepiece \\
Reason : Angular magnification is more for short focal length of objective and eyepiece.
\end{tabular} \& \(1 / 2\)
\(1 / 2\)
\(1 / 2\)

$1 / 2$
$1 / 2$
$1 / 2$ \& 3

\hline
\end{tabular}

Set 1,Q20 Set2,Q17 Set3,Q14	Explanation by drawing a suitable diagram 1 Two basic features distinguishing interference pattern from diffraction pattern $1+1$ diffraction pattern The diagram, given here, shows several fringes, due to double slit interference, 'contained' in a broad diffraction peak. When the seperation between the slits is large compared to their width, the diffraction pattern becomes very flat and we observe the two slit interference pattern. [Note: The students may be awarded 1 mark even if they just draw the diagram.] Two basic features: (i) The interference pattern has a number of equally spaced bright and dark bands while differaction pattern has a central bright maximum which is twice as wide as the other maxima. (ii) Interference pattern is the superimposition of two waves slits originating from two narrow sects. The differaction pattern is a superposition of a continuous family of waves originating from each point on a single slit. (iii) For a single slit of width ' a ' the first null of differaction pattern occurs at an angle of $\frac{\lambda}{a}$. At the same angle of λ / a, we get a maxima for two narrow slits seperated by a distance a. [Any two of the above distinguishing features.]	1/2	3
$\begin{aligned} & \hline \text { Set1,Q21 } \\ & \text { Set2,Q18 } \\ & \text { Set3,Q15 } \end{aligned}$	Distinction between n - type and p -type semi conductors on the basis of Energy band diagrams Comparison of conductivities (a) $T>0 \mathrm{~K}$ electron-hole pair +9 electrons from donor atoms (i) In n - type semi conductors an extra energy level (called donor energy level) is produced just below the bottom of the conduction band, while in the p-type ssemiconductor, this extra energy band (called acceptor energy level) is just above the top of the balance band. (ii) In n - type semiconductors, most of the electrons come from the donor impurity while in p-type semi conductor, the density of holes in	1/2	

	the valence band is predominantlly due to the impurity in the extrinsic semiconductors. [Any one of the above, or any one, other, correct distinguishing feature.] At absolute zero temperature conductivities of both type of semi-conductors will be zero. For equal doping, an n-type semi conductor will have more conductivity than a p-type semiconductor, at room temperature.	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$	3
Set1,Q22 Set2,Q19 Set3,Q16	(a) Identification of X and Y Their functions (b) $1 / 2+1 / 2$ Distinction between point to point and broadcast $1 / 2+1 / 2$ mode. 1 (a) : Transmitter Y: Channel Their functions: Transmitter : To convert the message signal into suitables form for transmission through channel. Channel : It sends the signal to the reciever. (b)In point to point mode, communication takes place between a single transmitter and receiver. In broadcast mode, large number of receivers are connected to a single transmitter.	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 \end{aligned}$	3
Section D			
$\begin{aligned} & \hline \text { Set1,Q23 } \\ & \text { Set2,Q23 } \\ & \text { Set3,Q23 } \end{aligned}$	(i) Qualities / values of Rohit. 1 (ii) Advantage of CFLs/ LEDs over traditional (iii) incandescent lamps. Role of earthing in reduction of electricity bills 11 (i) Co-operative attitude and scientific temperament. (or any other two correct values.) (ii) a) Low operational voltage and less power. b) fast action and no warm up time required. (Any one) (iii) In the absence of proper earthing, the consumer can get (extra) charges for the electrical energy NOT consumed by the devices in her/his premises.	$1+1$ 1 1	4
Section E			
$\begin{aligned} & \hline \text { Set1,Q24 } \\ & \text { Set2,Q26 } \end{aligned}$ Set3,Q26	(a) Derivation of the expression 2 (b) Magnetic field lines due to the coil 1 (c) Magnetic field at the center of the loop (a)	1/2	
Page 9 of 15 final draft 19/07/15		03:00	

