Senior School Certificate Examination

March 2017

Marking Scheme - Mathematics 65/1, 65/2, 65/3 [Outside Delhi]

General Instructions:

1. The Marking Scheme provides general guidelines to reduce subjectivity in the marking. The answers given in the Marking Scheme are suggested answers. The content is thus indicative. If a student has given any other answer which is different from the one given in the Marking Scheme, but conveys the meaning, such answers should be given full weightage.
2. Evaluation is to be done as per instructions provided in the marking scheme. It should not be done according to one's own interpretation or any other consideration - Marking Scheme should be strictly adhered to and religiously followed.
3. Alternative methods are accepted. Proportional marks are to be awarded.
4. In question (s) on differential equations, constant of integration has to be written.
5. If a candidate has attempted an extra question, marks obtained in the question attempted first should be retained and the other answer should be scored out.
6. A full scale of marks -0 to 100 has to be used. Please do not hesitate to award full marks if the answer deserves it.
7. Separate Marking Scheme for all the three sets has been given.
8. As per orders of the Hon'ble Supreme Court. The candidates would now be permitted to obtain photocopy of the Answer book on request on payment of the prescribed fee. All examiners/ Head Examiners are once again reminded that they must ensure that evaluation is carried out strictly as per value points for each answer as given in the Marking Scheme.

QUESTION PAPER CODE 65/1

EXPECTED ANSWER/VALUE POINTS

SECTION A

1. $|\mathrm{A}|=8$.
2. $\mathrm{k}=12$.
3. $-\log |\sin 2 \mathrm{x}|+\mathrm{c}$ OR $\log |\sec \mathrm{x}|-\log |\sin \mathrm{x}|+\mathrm{c}$.
4. Writing the equations as $2 x-y+2 z=5$

$$
\left.\begin{array}{ll}
& 2 \mathrm{x}-\mathrm{y}+2 \mathrm{z}=8
\end{array}\right\}
$$

SECTION B

5. Any skew symmetric matrix of order 3 is $A=\left[\begin{array}{rrr}0 & a & b \\ -a & 0 & c \\ -b & -c & 0\end{array}\right]$ $\Rightarrow \quad|\mathrm{A}|=-\mathrm{a}(\mathrm{bc})+\mathrm{a}(\mathrm{bc})=0$

OR

Since A is a skew-symmetric matrix $\quad \therefore A^{T}=-A$
$\therefore \quad\left|\mathrm{A}^{\mathrm{T}}\right|=|-\mathrm{A}|=(-1)^{3} .|\mathrm{A}|$
$\Rightarrow \quad|\mathrm{A}|=-|\mathrm{A}|$
$\Rightarrow \quad 2|\mathrm{~A}|=0$ or $|\mathrm{A}|=0$.
6. $f(x)=x^{3}-3 x$

$$
\begin{array}{ll}
\therefore & \mathrm{f}^{\prime}(\mathrm{c})=3 \mathrm{c}^{2}-3=0 \\
\therefore & \mathrm{c}^{2}=1 \quad \Rightarrow \quad \mathrm{c}= \pm 1
\end{array}
$$

7. Let V be the volume of cube, then $\frac{\mathrm{dV}}{\mathrm{dt}}=9 \mathrm{~cm}^{3} / \mathrm{s}$.

Surface area (S) of cube $=6 x^{2}$, where x is the side.
then $V=x^{3} \Rightarrow \frac{d V}{d t}=3 x^{2} \frac{d x}{d t} \Rightarrow \frac{d x}{d t}=\frac{1}{3 x^{2}} \cdot \frac{d V}{d t}$
$S=6 x^{2} \Rightarrow \frac{d S}{d t}=12 x \frac{d x}{d t}=12 x \cdot \frac{1}{3 x^{2}} \frac{d V}{d t}$

$$
=4 \cdot \frac{1}{10} \cdot 9=3.6 \mathrm{~cm}^{2} / \mathrm{s}
$$

8. $f(x)=x^{3}-3 x^{2}+6 x-100$

$$
f^{\prime}(x)=3 x^{2}-6 x+6
$$

$$
=3\left[x^{2}-2 x+2\right]=3\left[(x-1)^{2}+1\right]
$$

since $\mathrm{f}^{\prime}(\mathrm{x})>0 \forall \mathrm{x} \in \mathbb{R} \quad \therefore \mathrm{f}(\mathrm{x})$ is increasing on \mathbb{R}
9. Equation of line PQ is $\frac{\mathrm{x}-2}{3}=\frac{\mathrm{y}-2}{-1}=\frac{\mathrm{z}-1}{-3}$

Any point on the line is $(3 \lambda+2,-\lambda+2,-3 \lambda+1)$
$3 \lambda+2=4 \Rightarrow \lambda=\frac{2}{3} \quad \therefore$ z coord. $=-3\left(\frac{2}{3}\right)+1=-1$.

OR

Let $\mathrm{R}(4, \mathrm{y}, \mathrm{z})$ lying on PQ divides PQ in the ratio $\mathrm{k}: 1$

$$
\begin{align*}
& \Rightarrow 4=\frac{5 \mathrm{k}+2}{\mathrm{k}+1} \Rightarrow \mathrm{k}=2 . \tag{1}\\
& \therefore \mathrm{z}=\frac{2(-2)+1(1)}{2+1}=\frac{-3}{3}=-1 .
\end{align*}
$$

1
10. Event A: Number obtained is even

B: Number obtained is red.
$\mathrm{P}(\mathrm{A})=\frac{3}{6}=\frac{1}{2}, \mathrm{P}(\mathrm{B})=\frac{3}{6}=\frac{1}{2}$
$P(A \cap B)=P($ getting an even red number $)=\frac{1}{6}$
Since $P(A) \cdot P(B)=\frac{1}{2} \cdot \frac{1}{2}=\frac{1}{4} \neq P(P \cap B)$ which is $\frac{1}{6}$
$\therefore \quad \mathrm{A}$ and B are not independent events.
11. Let A works for x day and B for y days.
$\therefore \quad$ L.P.P. is Minimize $C=300 \mathrm{x}+400 \mathrm{y}$
Subject to: $\left\{\begin{array}{l}6 x+10 y \geq 60 \\ 4 x+4 y \geq 32 \\ x \geq 0, y \geq 0\end{array}\right.$
12. $\int \frac{\mathrm{dx}}{5-8 \mathrm{x}-\mathrm{x}^{2}}=\int \frac{\mathrm{dx}}{(\sqrt{21})^{2}-(\mathrm{x}+4)^{2}}$

$$
=\frac{1}{2 \sqrt{21}} \log \left|\frac{\sqrt{21}+(\mathrm{x}+4)}{\sqrt{21}-(\mathrm{x}+4)}\right|+\mathrm{c}
$$

SECTION C

13. $\tan ^{-1} \frac{x-3}{x-4}+\tan ^{-1} \frac{x+3}{x+4}=\frac{\pi}{4}$

$$
\begin{aligned}
& \Rightarrow \quad \tan ^{-1}\left(\frac{\frac{x-3}{x-4}+\frac{x+3}{x+4}}{1-\frac{x-3}{x-4} \cdot \frac{x+3}{x+4}}\right)=\frac{\pi}{4} \\
& \Rightarrow \quad \frac{2 x^{2}-24}{-7}=1 \Rightarrow x^{2}=\frac{17}{2} \\
& \Rightarrow x= \pm \sqrt{\frac{17}{2}}
\end{aligned}
$$

14. $\Delta=\left|\begin{array}{ccc}a^{2}+2 a & 2 a+1 & 1 \\ 2 a+1 & a+2 & 1 \\ 3 & 3 & 1\end{array}\right|$

$$
\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}-\mathrm{R}_{2} \text { and } \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{3}
$$

$$
\begin{aligned}
\Delta & =\left|\begin{array}{ccc}
a^{2}-1 & a-1 & 0 \\
2(a-1) & a-1 & 0 \\
3 & 3 & 1
\end{array}\right| \\
& =(a-1)^{2}\left|\begin{array}{ccc}
a+1 & 1 & 0 \\
2 & 1 & 0 \\
3 & 3 & 1
\end{array}\right|
\end{aligned}
$$

Expanding
$(a-1)^{2} \cdot(a-1)=(a-1)^{3}$.

OR

Let $\left(\begin{array}{rr}2 & -1 \\ 1 & 0 \\ -3 & 4\end{array}\right)\left(\begin{array}{ll}\mathrm{a} & \mathrm{b} \\ \mathrm{c} & \mathrm{d}\end{array}\right)=\left(\begin{array}{rr}-1 & -8 \\ 1 & -2 \\ 9 & 22\end{array}\right)$
$\Rightarrow\left(\begin{array}{rr}2 \mathrm{a}-\mathrm{c} & 2 \mathrm{~b}-\mathrm{d} \\ \mathrm{a} & \mathrm{b} \\ -3 \mathrm{a}+4 \mathrm{c} & -3 \mathrm{~b}+4 \mathrm{~d}\end{array}\right)=\left(\begin{array}{rr}-1 & -8 \\ 1 & -2 \\ 9 & 22\end{array}\right)$
$\Rightarrow \quad 2 \mathrm{a}-\mathrm{c}=-1, \quad 2 \mathrm{~b}-\mathrm{d}=-8$
$\mathrm{a}=1, \quad \mathrm{~b}=-2$
$-3 \mathrm{a}+4 \mathrm{c}=9, \quad-3 \mathrm{~b}+4 \mathrm{~d}=22$
Solving to get $\mathrm{a}=1, \mathrm{~b}=-2, \mathrm{c}=3, \mathrm{~d}=4$
$\therefore \quad \mathrm{A}=\left(\begin{array}{cc}1 & -2 \\ 3 & 4\end{array}\right)$
15. $x^{y}+y^{x}=a^{b}$

Let $u+v=a^{b}$, where $x^{y}=u$ and $y^{x}=v$.
$\therefore \quad \frac{\mathrm{du}}{\mathrm{dx}}+\frac{\mathrm{dv}}{\mathrm{dx}}=0$

$$
\begin{equation*}
y \log x=\log u \Rightarrow \frac{d u}{d x}=x^{y}\left[\frac{y}{x}+\log x \cdot \frac{d y}{d x}\right] \tag{1}
\end{equation*}
$$

$$
x \log y=\log v \Rightarrow \frac{d v}{d x}=y^{x}\left[\frac{x}{y} \frac{d y}{d x}+\log y\right]
$$

$$
\text { Putting in (i) } x^{y}\left[\frac{y}{x}+\log x \frac{d y}{d x}\right]+y^{x}\left[\frac{x}{y} \frac{d y}{d x}+\log y\right]=0
$$

$$
\Rightarrow \quad \frac{d y}{d x}=-\frac{y^{x} \log y+y \cdot x^{y-1}}{x^{y} \cdot \log x+x \cdot y^{x-1}}
$$

OR

$$
\begin{aligned}
& \mathrm{e}^{\mathrm{y}} \cdot(\mathrm{x}+1)=1 \Rightarrow \mathrm{e}^{\mathrm{y}} \cdot 1+(\mathrm{x}+1) \cdot \mathrm{e}^{\mathrm{y}} \cdot \frac{\mathrm{dy}}{\mathrm{~d}}=0 \\
\Rightarrow & \frac{d y}{d x}=-\frac{1}{(x+1)} \\
& \frac{d^{2} y}{d x^{2}}=+\frac{1}{(x+1)^{2}}=\left(\frac{d y}{d x}\right)^{2}
\end{aligned}
$$

16. $I=\int \frac{\cos \theta}{\left(4+\sin ^{2} \theta\right)\left(5-4 \cos ^{2} \theta\right)} d \theta=\int \frac{\cos \theta}{\left(4+\sin ^{2} \theta\right)\left(1+4 \sin ^{2} \theta\right)} d \theta$

$$
=\int \frac{\mathrm{dt}}{\left(4+\mathrm{t}^{2}\right)\left(1+4 \mathrm{t}^{2}\right)}, \text { where } \sin \theta=\mathrm{t}
$$

$$
=\int \frac{-\frac{1}{15}}{4+\mathrm{t}^{2}} \mathrm{dt}+\int \frac{\frac{4}{15}}{1+4 \mathrm{t}^{2}} \mathrm{dt}
$$

$$
=-\frac{1}{30} \tan ^{-1}\left(\frac{\mathrm{t}}{2}\right)+\frac{4}{30} \tan ^{-1}(2 \mathrm{t})+\mathrm{c}
$$

$$
=-\frac{1}{30} \tan ^{-1}\left(\frac{\sin \theta}{2}\right)+\frac{2}{15} \tan ^{-1}(2 \sin \theta)+\mathrm{c}
$$