According to Biot- Savart law,

$$
\begin{gathered}
d \vec{B}=\frac{\mu_{o}}{4 \pi} \frac{I(\overrightarrow{d l} \times \vec{r})}{r^{3}} \\
d B=\frac{\mu_{o}}{4 \pi} \frac{I d l}{\left(x^{2}+R^{2}\right)}\left[\begin{array}{l}
\because|\overrightarrow{d l} \times \vec{r}|=r d l ; \\
r=\left(x^{2}+R^{2}\right)^{\frac{1}{2}}
\end{array}\right]
\end{gathered}
$$

From figure

$$
\cos \theta=\frac{R}{\left(x^{2}+R^{2}\right)^{\frac{1}{2}}}
$$

\therefore Net contribution along x-direction
$B=\sum_{2 \pi R} d B \cos \theta=\int d B \cos \theta$
$=\int_{0}^{2 \pi R} \frac{\mu_{o} I d l}{4 \pi} \frac{R}{\left(x^{2}+R^{2}\right)^{\frac{3}{2}}}$
$\vec{B}=\frac{\mu_{o} I R^{2}}{2\left(R^{2}+x^{2}\right)^{\frac{3}{2}}} \hat{\imath}$

(b) Let current I be divided at point M into two parts I_{1} and I_{2}; in bigger and smaller parts of the loop respectively.
Magnetic field of current I_{1} at point O
$\overrightarrow{B_{1}}=\frac{\mu_{o} I_{1}}{2 R} \times \frac{1}{4} \otimes$
Magnetic field of current I_{2} at point O
$\overrightarrow{B_{2}}=\frac{\mu_{o} I_{2}}{2 R} \times \frac{3}{4} \odot$
Net magnetic field $\vec{B}=\overrightarrow{B_{1}}+\overrightarrow{B_{2}}$
$|\vec{B}|=\frac{\mu_{o} I_{1}}{8 R}-\frac{\mu_{o} I_{2}}{8 R}---------------\left(1_{2}\right)$
But $\mathrm{I}_{1}=3 \mathrm{I}_{2}$ (As resistance of bigger part is three times that of the smaller part of the loop.)
Substituting $\mathrm{I}_{1}=3 \mathrm{I}_{2}$ in equation (1)
$\Rightarrow|\vec{B}|=0$

OR

(a) Derivation of expression of magnetic field inside solenoid 3
(b) Finding the magnitude and direction of Magnetic field

Any surface carrying current can be divided into small line elements, each of length ' $d l$ '. Considering the tangential components of the magnetic field and finding $\vec{B} \cdot \overrightarrow{d l}$, sum of all elements tends to the integral, which can be expressed in the following form. : $\oint \vec{B} \cdot \overrightarrow{d l}=\mu_{o} i$, This form is known as Ampers's circuital law.

(b)

I

	As per the given figure, magnetic field must be vertically inwards, to make tension zero, (If a student shows current in opposite direction the magnetic field should be set up vertically upwards. $I l B=m g$ For tension to be zero $\begin{aligned} B=\frac{m g}{I l} & =\frac{60 \times 10^{-3} \times 9.8}{5.0 \times 0.45} \mathrm{~T} \\ & =0.26 \mathrm{~T} \end{aligned}$	$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$	5
$\begin{aligned} & \hline \text { Set1,Q25 } \\ & \text { Set2,Q24 } \\ & \text { Set3,Q25 } \end{aligned}$	(a) Schematic arrangement of Greiger-Marsden Experiment Reason (b) Estimation of the distance of closest approach (a) For most of the α-particles, impact parameter is large, hence they suffer very small repulsion due to nucleus and go right through the foil. It gives an estimate of the size of nucleus. (b) K.E of the α-particle $=$ potential energy possesed by beam at distance of closest approach. $\frac{1}{2} m v^{2}=\frac{1}{4 \pi \epsilon_{o}} \cdot \frac{(2 e)(Z e)}{r_{0}}$	1 1	