17. $I=\int_{0}^{\pi} \frac{x \tan x}{\sec x+\tan x} d x=\int_{0}^{\pi} \frac{(\pi-x) \tan x}{\sec x+\tan x} d x$

$$
\begin{aligned}
\Rightarrow 2 \mathrm{I} & =\pi \int_{0}^{\pi} \frac{\tan x}{\sec x+\tan x} d x=\pi \int_{0}^{\pi} \tan x(\sec x-\tan x) d x \\
I & =\frac{\pi}{2} \int_{0}^{\pi}\left(\sec x \tan x-\sec ^{2} x+1\right) d x \\
& =\frac{\pi}{2}[\sec x-\tan x+x]_{0}^{\pi} \\
& =\frac{\pi(\pi-2)}{2}
\end{aligned}
$$

OR

$$
\begin{align*}
I & =\int_{1}^{4}\{|x-1|+|x-2|+|x-4|\} d x \\
& =\int_{1}^{4}(x-1) d x-\int_{1}^{2}(x-2) d x+\int_{2}^{4}(x-2) d x-\int_{1}^{4}(x-4) d x \tag{2}\\
& \left.\left.\left.\left.=\frac{(x-1)^{2}}{2}\right]_{1}^{4}-\frac{(x-2)^{2}}{2}\right]_{1}^{2}+\frac{(x-2)^{2}}{2}\right]_{2}^{4}-\frac{(x-4)^{2}}{2}\right]_{1}^{4} \\
& =\frac{9}{2}+\frac{1}{2}+2+\frac{9}{2}=11 \frac{1}{2} \text { or } \frac{23}{2}
\end{align*}
$$

18. Given differential equation can be written as

$$
\begin{equation*}
\left(1+x^{2}\right) \frac{d y}{d x}+y=\tan ^{-1} x \Rightarrow \frac{d y}{d x}+\frac{1}{1+x^{2}} y=\frac{\tan ^{-1} x}{1+x^{2}} \tag{1}
\end{equation*}
$$

Integrating factor $=\mathrm{e}^{\tan ^{-1}} \mathrm{x}$.
$\therefore \quad$ Solution is $y \cdot e^{\tan ^{-1}} x=\int \tan ^{-1} x \cdot e^{\tan ^{-1} x} \frac{1}{1+x^{2}} d x$
$\Rightarrow y \cdot e^{\tan ^{-1}} x=e^{\tan ^{-1}} x \cdot\left(\tan ^{-1} x-1\right)+c$
or $\mathrm{y}=\left(\tan ^{-1} \mathrm{x}-1\right)+\mathrm{c} \cdot \mathrm{e}^{-\tan ^{-1} \mathrm{x}}$
19. $\overrightarrow{\mathrm{AB}}=-\hat{\mathrm{i}}-2 \hat{j}-6 \hat{k}, \overrightarrow{B C}=2 \hat{i}-\hat{j}+\hat{k}, \overrightarrow{C A}=-\hat{i}+3 \hat{j}+5 \hat{k}$

Since $\overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{BC}}, \overrightarrow{\mathrm{CA}}$, are not parallel vectors, and $\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BC}}+\overrightarrow{\mathrm{CA}}=\overrightarrow{0} \quad \therefore \mathrm{~A}, \mathrm{~B}, \mathrm{C}$ form a triangle $\quad 1$
Also $\overrightarrow{\mathrm{BC}} \cdot \overrightarrow{\mathrm{CA}}=0 \quad \therefore \mathrm{~A}, \mathrm{~B}, \mathrm{C}$ form a right triangle
Area of $\Delta=\frac{1}{2}|\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{BC}}|=\frac{1}{2} \sqrt{210}$ 1
20. Given points, $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ are coplanar, if the vectors $\overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{AC}}$ and $\overrightarrow{\mathrm{AD}}$ are coplanar, i.e.

$$
\overrightarrow{\mathrm{AB}}=-2 \hat{i}-4 \hat{j}-6 \hat{k}, \overrightarrow{\mathrm{AC}}=-\hat{\mathrm{i}}-3 \hat{j}-8 \hat{k}, \overrightarrow{\mathrm{AD}}=\hat{i}+(\lambda-9) \hat{k}
$$

are coplanar

$$
\begin{aligned}
& \text { i.e., }\left|\begin{array}{ccc}
-2 & -4 & -6 \\
-1 & -3 & -8 \\
1 & 0 & \lambda-9
\end{array}\right|=0 \\
& -2[-3 \lambda+27]+4[-\lambda+17]-6(3)=0 \\
& \Rightarrow \lambda=2
\end{aligned}
$$

21. Writing

+	1	3	5	7
1	\times	4	6	8
3	4	\times	8	10
5	6	8	\times	12
7	8	10	12	\times

$$
\begin{array}{rccccc}
\therefore & 4 & 6 & 8 & 10 & 12 \\
\mathrm{P}(\mathrm{X}): & \frac{2}{12} & \frac{2}{12} & \frac{4}{12} & \frac{2}{12} & \frac{2}{12} \\
& = & \frac{1}{6} & \frac{1}{6} & \frac{2}{6} & \frac{1}{6} \\
\mathrm{xP}(\mathrm{X}): & \frac{4}{6} & \frac{6}{6} & \frac{16}{6} & \frac{10}{6} & \frac{12}{6} \\
& & \frac{16}{6} & \frac{36}{6} & \frac{128}{6} & \frac{100}{6} \\
\mathrm{x}^{2} \mathrm{P}(\mathrm{X}): & \frac{144}{6}
\end{array}
$$

$$
\begin{gather*}
\sum \mathrm{xP}(\mathrm{x})=\frac{48}{6}=8 \therefore \text { Mean }=8 \tag{1}\\
\text { Variance }=\Sigma \mathrm{x}^{2} \mathrm{P}(\mathrm{x})-[\Sigma \mathrm{xP}(\mathrm{x})]^{2}=\frac{424}{6}-64=\frac{20}{3} \tag{1}
\end{gather*}
$$

22. Let E_{1} : Selecting a student with 100% attendance
E_{2} : Selecting a student who is not regular
A: selected student attains A grade.

$$
\begin{aligned}
& \mathrm{P}\left(\mathrm{E}_{1}\right)=\frac{30}{100} \text { and } \mathrm{P}\left(\mathrm{E}_{2}\right)=\frac{70}{100} \\
& \begin{aligned}
\mathrm{P}\left(\mathrm{~A} / \mathrm{E}_{1}\right) & =\frac{70}{100} \text { and } \mathrm{P}\left(\mathrm{~A} / \mathrm{E}_{2}\right)=\frac{10}{100} \\
\mathrm{P}\left(\mathrm{E}_{1} / \mathrm{A}\right) & =\frac{\mathrm{P}\left(\mathrm{E}_{1}\right) \cdot \mathrm{P}\left(\mathrm{~A} / \mathrm{E}_{1}\right)}{\mathrm{P}\left(\mathrm{E}_{1}\right) \cdot \mathrm{P}\left(\mathrm{~A} / \mathrm{E}_{1}\right)+\mathrm{P}\left(\mathrm{E}_{2}\right) \mathrm{P}\left(\mathrm{~A} / \mathrm{E}_{2}\right)} \\
& =\frac{\frac{30}{100} \times \frac{70}{100}}{\frac{30}{100} \times \frac{70}{100}+\frac{70}{100} \times \frac{10}{100}} \\
& =\frac{3}{4}
\end{aligned}
\end{aligned}
$$

Regularity is required everywhere or any relevant value
23.

$$
Z=x+2 y \text { s.t } x+2 y \geq 100,2 x-y \leq 0,2 x+y \leq 200, x, y \geq 0
$$

SECTION D

24. Getting $\left[\begin{array}{rrr}-4 & 4 & 4 \\ -7 & 1 & 3 \\ 5 & -3 & -1\end{array}\right]\left[\begin{array}{rrr}1 & -1 & 1 \\ 1 & -2 & -2 \\ 2 & 1 & 3\end{array}\right]=\left[\begin{array}{lll}8 & 0 & 0 \\ 0 & 8 & 0 \\ 0 & 0 & 8\end{array}\right]$

Given equations can be written as $\left(\begin{array}{rrr}1 & -1 & 1 \\ 1 & -2 & -2 \\ 2 & 1 & 3\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}4 \\ 9 \\ 1\end{array}\right)$
$\Rightarrow \quad \mathrm{AX}=\mathrm{B}$
From (i) $\mathrm{A}^{-1}=\frac{1}{8}\left(\begin{array}{rrr}-4 & 4 & 4 \\ -7 & 1 & 3 \\ 5 & -3 & -1\end{array}\right)$

$$
\begin{aligned}
\therefore \quad \mathrm{X}=\mathrm{A}^{-1} \mathrm{~B} & =\frac{1}{8}\left(\begin{array}{rrr}
-4 & 4 & 4 \\
-7 & 1 & 3 \\
5 & -3 & -1
\end{array}\right)\left(\begin{array}{l}
4 \\
9 \\
1
\end{array}\right) \\
& =\frac{1}{8}\left(\begin{array}{r}
24 \\
-16 \\
-8
\end{array}\right)=\left(\begin{array}{r}
3 \\
-2 \\
-1
\end{array}\right)
\end{aligned}
$$

$$
\Rightarrow \mathrm{x}=3, \mathrm{y}=-2, \mathrm{z}=-1
$$

25. Let $\mathrm{x}_{1}, \mathrm{x}_{2} \in \mathrm{R}-\left\{-\frac{4}{3}\right\}$ and $\mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{f}\left(\mathrm{x}_{2}\right)$

$$
\begin{aligned}
& \Rightarrow \quad \frac{4 x_{1}+3}{3 x_{1}+4}=\frac{4 x_{2}+3}{3 x_{2}+4} \Rightarrow\left(4 x_{1}+3\right)\left(3 x_{2}+4\right)=\left(3 x_{1}+4\right)\left(4 x_{2}+3\right) \\
& \Rightarrow \quad 12 x_{1} x_{2}+16 x_{1}+9 x_{2}+12=12_{1} x_{2}+16 x_{2}+9 x_{1}+12 \\
& \Rightarrow 16\left(x_{1}-x_{2}\right)-9\left(x_{1}-x_{2}\right)=0 \Rightarrow x_{1}-x_{2}=0 \Rightarrow x_{1}=x_{2}
\end{aligned}
$$

Hence f is a $1-1$ function
Let $y=\frac{4 x+3}{3 x+4}$, for $\mathrm{y} \in \mathrm{R}-\left\{\frac{4}{3}\right\}$

$$
\begin{gathered}
3 x y+4 y=4 x+3 \Rightarrow 4 x-3 x y=4 y-3 \\
\Rightarrow \quad x=\frac{4 y-3}{4-3 y} \quad \therefore \forall y \in R-\left\{\frac{4}{3}\right\}, x \in R-\left\{-\frac{4}{3}\right\}
\end{gathered}
$$

Hence f is ONTO and so bijective
and $\mathrm{f}^{-1}(\mathrm{y})=\frac{4 \mathrm{y}-3}{4-3 \mathrm{y}} ; \mathrm{y} \in \mathrm{R}-\left\{\frac{4}{3}\right\}$

$$
\mathrm{f}^{-1}(0)=-\frac{3}{4}
$$

and $f^{-1}(x)=2 \Rightarrow \frac{4 x-3}{4-3 x}=2$
$\Rightarrow \quad 4 \mathrm{x}-3=8-6 \mathrm{x}$
$\Rightarrow \quad 10 \mathrm{x}=11 \Rightarrow \mathrm{x}=\frac{11}{10}$

OR

$$
\begin{aligned}
& (\mathrm{a}, \mathrm{~b}) *(\mathrm{c}, \mathrm{~d})=(\mathrm{ac}, \mathrm{~b}+\mathrm{ad}) ;(\mathrm{a}, \mathrm{~b}),(\mathrm{c}, \mathrm{~d}) \in \mathrm{A} \\
& (\mathrm{c}, \mathrm{~d}) *(\mathrm{a}, \mathrm{~b})=(\mathrm{ca}, \mathrm{~d}+\mathrm{bc})
\end{aligned}
$$

Since $b+a d \neq d+b c \Rightarrow *$ is NOT comutative
for associativity, we have,

$$
\begin{aligned}
& {[(\mathrm{a}, \mathrm{~b}) *(\mathrm{c}, \mathrm{~d})] *(\mathrm{e}, \mathrm{f})=(\mathrm{ac}, \mathrm{~b}+\mathrm{ad}) *(\mathrm{e}, \mathrm{f})=(\mathrm{ace}, \mathrm{~b}+\mathrm{ad}+\mathrm{acf})} \\
& (\mathrm{a}, \mathrm{~b}) *[(\mathrm{c}, \mathrm{~d}) *(\mathrm{e}, \mathrm{f})]=(\mathrm{a}, \mathrm{~b}) *(\mathrm{ce}, \mathrm{~d}+\mathrm{cf})=(\mathrm{ace}, \mathrm{~b}+\mathrm{ad}+\mathrm{acf})
\end{aligned}
$$

\Rightarrow * is associative
(i) Let (e, f) be the identity element in A

Then $(\mathrm{a}, \mathrm{b}) *(\mathrm{e}, \mathrm{f})=(\mathrm{a}, \mathrm{b})=(\mathrm{e}, \mathrm{f}) *(\mathrm{a}, \mathrm{b})$
$\Rightarrow \quad(\mathrm{ae}, \mathrm{b}+\mathrm{af})=(\mathrm{a}, \mathrm{b})=(\mathrm{ae}, \mathrm{f}+\mathrm{be})$
$\Rightarrow \mathrm{e}=1, \mathrm{f}=0 \Rightarrow(1,0)$ is the identity element
(ii) Let (c, d) be the inverse element for (a, b)
$\Rightarrow \quad(\mathrm{a}, \mathrm{b}) *(\mathrm{c}, \mathrm{d})=(1,0)=(\mathrm{c}, \mathrm{d}) *(\mathrm{a}, \mathrm{b})$
$\Rightarrow \quad(\mathrm{ac}, \mathrm{b}+\mathrm{ad})=(1,0)=(\mathrm{ac}, \mathrm{d}+\mathrm{bc})$
$\Rightarrow \mathrm{ac}=1 \Rightarrow \mathrm{c}=\frac{1}{\mathrm{a}}$ and $\mathrm{b}+\mathrm{ad}=0 \Rightarrow \mathrm{~d}=-\frac{\mathrm{b}}{\mathrm{a}}$ and $\mathrm{d}+\mathrm{bc}=0 \Rightarrow \mathrm{~d}=-\mathrm{bc}=-\mathrm{b}\left(\frac{1}{\mathrm{a}}\right)$
$\Rightarrow\left(\frac{1}{\mathrm{a}},-\frac{\mathrm{b}}{\mathrm{a}}\right), \mathrm{a} \neq 0$ is the inverse of $(\mathrm{a}, \mathrm{b}) \in \mathrm{A}$
26. Let the sides of cuboid be x, x, y

$$
\begin{aligned}
& \Rightarrow \quad x^{2} y=k \text { and } S=2\left(x^{2}+x y+x y\right)=2\left(x^{2}+2 x y\right) \\
& \therefore \quad \\
& \quad S=2\left[x^{2}+2 x \frac{k}{x^{2}}\right]=2\left[x^{2}+\frac{2 k}{x}\right] \\
& \\
& \quad \frac{\mathrm{ds}}{\mathrm{dx}}=2\left[2 x-\frac{2 k}{x^{2}}\right] \\
& \therefore \quad \\
& \quad \frac{\mathrm{ds}}{d x}=0 \Rightarrow x^{3}=k=x^{2} y \Rightarrow x=y
\end{aligned}
$$

$$
\frac{\mathrm{d}^{2} \mathrm{~s}}{\mathrm{dx}^{2}}=2\left[2+\frac{4 \mathrm{k}}{\mathrm{x}^{3}}\right]>0 \quad \therefore \mathrm{x}=\mathrm{y} \text { will given minimum surface area }
$$

and $\mathrm{x}=\mathrm{y}$, means sides are equal
$\therefore \quad$ Cube will have minimum surface area
27.

Figure
$\left.\begin{array}{l}\text { Equation of } A B: y=\frac{5}{2} x-9 \\ \text { Equation of } \mathrm{BC}: y=12-x \\ \text { Equation of } A C: y=\frac{3}{4} x-2\end{array}\right\}$
\therefore Area $(A)=\int_{4}^{6}\left(\frac{5}{2} x-9\right) d x+\int_{6}^{8}(12-x) d x-\int_{4}^{8}\left(\frac{3}{4} x-2\right) d x$
$=\left[\frac{5}{4} x^{2}-9 x\right]_{4}^{6}+\left[12 x-\frac{x^{2}}{2}\right]_{6}^{8}-\left[\frac{3}{8} x^{2}-2 x\right]_{4}^{8}$
$=7+10-10=7$ sq.units

Figure

$$
\begin{aligned}
& 4 y=3 x^{2} \text { and } 3 x-2 y+12=0 \Rightarrow 4\left(\frac{3 x+12}{2}\right)=3 x^{2} \\
\Rightarrow & 3 x^{2}-6 x-24=0 \text { or } x^{2}-2 x-8=0 \Rightarrow(x-4)(x+2)=0 \\
\Rightarrow & x \text {-coordinates of points of intersection are } x=-2, x=4
\end{aligned}
$$

$\therefore \operatorname{Area}(A)=\int_{-2}^{4}\left[\frac{1}{2}(3 x+12)-\frac{3}{4} x^{2}\right] d x$

$$
=\left[\frac{1}{2} \frac{(3 x+12)^{2}}{6}-\frac{3}{4} \frac{x^{3}}{3}\right]_{-2}^{4}
$$

$$
=45-18=27 \text { sq.units }
$$

28. $\frac{d y}{d x}=\frac{x+2 y}{x-y}=\frac{1+\frac{2 y}{x}}{1-\frac{y}{x}}$

$$
\begin{equation*}
\frac{y}{x}=v \Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x} \quad \therefore \quad v+x \frac{d v}{d x}=\frac{1+2 v}{1-v} \tag{1}
\end{equation*}
$$

$\Rightarrow \quad x \frac{d v}{d x}=-\frac{1+2 v-v+v^{2}}{v-1} \Rightarrow \int \frac{v-1}{v^{2}+v+1} d v=-\frac{d x}{x}$
$\Rightarrow \int \frac{2 v+1-3}{v^{2}+v+1} d v=\int-\frac{2}{x} d x \Rightarrow \int \frac{2 v+1}{v^{2}+v+1} d v-3 \int \frac{1}{\left(v+\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}} d v=-\int \frac{2}{x} d x$
$\Rightarrow \quad \log \left|\mathrm{v}^{2}+\mathrm{v}+1\right|-3 \cdot \frac{2}{\sqrt{3}} \tan ^{-1}\left(\frac{2 \mathrm{v}+1}{\sqrt{3}}\right)=-\log |\mathrm{x}|^{2}+\mathrm{c}$
$\Rightarrow \quad \log \left|y^{2}+x y+x^{2}\right|-2 \sqrt{3} \tan ^{-1}\left(\frac{2 y+x}{\sqrt{3} x}\right)=c$
$x=1, y=0 \Rightarrow c=-2 \sqrt{3} \cdot \frac{\pi}{6}=-\frac{\sqrt{3}}{3} \pi$
$\therefore \quad \log \left|y^{2}+x y+x^{2}\right|-2 \sqrt{3} \tan ^{-1}\left(\frac{2 y+x}{\sqrt{3} x}\right)+\frac{\sqrt{3}}{3} \pi=0$
29. Equation of line through $(3,-4,-5)$ and $(2,-3,1)$ is

$$
\begin{equation*}
\frac{x-3}{-1}=\frac{y+4}{1}=\frac{z+5}{6} \tag{i}
\end{equation*}
$$

Eqn. of plane through the three given points is

$$
\begin{align*}
& \left|\begin{array}{ccc}
x-1 & y-2 & z-3 \\
3 & 0 & -6 \\
-1 & 2 & 0
\end{array}\right|=0 \Rightarrow(x-1)(12)-(y-2)(-6)+(z-3)(6)=0 \\
& \text { or } \quad 2 x+y+z-7=0 \quad \ldots \text { (ii) } \tag{ii}
\end{align*}
$$

Any point on line (i) is $(-\lambda+3, \lambda-4,6 \lambda-5)$

If this point lies on plane, then $2(-\lambda+3)+(\lambda-4)+(6 \lambda-5)-7=1$
$\Rightarrow \lambda=2$
Required point is $(1,-2,7)$

OR

Equation of plane cutting intercepts (say, a, b, c) on the axes is

$$
\frac{\mathrm{x}}{\mathrm{a}}+\frac{\mathrm{y}}{\mathrm{~b}}+\frac{\mathrm{z}}{\mathrm{c}}=1, \text { with } \mathrm{A}(\mathrm{a}, 0,0), \mathrm{B}(0, \mathrm{~b}, 0) \text { and } \mathrm{C}(0,0, \mathrm{c})
$$

$$
\text { distance of this plane from orgin is } 3 p=\frac{|-1|}{\sqrt{\left(\frac{1}{a}\right)^{2}+\left(\frac{1}{b}\right)^{2}+\left(\frac{1}{c}\right)^{2}}}
$$

$\Rightarrow \quad \frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}+\frac{1}{\mathrm{c}^{2}}=\frac{1}{9 \mathrm{p}^{2}}$
Centroid of $\triangle \mathrm{ABC}$ is $\left(\frac{\mathrm{a}}{3}, \frac{\mathrm{~b}}{3}, \frac{\mathrm{c}}{3}\right)=(\mathrm{x}, \mathrm{y}, \mathrm{z})$
$\frac{1}{9 \mathrm{x}^{2}}+\frac{1}{9 \mathrm{y}^{2}}+\frac{1}{9 \mathrm{z}^{2}}=\frac{1}{9 \mathrm{p}^{2}}$ or $\frac{1}{\mathrm{x}^{2}}+\frac{1}{\mathrm{y}^{2}}+\frac{1}{\mathrm{z}^{2}}=\frac{1}{\mathrm{p}^{2}}$

QUESTION PAPER CODE 65/2

EXPECTED ANSWER/VALUE POINTS

SECTION A

1. $-\log |\sin 2 \mathrm{x}|+\mathrm{c}$ OR $\log |\sec \mathrm{x}|-\log |\sin \mathrm{x}|+\mathrm{c}$.
2. Writing the equations as $2 x-y+2 z=5\}$

$$
2 x-y+2 z=8\}
$$

$$
\Rightarrow \quad \text { Distance }=1 \text { unit }
$$

3. $|\mathrm{A}|=8$.
4. $\mathrm{k}=12$.

SECTION B

5. Event A: Number obtained is even

B: Number obtained is red.
$\mathrm{P}(\mathrm{A})=\frac{3}{6}=\frac{1}{2}, \mathrm{P}(\mathrm{B})=\frac{3}{6}=\frac{1}{2}$
$P(A \cap B)=P($ getting an even red number $)=\frac{1}{6}$
Since $P(A) \cdot P(B)=\frac{1}{2} \cdot \frac{1}{2}=\frac{1}{4} \neq P(P \cap B)$ which is $\frac{1}{6}$
$\therefore \quad \mathrm{A}$ and B are not independent events.
6. Let A works for x day and B for y days.
$\therefore \quad$ L.P.P. is Minimize $C=300 \mathrm{x}+400 \mathrm{y}$
Subject to: $\left\{\begin{array}{l}6 x+10 y \geq 60 \\ 4 x+4 y \geq 32 \\ x \geq 0, y \geq 0\end{array}\right.$
7. Equation of line $P Q$ is $\frac{x-2}{3}=\frac{y-2}{-1}=\frac{z-1}{-3}$

Any point on the line is $(3 \lambda+2,-\lambda+2,-3 \lambda+1)$
$3 \lambda+2=4 \Rightarrow \lambda=\frac{2}{3} \therefore \mathrm{z}$ coord. $=-3\left(\frac{2}{3}\right)+1=-1$.

$$
\frac{1}{2}+\frac{1}{2}
$$

OR

$\begin{array}{ccc}\mathrm{P} & \mathrm{R} & \mathrm{Q}\end{array} \quad$ Let $\mathrm{R}(4, \mathrm{y}, \mathrm{z})$ lying on PQ divides PQ in the ratio $\mathrm{k}: 1$

$$
\begin{align*}
& \Rightarrow 4=\frac{5 \mathrm{k}+2}{\mathrm{k}+1} \Rightarrow \mathrm{k}=2 . \tag{1}\\
& \therefore \mathrm{z}=\frac{2(-2)+1(1)}{2+1}=\frac{-3}{3}=-1 . \tag{1}
\end{align*}
$$

8. $\int \frac{\mathrm{dx}}{5-8 \mathrm{x}-\mathrm{x}^{2}}=\int \frac{\mathrm{dx}}{(\sqrt{21})^{2}-(\mathrm{x}+4)^{2}}$

$$
\begin{equation*}
=\frac{1}{2 \sqrt{21}} \log \left|\frac{\sqrt{21}+(x+4)}{\sqrt{21}-(x+4)}\right|+\mathrm{C} \tag{1}
\end{equation*}
$$

9. Any skew symmetric matrix of order 3 is $A=\left[\begin{array}{rrr}0 & a & b \\ -a & 0 & c \\ -b & -c & 0\end{array}\right]$ $\Rightarrow \quad|\mathrm{A}|=-\mathrm{a}(\mathrm{bc})+\mathrm{a}(\mathrm{bc})=0$

OR

Since A is a skew-symmetric matrix $\quad \therefore A^{T}=-A$
$\therefore \quad\left|\mathrm{A}^{\mathrm{T}}\right|=|-\mathrm{A}|=(-1)^{3} .|\mathrm{A}|$
$\Rightarrow \quad|\mathrm{A}|=-|\mathrm{A}|$
$\Rightarrow \quad 2|\mathrm{~A}|=0$ or $|\mathrm{A}|=0$.
10. $f(x)=x^{3}-3 x$

$$
\begin{array}{ll}
\therefore & \mathrm{f}^{\prime}(\mathrm{c})=3 \mathrm{c}^{2}-3=0 \\
\therefore & \mathrm{c}^{2}=1 \Rightarrow \mathrm{c}= \pm 1
\end{array}
$$

Rejecting $\mathrm{c}=1$ as it does not belong to $(-\sqrt{3}, 0)$,
we get $\mathrm{c}=-1$.
11. $f(x)=x^{3}-3 x^{2}+6 x-100$

$$
\begin{aligned}
\mathrm{f}^{\prime}(\mathrm{x}) & =3 \mathrm{x}^{2}-6 \mathrm{x}+6 \\
& =3\left[\mathrm{x}^{2}-2 \mathrm{x}+2\right]=3\left[(\mathrm{x}-1)^{2}+1\right]
\end{aligned}
$$

since $\mathrm{f}^{\prime}(\mathrm{x})>0 \forall \mathrm{x} \in \mathbb{R} \quad \therefore \mathrm{f}(\mathrm{x})$ is increasing on \mathbb{R}
12. Given $\frac{\mathrm{dx}}{\mathrm{dt}}=-5 \mathrm{~cm} / \mathrm{m} ., \frac{\mathrm{dy}}{\mathrm{dt}}=4 \mathrm{~cm} / \mathrm{m}$.

$$
\begin{aligned}
A & =x y \Rightarrow \frac{d A}{d t}=x \frac{d y}{d t}+y \frac{d x}{d t} \\
& =8(4)+6(-5)=2
\end{aligned}
$$

$\therefore \quad$ Area is increasing at the rate of $2 \mathrm{~cm}^{2} /$ minute.

SECTION C

13. $I=\int_{0}^{\pi} \frac{x \tan x}{\sec x+\tan x} d x=\int_{0}^{\pi} \frac{(\pi-x) \tan x}{\sec x+\tan x} d x$

$$
\begin{aligned}
\Rightarrow 2 \mathrm{I} & =\pi \int_{0}^{\pi} \frac{\tan x}{\sec x+\tan x} d x=\pi \int_{0}^{\pi} \tan x(\sec x-\tan x) d x \\
I & =\frac{\pi}{2} \int_{0}^{\pi}\left(\sec x \tan x-\sec ^{2} x+1\right) d x \\
& =\frac{\pi}{2}[\sec x-\tan x+x]_{0}^{\pi} \\
& =\frac{\pi(\pi-2)}{2}
\end{aligned}
$$

OR

$$
\begin{aligned}
\mathrm{I} & =\int_{1}^{4}\{|\mathrm{x}-1|+|\mathrm{x}-2|+|\mathrm{x}-4|\} \mathrm{dx} \\
& =\int_{1}^{4}(\mathrm{x}-1) \mathrm{dx}-\int_{1}^{2}(\mathrm{x}-2) \mathrm{dx}+\int_{2}^{4}(\mathrm{x}-2) \mathrm{dx}-\int_{1}^{4}(\mathrm{x}-4) \mathrm{dx} \\
& \left.\left.\left.\left.=\frac{(\mathrm{x}-1)^{2}}{2}\right]_{1}^{4}-\frac{(\mathrm{x}-2)^{2}}{2}\right]_{1}^{2}+\frac{(\mathrm{x}-2)^{2}}{2}\right]_{2}^{4}-\frac{(\mathrm{x}-4)^{2}}{2}\right]_{1}^{4} \\
& =\frac{9}{2}+\frac{1}{2}+2+\frac{9}{2}=11 \frac{1}{2} \text { or } \frac{23}{2}
\end{aligned}
$$

14. $\overrightarrow{\mathrm{AB}}=-\hat{\mathrm{i}}-2 \hat{\mathrm{j}}-6 \hat{\mathrm{k}}, \overrightarrow{\mathrm{BC}}=2 \hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}}, \overrightarrow{\mathrm{CA}}=-\hat{\mathrm{i}}+3 \hat{\mathrm{j}}+5 \hat{\mathrm{k}}$

Since $\overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{BC}}, \overrightarrow{\mathrm{CA}}$, are not parallel vectors, and $\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BC}}+\overrightarrow{\mathrm{CA}}=\overrightarrow{0} \quad \therefore \mathrm{~A}, \mathrm{~B}, \mathrm{C}$ form a triangle

$$
\text { Also } \overrightarrow{\mathrm{BC}} \cdot \overrightarrow{\mathrm{CA}}=0 \quad \therefore \mathrm{~A}, \mathrm{~B}, \mathrm{C} \text { form a right triangle }
$$

$$
\text { Area of } \Delta=\frac{1}{2}|\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{BC}}|=\frac{1}{2} \sqrt{210}
$$

15. Writing | + | 1 | 3 | 5 | 7 |
| ---: | ---: | ---: | ---: | ---: |
| 1 | \times | 4 | 6 | 8 |
| 3 | 4 | \times | 8 | 10 |
| 5 | 6 | 8 | \times | 12 |
| 7 | 8 | 10 | 12 | \times |

$$
\begin{array}{rccccc}
\therefore \mathrm{X}: & 4 & 6 & 8 & 10 & 12 \\
\mathrm{P}(\mathrm{X}): & \frac{2}{12} & \frac{2}{12} & \frac{4}{12} & \frac{2}{12} & \frac{2}{12} \\
& = & \frac{1}{6} & \frac{1}{6} & \frac{2}{6} & \frac{1}{6} \\
\mathrm{xP}(\mathrm{X}): & \frac{4}{6} & \frac{6}{6} & \frac{16}{6} & \frac{10}{6} & \frac{12}{6} \\
& & \frac{16}{6} & \frac{36}{6} & \frac{128}{6} & \frac{100}{6} \\
\mathrm{x}^{2} \mathrm{P}(\mathrm{X}): & \frac{144}{6}
\end{array}
$$

$$
\begin{gather*}
\sum \mathrm{xP}(\mathrm{x})=\frac{48}{6}=8 \therefore \text { Mean }=8 \tag{1}\\
\text { Variance }=\Sigma \mathrm{x}^{2} \mathrm{P}(\mathrm{x})-[\Sigma \mathrm{xP}(\mathrm{x})]^{2}=\frac{424}{6}-64=\frac{20}{3}
\end{gather*}
$$

16. Let E_{1} : Selecting a student with 100% attendance
E_{2} : Selecting a student who is not regular
A: selected student attains A grade.

$$
\begin{aligned}
& \mathrm{P}\left(\mathrm{E}_{1}\right)=\frac{30}{100} \text { and } \mathrm{P}\left(\mathrm{E}_{2}\right)=\frac{70}{100} \\
& \begin{aligned}
\mathrm{P}\left(\mathrm{~A} / \mathrm{E}_{1}\right) & =\frac{70}{100} \text { and } \mathrm{P}\left(\mathrm{~A} / \mathrm{E}_{2}\right)=\frac{10}{100} \\
\mathrm{P}\left(\mathrm{E}_{1} / \mathrm{A}\right) & =\frac{\mathrm{P}\left(\mathrm{E}_{1}\right) \cdot \mathrm{P}\left(\mathrm{~A} / \mathrm{E}_{1}\right)}{\mathrm{P}\left(\mathrm{E}_{1}\right) \cdot \mathrm{P}\left(\mathrm{~A} / \mathrm{E}_{1}\right)+\mathrm{P}\left(\mathrm{E}_{2}\right) \mathrm{P}\left(\mathrm{~A} / \mathrm{E}_{2}\right)} \\
& =\frac{\frac{30}{100} \times \frac{70}{100}}{\frac{30}{100} \times \frac{70}{100}+\frac{70}{100} \times \frac{10}{100}} \\
& =\frac{3}{4}
\end{aligned}
\end{aligned}
$$

17. $\tan ^{-1} \frac{x-3}{x-4}+\tan ^{-1} \frac{x+3}{x+4}=\frac{\pi}{4}$

$$
\begin{aligned}
& \Rightarrow \quad \tan ^{-1}\left(\frac{\frac{x-3}{x-4}+\frac{x+3}{x+4}}{1-\frac{x-3}{x-4} \cdot \frac{x+3}{x+4}}\right)=\frac{\pi}{4} \\
& \Rightarrow \quad \frac{2 x^{2}-24}{-7}=1 \Rightarrow x^{2}=\frac{17}{2} \\
& \Rightarrow \quad x= \pm \sqrt{\frac{17}{2}}
\end{aligned}
$$

18. $\Delta=\left|\begin{array}{ccc}a^{2}+2 a & 2 a+1 & 1 \\ 2 a+1 & a+2 & 1 \\ 3 & 3 & 1\end{array}\right|$

$$
\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}-\mathrm{R}_{2} \text { and } \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{3}
$$

$$
\begin{aligned}
\Delta & =\left|\begin{array}{ccc}
a^{2}-1 & a-1 & 0 \\
2(a-1) & a-1 & 0 \\
3 & 3 & 1
\end{array}\right| \\
& =(a-1)^{2}\left|\begin{array}{ccc}
a+1 & 1 & 0 \\
2 & 1 & 0 \\
3 & 3 & 1
\end{array}\right|
\end{aligned}
$$

Expanding
$(a-1)^{2} \cdot(a-1)=(a-1)^{3}$.

OR

Let $\left(\begin{array}{rr}2 & -1 \\ 1 & 0 \\ -3 & 4\end{array}\right)\left(\begin{array}{ll}\mathrm{a} & \mathrm{b} \\ \mathrm{c} & \mathrm{d}\end{array}\right)=\left(\begin{array}{rr}-1 & -8 \\ 1 & -2 \\ 9 & 22\end{array}\right)$
$\Rightarrow\left(\begin{array}{rr}2 \mathrm{a}-\mathrm{c} & 2 \mathrm{~b}-\mathrm{d} \\ \mathrm{a} & \mathrm{b} \\ -3 \mathrm{a}+4 \mathrm{c} & -3 \mathrm{~b}+4 \mathrm{~d}\end{array}\right)=\left(\begin{array}{rr}-1 & -8 \\ 1 & -2 \\ 9 & 22\end{array}\right)$
$\Rightarrow \quad 2 \mathrm{a}-\mathrm{c}=-1, \quad 2 \mathrm{~b}-\mathrm{d}=-8$
$\mathrm{a}=1, \quad \mathrm{~b}=-2$
$-3 \mathrm{a}+4 \mathrm{c}=9, \quad-3 \mathrm{~b}+4 \mathrm{~d}=22$
Solving to get $\mathrm{a}=1, \mathrm{~b}=-2, \mathrm{c}=3, \mathrm{~d}=4$
$\therefore \quad \mathrm{A}=\left(\begin{array}{cc}1 & -2 \\ 3 & 4\end{array}\right)$
19. $x^{y}+y^{x}=a^{b}$

Let $u+v=a^{b}$, where $x^{y}=u$ and $y^{x}=v$.
$\therefore \quad \frac{d u}{d x}+\frac{d v}{d x}=0$

$$
y \log x=\log u \Rightarrow \frac{d u}{d x}=x^{y}\left[\frac{y}{x}+\log x \cdot \frac{d y}{d x}\right]
$$

$$
x \log y=\log v \Rightarrow \frac{d v}{d x}=y^{x}\left[\frac{x}{y} \frac{d y}{d x}+\log y\right]
$$

$$
\text { Putting in (i) } x^{y}\left[\frac{y}{x}+\log x \frac{d y}{d x}\right]+y^{x}\left[\frac{x}{y} \frac{d y}{d x}+\log y\right]=0
$$

$$
\Rightarrow \quad \frac{d y}{d x}=-\frac{y^{x} \log y+y \cdot x^{y-1}}{x^{y} \cdot \log x+x \cdot y^{x-1}}
$$

OR

$$
\begin{aligned}
& \mathrm{e}^{\mathrm{y}} \cdot(\mathrm{x}+1)=1 \Rightarrow \mathrm{e}^{\mathrm{y}} \cdot 1+(\mathrm{x}+1) \cdot \mathrm{e}^{\mathrm{y}} \cdot \frac{\mathrm{dy}}{\mathrm{~d}}=0 \\
\Rightarrow & \frac{d y}{d x}=-\frac{1}{(x+1)} \\
& \frac{d^{2} y}{d x^{2}}=+\frac{1}{(x+1)^{2}}=\left(\frac{d y}{d x}\right)^{2}
\end{aligned}
$$

20. $I=\int \frac{\sin \theta d \theta}{\left(4+\cos ^{2} \theta\right)\left(2-\sin ^{2} \theta\right)}=\int \frac{\sin \theta d \theta}{\left(4+\cos ^{2} \theta\right)\left(1+\cos ^{2} \theta\right)}$

$$
=-\int \frac{\mathrm{dt}}{\left(4+\mathrm{t}^{2}\right)\left(1+\mathrm{t}^{2}\right)}, \text { where } \cos \theta=\mathrm{t}
$$

$$
=\int \frac{1 / 3}{4+\mathrm{t}^{2}} \mathrm{dt}-\int \frac{1 / 3}{1+\mathrm{t}^{2}} \mathrm{dt}
$$

$$
=\frac{1}{6} \tan ^{-1} \frac{\mathrm{t}}{2}-\frac{1}{3} \tan ^{-1} \mathrm{t}+\mathrm{c}
$$

$$
=\frac{1}{6} \tan ^{-1}\left(\frac{\cos \theta}{2}\right)-\frac{1}{3} \tan ^{-1}(\cos \theta)+\mathrm{c}
$$

21.

Maximise: $\mathrm{z}=34 \mathrm{x}+45 \mathrm{y}$ subject to $\mathrm{x}+\mathrm{y} \leq 300$, $2 \mathrm{x}+3 \mathrm{y} \leq 70, \mathrm{x} \geq 0, \mathrm{y} \geq 0$

Plotting the two lines.

Correct shading

$$
\begin{aligned}
& z(A)=z\left(0, \frac{70}{3}\right)=1050 \\
& z(B)=z(35,0)=1190 \\
& \Rightarrow \max (1190) \text { at } x=35, y=0 .
\end{aligned}
$$

22. Points A, B, C and D are coplanar, then the vectors $\overrightarrow{A B}, \overrightarrow{A C}$, and $\overrightarrow{A D}$ must be coplanar.

$$
\begin{array}{ll}
\overrightarrow{\mathrm{AB}}=\hat{\mathrm{i}}+(\mathrm{x}-2) \hat{\mathrm{j}}+4 \hat{\mathrm{k}} ; \overrightarrow{\mathrm{AC}}=\hat{\mathrm{i}}-3 \hat{\mathrm{k}}, \overrightarrow{\mathrm{AD}}=3 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-2 \hat{\mathrm{k}} & 1 \frac{1}{2} \\
\text { i.e., }\left|\begin{array}{ccc}
1 & \mathrm{x}-2 & 4 \\
1 & 0 & -3 \\
3 & 3 & -2
\end{array}\right|=0 \\
\Rightarrow 1(9)-(x-2)(7)+4(3)=0 \Rightarrow x=5 .
\end{array}
$$

23. Given differential equation can be written as

$$
y \frac{d x}{d y}-x=2 y^{2} \text { or } \frac{d x}{d y}-\frac{1}{y} \cdot x=2 y
$$

Integrating factor is $e^{-\log y}=\frac{1}{y}$
\therefore Solution is $x \cdot \frac{1}{y}=\int 2 d y=2 y+c$
or $x=2 y^{2}+c y$.

SECTION D

24. Equation of line through $(3,-4,-5)$ and $(2,-3,1)$ is

$$
\begin{equation*}
\frac{x-3}{-1}=\frac{y+4}{1}=\frac{z+5}{6} \tag{i}
\end{equation*}
$$

Eqn. of plane through the three given points is
$\left|\begin{array}{ccc}x-1 & y-2 & z-3 \\ 3 & 0 & -6 \\ -1 & 2 & 0\end{array}\right|=0 \Rightarrow(x-1)(12)-(y-2)(-6)+(z-3)(6)=0$
or $2 x+y+z-7=0 \quad \ldots$ (ii)
Any point on line (i) is $(-\lambda+3, \lambda-4,6 \lambda-5)$

If this point lies on plane, then $2(-\lambda+3)+(\lambda-4)+(6 \lambda-5)-7=1$
$\Rightarrow \lambda=2$
Required point is $(1,-2,7)$

OR

Equation of plane cutting intercepts (say, a, b, c) on the axes is

$$
\frac{\mathrm{x}}{\mathrm{a}}+\frac{\mathrm{y}}{\mathrm{~b}}+\frac{\mathrm{z}}{\mathrm{c}}=1, \text { with } \mathrm{A}(\mathrm{a}, 0,0), \mathrm{B}(0, \mathrm{~b}, 0) \text { and } \mathrm{C}(0,0, \mathrm{c})
$$

distance of this plane from orgin is $3 p=\frac{|-1|}{\sqrt{\left(\frac{1}{a}\right)^{2}+\left(\frac{1}{b}\right)^{2}+\left(\frac{1}{c}\right)^{2}}}$
$\Rightarrow \quad \frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}+\frac{1}{\mathrm{c}^{2}}=\frac{1}{9 \mathrm{p}^{2}}$
Centroid of $\triangle \mathrm{ABC}$ is $\left(\frac{\mathrm{a}}{3}, \frac{\mathrm{~b}}{3}, \frac{\mathrm{c}}{3}\right)=(\mathrm{x}, \mathrm{y}, \mathrm{z})$
$\Rightarrow \quad \mathrm{a}=3 \mathrm{x}, \mathrm{b}=3 \mathrm{y}, \mathrm{c}=3 \mathrm{z}$, we get from (i)
$\frac{1}{9 x^{2}}+\frac{1}{9 \mathrm{y}^{2}}+\frac{1}{9 \mathrm{z}^{2}}=\frac{1}{9 \mathrm{p}^{2}}$ or $\frac{1}{\mathrm{x}^{2}}+\frac{1}{\mathrm{y}^{2}}+\frac{1}{\mathrm{z}^{2}}=\frac{1}{\mathrm{p}^{2}}$
25. $\frac{d y}{d x}=\frac{x+2 y}{x-y}=\frac{1+\frac{2 y}{x}}{1-\frac{y}{x}}$
$\Rightarrow \quad x \frac{d v}{d x}=-\frac{1+2 v-v+v^{2}}{v-1} \Rightarrow \int \frac{v-1}{v^{2}+v+1} d v=-\frac{d x}{x}$
$\Rightarrow \int \frac{2 v+1-3}{v^{2}+v+1} d v=\int-\frac{2}{x} d x \Rightarrow \int \frac{2 v+1}{v^{2}+v+1} d v-3 \int \frac{1}{\left(v+\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}} d v=-\int \frac{2}{x} d x$
$\Rightarrow \quad \log \left|\mathrm{v}^{2}+\mathrm{v}+1\right|-3 \cdot \frac{2}{\sqrt{3}} \tan ^{-1}\left(\frac{2 \mathrm{v}+1}{\sqrt{3}}\right)=-\log |\mathrm{x}|^{2}+\mathrm{c}$
$\Rightarrow \quad \log \left|y^{2}+x y+x^{2}\right|-2 \sqrt{3} \tan ^{-1}\left(\frac{2 y+x}{\sqrt{3} x}\right)=c$
$x=1, y=0 \Rightarrow c=-2 \sqrt{3} \cdot \frac{\pi}{6}=-\frac{\sqrt{3}}{3} \pi$
$\therefore \quad \log \left|y^{2}+x y+x^{2}\right|-2 \sqrt{3} \tan ^{-1}\left(\frac{2 y+x}{\sqrt{3} x}\right)+\frac{\sqrt{3}}{3} \pi=0$
26.

Figure

OR

Figure

$\therefore \operatorname{Area}(A)=\int_{-2}^{4}\left[\frac{1}{2}(3 x+12)-\frac{3}{4} x^{2}\right] d x$
$=\left[\frac{1}{2} \frac{(3 x+12)^{2}}{6}-\frac{3}{4} \frac{x^{3}}{3}\right]_{-2}^{4}$

$$
=45-18=27 \text { sq.units }
$$

27. Let $\mathrm{x}_{1}, \mathrm{x}_{2} \in \mathrm{R}-\left\{-\frac{4}{3}\right\}$ and $\mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{f}\left(\mathrm{x}_{2}\right)$

$$
\begin{aligned}
& \Rightarrow \quad \frac{4 x_{1}+3}{3 x_{1}+4}=\frac{4 x_{2}+3}{3 x_{2}+4} \Rightarrow\left(4 x_{1}+3\right)\left(3 x_{2}+4\right)=\left(3 x_{1}+4\right)\left(4 x_{2}+3\right) \\
& \Rightarrow \quad 12 x_{1} x_{2}+16 x_{1}+9 x_{2}+12=12_{1} x_{2}+16 x_{2}+9 x_{1}+12 \\
& \Rightarrow \quad 16\left(x_{1}-x_{2}\right)-9\left(x_{1}-x_{2}\right)=0 \Rightarrow x_{1}-x_{2}=0 \Rightarrow x_{1}=x_{2}
\end{aligned}
$$

Hence f is a $1-1$ function
Let $y=\frac{4 x+3}{3 x+4}$, for $y \in R-\left\{\frac{4}{3}\right\}$

$$
\begin{aligned}
& 3 x y+4 y=4 x+3 \Rightarrow 4 x-3 x y=4 y-3 \\
\Rightarrow & x=\frac{4 y-3}{4-3 y} \quad \therefore \forall y \in R-\left\{\frac{4}{3}\right\}, x \in R-\left\{-\frac{4}{3}\right\}
\end{aligned}
$$

Hence f is ONTO and so bijective

$$
\text { and } f^{-1}(y)=\frac{4 y-3}{4-3 y} ; y \in R-\left\{\frac{4}{3}\right\}
$$

$$
\mathrm{f}^{-1}(0)=-\frac{3}{4}
$$

and $\mathrm{f}^{-1}(\mathrm{x})=2 \Rightarrow \frac{4 \mathrm{x}-3}{4-3 \mathrm{x}}=2$
$\Rightarrow \quad 4 \mathrm{x}-3=8-6 \mathrm{x}$
$\Rightarrow 10 \mathrm{x}=11 \Rightarrow \mathrm{x}=\frac{11}{10}$

OR

$(\mathrm{a}, \mathrm{b}) *(\mathrm{c}, \mathrm{d})=(\mathrm{ac}, \mathrm{b}+\mathrm{ad}) ;(\mathrm{a}, \mathrm{b}),(\mathrm{c}, \mathrm{d}) \in \mathrm{A}$
$(\mathrm{c}, \mathrm{d}) *(\mathrm{a}, \mathrm{b})=(\mathrm{ca}, \mathrm{d}+\mathrm{bc})$
Since $\mathrm{b}+\mathrm{ad} \neq \mathrm{d}+\mathrm{bc} \Rightarrow *$ is NOT comutative
for associativity, we have,

$$
[(\mathrm{a}, \mathrm{~b}) *(\mathrm{c}, \mathrm{~d})] *(\mathrm{e}, \mathrm{f})=(\mathrm{ac}, \mathrm{~b}+\mathrm{ad}) *(\mathrm{e}, \mathrm{f})=(\mathrm{ace}, \mathrm{~b}+\mathrm{ad}+\mathrm{acf})
$$

$$
(a, b) *[(c, d) *(e, f)]=(a, b) *(c e, d+c f)=(a c e, b+a d+a c f)
$$

$\Rightarrow *$ is associative
(i) Let (e, f) be the identity element in A

Then $(\mathrm{a}, \mathrm{b}) *(\mathrm{e}, \mathrm{f})=(\mathrm{a}, \mathrm{b})=(\mathrm{e}, \mathrm{f}) *(\mathrm{a}, \mathrm{b})$
$\Rightarrow \quad(\mathrm{ae}, \mathrm{b}+\mathrm{af})=(\mathrm{a}, \mathrm{b})=(\mathrm{ae}, \mathrm{f}+\mathrm{be})$
$\Rightarrow \mathrm{e}=1, \mathrm{f}=0 \Rightarrow(1,0)$ is the identity element
(ii) Let (c, d) be the inverse element for (a, b)
$\Rightarrow \quad(\mathrm{a}, \mathrm{b}) *(\mathrm{c}, \mathrm{d})=(1,0)=(\mathrm{c}, \mathrm{d}) *(\mathrm{a}, \mathrm{b})$
$\Rightarrow \quad(\mathrm{ac}, \mathrm{b}+\mathrm{ad})=(1,0)=(\mathrm{ac}, \mathrm{d}+\mathrm{bc})$
$\Rightarrow \mathrm{ac}=1 \Rightarrow \mathrm{c}=\frac{1}{\mathrm{a}}$ and $\mathrm{b}+\mathrm{ad}=0 \Rightarrow \mathrm{~d}=-\frac{\mathrm{b}}{\mathrm{a}}$ and $\mathrm{d}+\mathrm{bc}=0 \Rightarrow \mathrm{~d}=-\mathrm{bc}=-\mathrm{b}\left(\frac{1}{\mathrm{a}}\right)$
$\Rightarrow\left(\frac{1}{\mathrm{a}},-\frac{\mathrm{b}}{\mathrm{a}}\right), \mathrm{a} \neq 0$ is the inverse of $(\mathrm{a}, \mathrm{b}) \in \mathrm{A}$
28.

Correct Figure

Let the length of sides of $\triangle A B C$ are, $A C=x$ and $B C=y$
$\Rightarrow x^{2}+y^{2}=4 r^{2}$ and Area $A=\frac{1}{2} x y$
$A=\frac{1}{2} x \sqrt{4 r^{2}-x^{2}}$ or $S=\frac{x^{2}}{4}\left(4 r^{2}-x^{2}\right)$
$S=\frac{1}{4}\left[4 r^{2} x^{2}-x^{4}\right]$
$\therefore \frac{\mathrm{dS}}{\mathrm{dx}}=\frac{1}{4}\left[8 \mathrm{r}^{2} \mathrm{x}-4 \mathrm{x}^{3}\right]$

$$
\frac{\mathrm{dS}}{\mathrm{dx}}=0 \Rightarrow 2 \mathrm{r}^{2}=\mathrm{x}^{2} \Rightarrow \mathrm{x}=\sqrt{2} \mathrm{r}
$$

and $y=\sqrt{4 r^{2}-2 r^{2}}=\sqrt{2} r$
and $\frac{\mathrm{d}^{2} \mathrm{~S}}{\mathrm{dx}^{2}}=\frac{1}{4}\left[8 \mathrm{r}^{2}-12 \mathrm{x}^{2}\right]=\frac{1}{4}\left[8 \mathrm{r}^{2}-24 \mathrm{r}^{2}\right]<0$
\therefore For maximum area, $\mathrm{x}=\mathrm{y}$ i.e., Δ is isosceles.
29. $A=\left[\begin{array}{ccc}2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2\end{array}\right] \Rightarrow|\mathrm{A}|=2(0)+3(-2)+5(1)=-1 \neq 0$
$\mathrm{A}_{11}=0, \mathrm{~A}_{12}=2, \mathrm{~A}_{13}=1$
$A_{21}=-1, A 22=-9, A_{23}=-5$
$\mathrm{A}_{31}=2, \mathrm{~A}_{32}=23, \mathrm{~A}_{33}=13$
$\Rightarrow A^{-1}=-1\left(\begin{array}{ccc}0 & 2 & 1 \\ -1 & -9 & -5 \\ 2 & 23 & 13\end{array}\right)^{\mathrm{T}}=-1\left(\begin{array}{ccc}0 & -1 & 2 \\ 2 & -9 & 23 \\ 1 & -5 & 13\end{array}\right)=\left(\begin{array}{ccc}0 & 1 & -2 \\ -2 & 9 & -23 \\ -1 & 5 & -13\end{array}\right)$

Given equations can be written as

$$
\begin{aligned}
& \left(\begin{array}{ccc}
2 & -3 & 5 \\
3 & 2 & -4 \\
1 & 1 & -2
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
11 \\
-5 \\
-3
\end{array}\right) \text { or } \mathrm{AX}=\mathrm{B} \\
& \Rightarrow X=\mathrm{A}^{-1} B
\end{aligned}
$$

$\Rightarrow\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{ccc}0 & 1 & -2 \\ -2 & 9 & -23 \\ -1 & 5 & -13\end{array}\right)\left(\begin{array}{l}11 \\ -5 \\ -3\end{array}\right)=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$
$\Rightarrow \mathrm{x}=1, \mathrm{y}=2, \mathrm{z}=3$.

SECTION A

1. $\mathrm{k}=12$.
2. $|\mathrm{A}|=8$.
3. Writing the equations as $2 x-y+2 z=5\}$
$2 x-y+2 z=8\}$
$\Rightarrow \quad$ Distance $=1$ unit
4. $-\log |\sin 2 \mathrm{x}|+\mathrm{c}$ OR $\log |\sec \mathrm{x}|-\log |\sin \mathrm{x}|+\mathrm{c}$.

SECTION B

5. $\int \frac{\mathrm{dx}}{5-8 \mathrm{x}-\mathrm{x}^{2}}=\int \frac{\mathrm{dx}}{(\sqrt{21})^{2}-(\mathrm{x}+4)^{2}}$

$$
=\frac{1}{2 \sqrt{21}} \log \left|\frac{\sqrt{21}+(x+4)}{\sqrt{21}-(x+4)}\right|+\mathrm{c}
$$

6. Let A works for x day and B for y days.
$\therefore \quad$ L.P.P. is Minimize $C=300 \mathrm{x}+400 \mathrm{y}$
Subject to: $\left\{\begin{array}{l}6 x+10 y \geq 60 \\ 4 x+4 y \geq 32 \\ x \geq 0, y \geq 0\end{array}\right.$
7. Event A: Number obtained is even

B: Number obtained is red.

$$
\mathrm{P}(\mathrm{~A})=\frac{3}{6}=\frac{1}{2}, \mathrm{P}(\mathrm{~B})=\frac{3}{6}=\frac{1}{2}
$$

$\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathrm{P}($ getting an even red number $)=\frac{1}{6}$
Since $\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B})=\frac{1}{2} \cdot \frac{1}{2}=\frac{1}{4} \neq \mathrm{P}(\mathrm{P} \cap \mathrm{B})$ which is $\frac{1}{6}$
$\therefore \quad \mathrm{A}$ and B are not independent events.
8. Equation of line $P Q$ is $\frac{x-2}{3}=\frac{y-2}{-1}=\frac{z-1}{-3}$

Any point on the line is $(3 \lambda+2,-\lambda+2,-3 \lambda+1)$
$3 \lambda+2=4 \Rightarrow \lambda=\frac{2}{3} \quad \therefore$ z coord. $=-3\left(\frac{2}{3}\right)+1=-1$.

OR

$\underset{(2,2,1)}{\mathrm{P}} \underset{(4, \mathrm{y}, \mathrm{z})}{\mathrm{R}} \quad \stackrel{(5,1,-2)}{\mathrm{Q}}$
Let $\mathrm{R}(4, \mathrm{y}, \mathrm{z})$ lying on PQ divides PQ in the ratio $\mathrm{k}: 1$

$$
\begin{aligned}
& \Rightarrow 4=\frac{5 \mathrm{k}+2}{\mathrm{k}+1} \Rightarrow \mathrm{k}=2 . \\
& \therefore \mathrm{z}=\frac{2(-2)+1(1)}{2+1}=\frac{-3}{3}=-1 .
\end{aligned}
$$

9. $f(x)=x^{3}-3 x^{2}+6 x-100$

$$
\begin{aligned}
f^{\prime}(x) & =3 x^{2}-6 x+6 \\
& =3\left[x^{2}-2 x+2\right]=3\left[(x-1)^{2}+1\right]
\end{aligned}
$$

since $\mathrm{f}^{\prime}(\mathrm{x})>0 \forall \mathrm{x} \in \mathbb{R} \quad \therefore \mathrm{f}(\mathrm{x})$ is increasing on \mathbb{R}
10. $f(x)=x^{3}-3 x$

$$
\begin{array}{ll}
\therefore & \mathrm{f}^{\prime}(\mathrm{c})=3 \mathrm{c}^{2}-3=0 \\
\therefore & \mathrm{c}^{2}=1 \Rightarrow \mathrm{c}= \pm 1
\end{array}
$$

Rejecting $\mathrm{c}=1$ as it does not belong to $(-\sqrt{3}, 0)$, we get $\mathrm{c}=-1$.
11. Any skew symmetric matrix of order 3 is $A=\left[\begin{array}{rrr}0 & a & b \\ -a & 0 & c \\ -b & -c & 0\end{array}\right]$ $\Rightarrow \quad|\mathrm{A}|=-\mathrm{a}(\mathrm{bc})+\mathrm{a}(\mathrm{bc})=0$

OR

Since A is a skew-symmetric matrix $\quad \therefore A^{T}=-A$

$$
\begin{aligned}
& \therefore \quad\left|\mathrm{A}^{\mathrm{T}}\right|=|-\mathrm{A}|=(-1)^{3} \cdot|\mathrm{~A}| \\
& \Rightarrow \quad|\mathrm{A}|=-|\mathrm{A}| \\
& \Rightarrow \quad 2|\mathrm{~A}|=0 \text { or }|\mathrm{A}|=0 .
\end{aligned}
$$

12. $\frac{\mathrm{dV}}{\mathrm{dt}}=8 \mathrm{~cm}^{3} / \mathrm{s}$, where V is the volume of sphere i.e., $\mathrm{V}=\frac{4}{3} \pi \mathrm{r}^{3}$

$$
\begin{aligned}
& \Rightarrow \frac{\mathrm{dV}}{\mathrm{dt}}=4 \pi \mathrm{r}^{2} \frac{\mathrm{dr}}{\mathrm{dt}} \Rightarrow \frac{\mathrm{dr}}{\mathrm{dt}}=\frac{1}{4 \pi \mathrm{r}^{2}} \cdot \frac{\mathrm{dV}}{\mathrm{dt}} \\
& \mathrm{~S}=4 \pi \mathrm{r}^{2} \Rightarrow \frac{\mathrm{dS}}{\mathrm{dt}}=8 \pi \mathrm{r} \frac{\mathrm{dr}}{\mathrm{dt}}=8 \pi \mathrm{r} \cdot \frac{1}{4 \pi \mathrm{r}^{2}} \cdot 8
\end{aligned}
$$

$$
=\frac{2 \times 8}{12}=\frac{4}{3} \mathrm{~cm}^{2} / \mathrm{s}
$$

SECTION C

13. Writing

+	1	3	5	7
1	\times	4	6	8
3	4	\times	8	10
5	6	8	\times	12
7	8	10	12	\times

$$
\begin{aligned}
& \begin{array}{lllllll}
\therefore & \mathrm{X}: & 4 & 6 & 8 & 10 & 12
\end{array} \\
& \mathrm{P}(\mathrm{X}): \quad \frac{2}{12} \quad \frac{2}{12} \quad \frac{4}{12} \quad \frac{2}{12} \quad \frac{2}{12} \\
& \begin{array}{lllll}
\frac{1}{6} & \frac{1}{6} & \frac{2}{6} & \frac{1}{6} & \frac{1}{6}
\end{array} \\
& \mathrm{xP}(\mathrm{X}): \quad \frac{4}{6} \quad \frac{6}{6} \quad \frac{16}{6} \quad \frac{10}{6} \quad \frac{12}{6} \\
& \mathrm{x}^{2} \mathrm{P}(\mathrm{X}): \quad \frac{16}{6} \quad \frac{36}{6} \quad \frac{128}{6} \quad \frac{100}{6} \quad \frac{144}{6}
\end{aligned}
$$

$$
\Sigma \mathrm{xP}(\mathrm{x})=\frac{48}{6}=8 \quad \therefore \text { Mean }=8
$$

Variance $=\Sigma x^{2} P(x)-[\Sigma x P(x)]^{2}=\frac{424}{6}-64=\frac{20}{3}$
14. $\overrightarrow{\mathrm{AB}}=-\hat{i}-2 \hat{j}-6 \hat{k}, \overrightarrow{B C}=2 \hat{i}-\hat{j}+\hat{k}, \overrightarrow{C A}=-\hat{i}+3 \hat{j}+5 \hat{k}$

Since $\overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{BC}}, \overrightarrow{\mathrm{CA}}$, are not parallel vectors, and $\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BC}}+\overrightarrow{\mathrm{CA}}=\overrightarrow{0} \quad \therefore \mathrm{~A}, \mathrm{~B}, \mathrm{C}$ form a triangle

$$
\begin{aligned}
& \text { Also } \overrightarrow{\mathrm{BC}} \cdot \overrightarrow{\mathrm{CA}}=0 \quad \therefore \mathrm{~A}, \mathrm{~B}, \mathrm{C} \text { form a right triangle } \\
& \text { Area of } \Delta=\frac{1}{2}|\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{BC}}|=\frac{1}{2} \sqrt{210}
\end{aligned}
$$

15. Let E_{1} : Selecting a student with 100% attendance E_{2} : Selecting a student who is not regular

A: selected student attains A grade.

$$
\begin{aligned}
\mathrm{P}\left(\mathrm{E}_{1}\right)= & \frac{30}{100} \text { and } \mathrm{P}\left(\mathrm{E}_{2}\right)=\frac{70}{100} \\
\mathrm{P}\left(\mathrm{~A} / \mathrm{E}_{1}\right) & =\frac{70}{100} \text { and } \mathrm{P}\left(\mathrm{~A} / \mathrm{E}_{2}\right)=\frac{10}{100} \\
\mathrm{P}\left(\mathrm{E}_{1} / \mathrm{A}\right) & =\frac{\mathrm{P}\left(\mathrm{E}_{1}\right) \cdot \mathrm{P}\left(\mathrm{~A} / \mathrm{E}_{1}\right)}{\mathrm{P}\left(\mathrm{E}_{1}\right) \cdot \mathrm{P}\left(\mathrm{~A} / \mathrm{E}_{1}\right)+\mathrm{P}\left(\mathrm{E}_{2}\right) \mathrm{P}\left(\mathrm{~A} / \mathrm{E}_{2}\right)} \\
& =\frac{\frac{30}{100} \times \frac{70}{100}}{\frac{30}{100} \times \frac{70}{100}+\frac{70}{100} \times \frac{10}{100}} \\
& =\frac{3}{4}
\end{aligned}
$$

Regularity is required everywhere or any relevant value
16. $\tan ^{-1} \frac{x-3}{x-4}+\tan ^{-1} \frac{x+3}{x+4}=\frac{\pi}{4}$

$$
\Rightarrow \tan ^{-1}\left(\frac{\frac{x-3}{x-4}+\frac{x+3}{x+4}}{1-\frac{x-3}{x-4} \cdot \frac{x+3}{x+4}}\right)=\frac{\pi}{4}
$$

$\Rightarrow \quad \frac{2 \mathrm{x}^{2}-24}{-7}=1 \Rightarrow \mathrm{x}^{2}=\frac{17}{2}$
17. $\Delta=\left|\begin{array}{ccc}a^{2}+2 a & 2 a+1 & 1 \\ 2 a+1 & a+2 & 1 \\ 3 & 3 & 1\end{array}\right|$

$$
\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}-\mathrm{R}_{2} \text { and } \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{3}
$$

$$
\begin{aligned}
\Delta & =\left|\begin{array}{ccc}
a^{2}-1 & a-1 & 0 \\
2(a-1) & a-1 & 0 \\
3 & 3 & 1
\end{array}\right| \\
& =(a-1)^{2}\left|\begin{array}{ccc}
a+1 & 1 & 0 \\
2 & 1 & 0 \\
3 & 3 & 1
\end{array}\right|
\end{aligned}
$$

Expanding
$(a-1)^{2} \cdot(a-1)=(a-1)^{3}$.

OR

Let $\left(\begin{array}{rr}2 & -1 \\ 1 & 0 \\ -3 & 4\end{array}\right)\left(\begin{array}{ll}\mathrm{a} & \mathrm{b} \\ \mathrm{c} & \mathrm{d}\end{array}\right)=\left(\begin{array}{rr}-1 & -8 \\ 1 & -2 \\ 9 & 22\end{array}\right)$
$\Rightarrow\left(\begin{array}{rr}2 \mathrm{a}-\mathrm{c} & 2 \mathrm{~b}-\mathrm{d} \\ \mathrm{a} & \mathrm{b} \\ -3 \mathrm{a}+4 \mathrm{c} & -3 \mathrm{~b}+4 \mathrm{~d}\end{array}\right)=\left(\begin{array}{rr}-1 & -8 \\ 1 & -2 \\ 9 & 22\end{array}\right)$
$\Rightarrow \quad 2 \mathrm{a}-\mathrm{c}=-1, \quad 2 \mathrm{~b}-\mathrm{d}=-8$
$\mathrm{a}=1, \quad \mathrm{~b}=-2$
$-3 \mathrm{a}+4 \mathrm{c}=9, \quad-3 \mathrm{~b}+4 \mathrm{~d}=22$
Solving to get $\mathrm{a}=1, \mathrm{~b}=-2, \mathrm{c}=3, \mathrm{~d}=4$
$\therefore \quad A=\left(\begin{array}{cc}1 & -2 \\ 3 & 4\end{array}\right)$
18. $x^{y}+y^{x}=a^{b}$

Let $\mathrm{u}+\mathrm{v}=\mathrm{a}^{\mathrm{b}}$, where $\mathrm{x}^{\mathrm{y}}=\mathrm{u}$ and $\mathrm{y}^{\mathrm{x}}=\mathrm{v}$.

$$
\begin{equation*}
\therefore \quad \frac{\mathrm{du}}{\mathrm{dx}}+\frac{\mathrm{dv}}{\mathrm{dx}}=0 \tag{i}
\end{equation*}
$$

$y \log x=\log u \Rightarrow \frac{d u}{d x}=x^{y}\left[\frac{y}{x}+\log x \cdot \frac{d y}{d x}\right]$

$$
x \log y=\log v \Rightarrow \frac{d v}{d x}=y^{x}\left[\frac{x}{y} \frac{d y}{d x}+\log y\right]
$$

Putting in (i) $x^{y}\left[\frac{y}{x}+\log x \frac{d y}{d x}\right]+y^{x}\left[\frac{x}{y} \frac{d y}{d x}+\log y\right]=0$
$\Rightarrow \quad \frac{d y}{d x}=-\frac{y^{x} \log y+y \cdot x^{y-1}}{x^{y} \cdot \log x+x \cdot y^{x-1}}$

OR

$$
\begin{aligned}
& \mathrm{e}^{\mathrm{y}} \cdot(\mathrm{x}+1)=1 \Rightarrow \mathrm{e}^{\mathrm{y}} \cdot 1+(\mathrm{x}+1) \cdot \mathrm{e}^{\mathrm{y}} \cdot \frac{\mathrm{dy}}{\mathrm{~d}}=0 \\
\Rightarrow & \frac{\mathrm{dy}}{\mathrm{dx}}=-\frac{1}{(x+1)} \\
& \frac{d^{2} y}{d x^{2}}=+\frac{1}{(x+1)^{2}}=\left(\frac{d y}{d x}\right)^{2}
\end{aligned}
$$

19. $I=\int_{0}^{\pi} \frac{x \tan x}{\sec x+\tan x} d x=\int_{0}^{\pi} \frac{(\pi-x) \tan x}{\sec x+\tan x} d x$

$$
\begin{aligned}
\Rightarrow 2 I & =\pi \int_{0}^{\pi} \frac{\tan x}{\sec x+\tan x} d x=\pi \int_{0}^{\pi} \tan x(\sec x-\tan x) d x \\
I & =\frac{\pi}{2} \int_{0}^{\pi}\left(\sec x \tan x-\sec ^{2} x+1\right) d x \\
& =\frac{\pi}{2}[\sec x-\tan x+x]_{0}^{\pi} \\
& =\frac{\pi(\pi-2)}{2}
\end{aligned}
$$

OR

$$
\begin{aligned}
\mathrm{I} & =\int_{1}^{4}\{|\mathrm{x}-1|+|\mathrm{x}-2|+|\mathrm{x}-4|\} \mathrm{dx} \\
& =\int_{1}^{4}(\mathrm{x}-1) \mathrm{dx}-\int_{1}^{2}(\mathrm{x}-2) \mathrm{dx}+\int_{2}^{4}(\mathrm{x}-2) \mathrm{dx}-\int_{1}^{4}(\mathrm{x}-4) \mathrm{dx} \\
& \left.\left.\left.\left.=\frac{(\mathrm{x}-1)^{2}}{2}\right]_{1}^{4}-\frac{(\mathrm{x}-2)^{2}}{2}\right]_{1}^{2}+\frac{(\mathrm{x}-2)^{2}}{2}\right]_{2}^{4}-\frac{(\mathrm{x}-4)^{2}}{2}\right]_{1}^{4} \\
& =\frac{9}{2}+\frac{1}{2}+2+\frac{9}{2}=11 \frac{1}{2} \text { or } \frac{23}{2}
\end{aligned}
$$

20.

Maximise $z=7 x+10 y$, subject to $4 x+6 y \leq 240$;

$$
6 x+3 y \leq 240 ; x \geq 10, x \geq 0, y \geq 0
$$

Correct graph of three lines

For correct shading

$$
\begin{aligned}
& Z(A)=Z\left(10, \frac{200}{6}\right)=70+10 \times \frac{100}{3}=403 \frac{1}{3} \\
& Z(B)=Z(30,20)=210+200=410 \\
& Z(C)=Z(40,0)=280+0=280 \\
& Z(D)=Z(10,0)=70+0=70 \\
& \Rightarrow \operatorname{Max}(=410) \text { at } x=30, y=20
\end{aligned}
$$

21. $I=\int \frac{e^{x} d x}{\left(e^{x}-1\right)^{2}\left(e^{x}+2\right)}=\int \frac{d t}{(t+2)(t-1)^{2}}$ where $e^{x}=t$

$$
=\int \frac{1 / 9}{(t+2)} d t-\int \frac{1 / 9}{(t-1)} d t+\int \frac{1 / 3}{(t-1)^{2}} d t
$$

$$
=\frac{1}{9}[\log |\mathrm{t}+2|-\log |\mathrm{t}-1|]-\frac{1}{3(\mathrm{t}-1)}+\mathrm{c}
$$

$$
=\frac{1}{9} \log \left|\frac{\mathrm{e}^{\mathrm{x}}+2}{\mathrm{e}^{\mathrm{x}}-1}\right|-\frac{1}{3\left(\mathrm{e}^{\mathrm{x}}-1\right)}+\mathrm{c}
$$

22. $\quad \overrightarrow{\mathrm{b}}_{1} \| \overrightarrow{\mathrm{a}} \Rightarrow \operatorname{let} \overrightarrow{\mathrm{b}}_{1}=\lambda(2 \hat{\mathrm{i}}-\hat{\mathrm{j}}-2 \hat{\mathrm{k}})$

$$
\begin{aligned}
& \overrightarrow{\mathrm{b}}_{2}=\overrightarrow{\mathrm{b}}-\overrightarrow{\mathrm{b}}_{1}=(7 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}-3 \hat{\mathrm{k}})-(2 \lambda \mathrm{i}-\lambda \hat{\mathrm{j}}-2 \lambda \hat{\mathrm{k}}) \\
&=(7-2 \lambda) \hat{\mathrm{i}}+(2+\lambda) \hat{\mathrm{j}}-(3-2 \lambda) \hat{\mathrm{k}} \\
& \overrightarrow{\mathrm{~b}}_{2} \perp \overrightarrow{\mathrm{a}} \Rightarrow 2(7-2 \lambda)-1(2+\lambda)+2(3-2 \lambda)=0 \\
& \Rightarrow \lambda=2
\end{aligned}
$$

$\therefore \overrightarrow{\mathrm{b}}_{1}=4 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}-4 \hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{b}}_{2}=3 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}+\hat{\mathrm{k}}$
$\Rightarrow(7 \hat{i}+2 \hat{j}-3 \hat{k})=(4 \hat{i}-2 \hat{j}-4 \hat{k})+(3 \hat{i}+4 \hat{\mathrm{j}}+\hat{\mathrm{k}})$
23. Given differential equation is $\frac{d y}{d x}-y=\sin x$
\Rightarrow Integrating factor $=\mathrm{e}^{-\mathrm{x}}$
$\therefore \quad$ Solution is: $\lambda \mathrm{e}^{-\mathrm{x}}=\int \sin \mathrm{x} \mathrm{e}^{-\mathrm{x}} \mathrm{dx}=\mathrm{I}_{1}$

$$
\begin{aligned}
I_{1} & =-\sin x e^{-x}+\int \cos x e^{-x} d x \\
& =-\sin x e^{-x}+\left[-\cos x e^{-x}-\int+\sin x e^{-x} d x\right] \\
I_{1} & =\frac{1}{2}[-\sin x-\cos x] e^{-x}
\end{aligned}
$$

$\therefore \quad$ Solution is $\lambda \mathrm{e}^{-\mathrm{x}}=\frac{1}{2}(-\sin \mathrm{x}-\cos \mathrm{x}) \mathrm{e}^{-\mathrm{x}}+\mathrm{c}$
or $\quad y=-\frac{1}{2}(\sin x+\cos x)+c e^{x}$

SECTION D

24.

Figure

Equation of $\mathrm{AB}: \mathrm{y}=\frac{5}{2} \mathrm{x}-9$
Equation of $\mathrm{BC}: \mathrm{y}=12-\mathrm{x}$
Equation of $\mathrm{AC}: \mathrm{y}=\frac{3}{4} \mathrm{x}-2$
$\therefore \operatorname{Area}(A)=\int_{4}^{6}\left(\frac{5}{2} x-9\right) d x+\int_{6}^{8}(12-x) d x-\int_{4}^{8}\left(\frac{3}{4} x-2\right) d x$
$=\left[\frac{5}{4} x^{2}-9 x\right]_{4}^{6}+\left[12 x-\frac{x^{2}}{2}\right]_{6}^{8}-\left[\frac{3}{8} x^{2}-2 x\right]_{4}^{8} \quad 1 \frac{1}{2}$
$=7+10-10=7$ sq.units
OR
Figure
1

$$
\begin{gathered}
4 y=3 x^{2} \text { and } 3 x-2 y+12=0 \Rightarrow 4\left(\frac{3 x+12}{2}\right)=3 x^{2} \\
\Rightarrow 3 x^{2}-6 x-24=0 \text { or } x^{2}-2 x-8=0 \Rightarrow(x-4)(x+2)=0
\end{gathered}
$$

$$
\Rightarrow x \text {-coordinates of points of intersection are } x=-2, x=4
$$

$$
\begin{aligned}
\therefore \operatorname{Area}(A) & =\int_{-2}^{4}\left[\frac{1}{2}(3 x+12)-\frac{3}{4} x^{2}\right] \mathrm{dx} \\
& =\left[\frac{1}{2} \frac{(3 x+12)^{2}}{6}-\frac{3}{4} \frac{x^{3}}{3}\right]_{-2}^{4} \\
& =45-18=27 \text { sq.units }
\end{aligned}
$$

25. $\frac{d y}{d x}=\frac{x+2 y}{x-y}=\frac{1+\frac{2 y}{x}}{1-\frac{y}{x}}$
$\Rightarrow \quad x \frac{d v}{d x}=-\frac{1+2 v-v+v^{2}}{v-1} \Rightarrow \int \frac{v-1}{v^{2}+v+1} d v=-\frac{d x}{x}$
$\Rightarrow \int \frac{2 v+1-3}{v^{2}+v+1} d v=\int-\frac{2}{x} d x \Rightarrow \int \frac{2 v+1}{v^{2}+v+1} d v-3 \int \frac{1}{\left(v+\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}} d v=-\int \frac{2}{x} d x$
$\Rightarrow \quad \log \left|\mathrm{v}^{2}+\mathrm{v}+1\right|-3 \cdot \frac{2}{\sqrt{3}} \tan ^{-1}\left(\frac{2 \mathrm{v}+1}{\sqrt{3}}\right)=-\log |\mathrm{x}|^{2}+\mathrm{c}$
$\Rightarrow \quad \log \left|y^{2}+x y+x^{2}\right|-2 \sqrt{3} \tan ^{-1}\left(\frac{2 y+x}{\sqrt{3} x}\right)=c$

$$
x=1, y=0 \Rightarrow c=-2 \sqrt{3} \cdot \frac{\pi}{6}=-\frac{\sqrt{3}}{3} \pi
$$

$$
\therefore \quad \log \left|y^{2}+x y+x^{2}\right|-2 \sqrt{3} \tan ^{-1}\left(\frac{2 y+x}{\sqrt{3} x}\right)+\frac{\sqrt{3}}{3} \pi=0
$$

26. Equation of line through $(3,-4,-5)$ and $(2,-3,1)$ is

$$
\begin{equation*}
\frac{x-3}{-1}=\frac{y+4}{1}=\frac{z+5}{6} \tag{i}
\end{equation*}
$$

Eqn. of plane through the three given points is

$$
\begin{align*}
& \left|\begin{array}{ccc}
\mathrm{x}-1 & \mathrm{y}-2 & \mathrm{z}-3 \\
3 & 0 & -6 \\
-1 & 2 & 0
\end{array}\right|=0 \Rightarrow(\mathrm{x}-1)(12)-(\mathrm{y}-2)(-6)+(\mathrm{z}-3)(6)=0 \\
& \text { or } \quad 2 \mathrm{x}+\mathrm{y}+\mathrm{z}-7=0 \quad \ldots \text { (ii) } \tag{ii}
\end{align*}
$$

Any point on line (i) is $(-\lambda+3, \lambda-4,6 \lambda-5)$
If this point lies on plane, then $2(-\lambda+3)+(\lambda-4)+(6 \lambda-5)-7=1$
$\Rightarrow \lambda=2$
Required point is $(1,-2,7)$

OR

Equation of plane cutting intercepts (say, a, b, c) on the axes is
$\frac{\mathrm{x}}{\mathrm{a}}+\frac{\mathrm{y}}{\mathrm{b}}+\frac{\mathrm{z}}{\mathrm{c}}=1$, with $\mathrm{A}(\mathrm{a}, 0,0), \mathrm{B}(0, \mathrm{~b}, 0)$ and $\mathrm{C}(0,0, \mathrm{c})$
distance of this plane from orgin is $3 p=\frac{|-1|}{\sqrt{\left(\frac{1}{a}\right)^{2}+\left(\frac{1}{b}\right)^{2}+\left(\frac{1}{c}\right)^{2}}}$
$\Rightarrow \frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}+\frac{1}{\mathrm{c}^{2}}=\frac{1}{9 \mathrm{p}^{2}}$
Centroid of $\triangle \mathrm{ABC}$ is $\left(\frac{\mathrm{a}}{3}, \frac{\mathrm{~b}}{3}, \frac{\mathrm{c}}{3}\right)=(\mathrm{x}, \mathrm{y}, \mathrm{z})$
$\Rightarrow \quad \mathrm{a}=3 \mathrm{x}, \mathrm{b}=3 \mathrm{y}, \mathrm{c}=3 \mathrm{z}$, we get from (i)
$\frac{1}{9 x^{2}}+\frac{1}{9 y^{2}}+\frac{1}{9 z^{2}}=\frac{1}{9 \mathrm{p}^{2}}$ or $\frac{1}{\mathrm{x}^{2}}+\frac{1}{\mathrm{y}^{2}}+\frac{1}{\mathrm{z}^{2}}=\frac{1}{\mathrm{p}^{2}}$
27. Let $\mathrm{x}_{1}, \mathrm{x}_{2} \in \mathrm{R}-\left\{-\frac{4}{3}\right\}$ and $\mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{f}\left(\mathrm{x}_{2}\right)$

$$
\begin{aligned}
& \Rightarrow \quad \frac{4 x_{1}+3}{3 x_{1}+4}=\frac{4 x_{2}+3}{3 x_{2}+4} \Rightarrow\left(4 x_{1}+3\right)\left(3 x_{2}+4\right)=\left(3 x_{1}+4\right)\left(4 x_{2}+3\right) \\
& \Rightarrow \quad 12 x_{1} x_{2}+16 x_{1}+9 x_{2}+12=12{ }_{1} x_{2}+16 x_{2}+9 x_{1}+12 \\
& \Rightarrow \quad 16\left(x_{1}-x_{2}\right)-9\left(x_{1}-x_{2}\right)=0 \Rightarrow x_{1}-x_{2}=0 \Rightarrow x_{1}=x_{2}
\end{aligned}
$$

Hence f is a $1-1$ function
Let $y=\frac{4 x+3}{3 x+4}$, for $y \in R-\left\{\frac{4}{3}\right\}$

$$
\begin{gathered}
3 x y+4 y=4 x+3 \Rightarrow 4 x-3 x y=4 y-3 \\
\Rightarrow \quad x=\frac{4 y-3}{4-3 y} \quad \therefore \quad \forall y \in R-\left\{\frac{4}{3}\right\}, x \in R-\left\{-\frac{4}{3}\right\}
\end{gathered}
$$

Hence f is ONTO and so bijective
and $\mathrm{f}^{-1}(\mathrm{y})=\frac{4 \mathrm{y}-3}{4-3 \mathrm{y}} ; \mathrm{y} \in \mathrm{R}-\left\{\frac{4}{3}\right\}$

$$
\mathrm{f}^{-1}(0)=-\frac{3}{4}
$$

and $f^{-1}(x)=2 \Rightarrow \frac{4 x-3}{4-3 x}=2$
$\Rightarrow \quad 4 \mathrm{x}-3=8-6 \mathrm{x}$
$\Rightarrow \quad 10 \mathrm{x}=11 \Rightarrow \mathrm{x}=\frac{11}{10}$

OR

$(\mathrm{a}, \mathrm{b}) *(\mathrm{c}, \mathrm{d})=(\mathrm{ac}, \mathrm{b}+\mathrm{ad}) ;(\mathrm{a}, \mathrm{b}),(\mathrm{c}, \mathrm{d}) \in \mathrm{A}$
$(\mathrm{c}, \mathrm{d}) *(\mathrm{a}, \mathrm{b})=(\mathrm{ca}, \mathrm{d}+\mathrm{bc})$
Since $b+a d \neq d+b c \Rightarrow *$ is NOT comutative
for associativity, we have,

$$
[(\mathrm{a}, \mathrm{~b}) *(\mathrm{c}, \mathrm{~d})] *(\mathrm{e}, \mathrm{f})=(\mathrm{ac}, \mathrm{~b}+\mathrm{ad}) *(\mathrm{e}, \mathrm{f})=(\mathrm{ace}, \mathrm{~b}+\mathrm{ad}+\mathrm{acf})
$$

$$
(\mathrm{a}, \mathrm{~b}) *[(\mathrm{c}, \mathrm{~d}) *(\mathrm{e}, \mathrm{f})]=(\mathrm{a}, \mathrm{~b}) *(\mathrm{ce}, \mathrm{~d}+\mathrm{cf})=(\mathrm{ace}, \mathrm{~b}+\mathrm{ad}+\mathrm{acf})
$$

\Rightarrow * is associative
(i) Let (e, f) be the identity element in A

Then $(\mathrm{a}, \mathrm{b}) *(\mathrm{e}, \mathrm{f})=(\mathrm{a}, \mathrm{b})=(\mathrm{e}, \mathrm{f}) *(\mathrm{a}, \mathrm{b})$
$\Rightarrow \quad(\mathrm{ae}, \mathrm{b}+\mathrm{af})=(\mathrm{a}, \mathrm{b})=(\mathrm{ae}, \mathrm{f}+\mathrm{be})$
$\Rightarrow \mathrm{e}=1, \mathrm{f}=0 \Rightarrow(1,0)$ is the identity element
(ii) Let (c, d) be the inverse element for (a, b)
$\Rightarrow \quad(\mathrm{a}, \mathrm{b}) *(\mathrm{c}, \mathrm{d})=(1,0)=(\mathrm{c}, \mathrm{d}) *(\mathrm{a}, \mathrm{b})$
$\Rightarrow \quad(\mathrm{ac}, \mathrm{b}+\mathrm{ad})=(1,0)=(\mathrm{ac}, \mathrm{d}+\mathrm{bc})$
$\Rightarrow \mathrm{ac}=1 \Rightarrow \mathrm{c}=\frac{1}{\mathrm{a}}$ and $\mathrm{b}+\mathrm{ad}=0 \Rightarrow \mathrm{~d}=-\frac{\mathrm{b}}{\mathrm{a}}$ and $\mathrm{d}+\mathrm{bc}=0 \Rightarrow \mathrm{~d}=-\mathrm{bc}=-\mathrm{b}\left(\frac{1}{\mathrm{a}}\right)$
$\Rightarrow\left(\frac{1}{a},-\frac{b}{a}\right), a \neq 0$ is the inverse of $(a, b) \in A$
28. $\mathrm{A}=\left[\begin{array}{ccc}2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2\end{array}\right] \Rightarrow|\mathrm{A}|=2(0)+3(-2)+5(1)=-1 \neq 0$

$$
\begin{aligned}
& \mathrm{A}_{11}=0, \mathrm{~A}_{12}=2, \mathrm{~A}_{13}=1 \\
& \mathrm{~A}_{21}=-1, \mathrm{~A} 22=-9, \mathrm{~A}_{23}=-5 \\
& \mathrm{~A}_{31}=2, \mathrm{~A}_{32}=23, \mathrm{~A}_{33}=13 \\
& \Rightarrow \mathrm{~A}^{-1}=-1\left(\begin{array}{ccc}
0 & 2 & 1 \\
-1 & -9 & -5 \\
2 & 23 & 13
\end{array}\right)^{\mathrm{T}}=-1\left(\begin{array}{ccc}
0 & -1 & 2 \\
2 & -9 & 23 \\
1 & -5 & 13
\end{array}\right)=\left(\begin{array}{ccc}
0 & 1 & -2 \\
-2 & 9 & -23 \\
-1 & 5 & -13
\end{array}\right)
\end{aligned}
$$

Given equations can be written as

$$
\begin{aligned}
& \left(\begin{array}{ccc}
2 & -3 & 5 \\
3 & 2 & -4 \\
1 & 1 & -2
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
11 \\
-5 \\
-3
\end{array}\right) \text { or } \mathrm{AX}=\mathrm{B} \\
& \Rightarrow X=\mathrm{A}^{-1} B
\end{aligned}
$$

$\Rightarrow\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{ccc}0 & 1 & -2 \\ -2 & 9 & -23 \\ -1 & 5 & -13\end{array}\right)\left(\begin{array}{l}11 \\ -5 \\ -3\end{array}\right)=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$
$\Rightarrow \mathrm{x}=1, \mathrm{y}=2, \mathrm{z}=3$.
29.

Figure

Let dimensions of the rectangle be x and y (as shown)
$\therefore \quad$ Perimeter of window $\mathrm{p}=2 \mathrm{y}+\mathrm{x}+\pi \frac{\mathrm{x}}{2}=10 \mathrm{~m}$

Area of window $\mathrm{A}=\mathrm{xy}+\frac{1}{2} \pi \frac{\mathrm{x}^{2}}{4}$

$$
\begin{aligned}
A & =x\left[5-\frac{x}{2}-\pi \frac{x}{4}\right]+\frac{1}{2} \pi \frac{x^{2}}{4} \\
& =5 x-\frac{x^{2}}{2}-\pi \frac{x^{2}}{8}
\end{aligned}
$$

$$
\frac{\mathrm{dA}}{\mathrm{dx}}=5-\mathrm{x}-\pi \frac{\mathrm{x}}{4}=0 \Rightarrow \mathrm{x}=\frac{20}{4+\pi}
$$

$$
\frac{\mathrm{d}^{2} \mathrm{~A}}{\mathrm{dx}^{2}}=\left(-1-\frac{\pi}{4}\right)<0
$$

$$
\Rightarrow \quad x=\frac{20}{4+\pi}, y=\frac{10}{4+\pi} \text { will give maximum light. }
$$

