Senior School Certificate Examination 2017 Marking Scheme ----- Chemistry

General Instructions

- 1. The Marking Scheme provides general guidelines to reduce subjectivity in the marking. The answers given in the Marking Scheme are Suggested answers. The content is thus indicative. If a student has given any other answer which is different from the one given in the Marking Scheme, but conveys the same meaning, such answers should be given full weight-age.
- 2. The Marking Scheme carries only suggested value point for the answers. These are only guidelines and do not constitute the complete answers. The students can have their own expression and if the expression is correct the marks will be awarded accordingly.
- 3. The Head-Examiners have to go through the first five answer-scripts evaluated by each evaluator to ensure that the evaluation has been carried out as per the instruction given in the marking scheme. The remaining answer scripts meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators.
- 4. Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration Marking Scheme should be strictly adhered to and religiously followed.
- 5. If a question has parts, please award marks in the right hand side for each part. Marks awarded for different parts of the question should then be totaled up and written in the left hand margin and circled.
- 6. If a question does not have any parts, marks be awarded in the left-hand margin.
- 7. If a candidate has attempted an extra question, marks obtained in the question attempted first should be retained and the other answer should be scored out.
- 8. No Marks to be deducted for the cumulative effect of an error. It should be penalized only once.
- 9. A full scale of marks 0-70 has to be used. Please do not hesitate to award full marks if the answer deserves it.
- 10. Separate marking schemes for all the three sets have been provided.
- 11. As per orders of the Hon'ble Supreme Court. The candidate would now be permitted to obtain photocopy of the Answer Book on request on payment of the prescribed fee. All examiner/Head Examiners are once again reminded that they must ensure that evaluation is carried out strictly as per value points for each answer as given in the Marking Scheme.
- 12. The Examiners should acquaint themselves with the guidelines given in the Guidelines for sport Evaluation before starting the actual evaluation.
- 13. Every Examiner should stay upto sufficiently reasonable time normally 5-6 hours every day and evaluate 20-25 answer books and should minimum 15-20 minutes to evaluate each answer book.
- 14. Every Examiner should acquaint himself/herself with the marking schemes of all the sets.

Marking scheme – 2017 (Compartment)

CHEMISTRY (043)/ CLASS XII

Set 56/1/1

Q.No	Value Points	Marks
1	hcp	1
2	$AICI_3/AI^{3+}$	1
3	Orbital splitting energies are not sufficiently large for forcing pairing	1
4	2,3-dinitro phenol	1
5	Having no α- hydrogen	1
6	Vapour pressure of the solvent decreases in the presence of non – voilatile solute	2
	(glucose) hence boiling point increases	
7	(i) First order	1
	(ii) s ⁻¹ / time ⁻¹	1
8	Hypophosphorous acid is a good reducing agent as it contains two P-H bonds. There	1
	is no P-H bond in orthophosphoric acid , so it is not a reducing agent	
	Example: It reduces AgNO₃ to metallic silver/ chemical equation	1
	OR	
8	a) 4	1
	b) Due to lower bond dissociation enthalpy of BiH ₃ as compared to SbH ₃	1
9	i. Due to resonance the two O-O bond lengths are identical.	1
	ii. Due to strong bond formed by it with other elements.	1
10.	i) (b) is chiral	1
	ii) (a) will undergo S _N 2 reaction faster	1
11	In bcc, z=2;	
	$d = (zxM)/a^3x N_A (i)$	
	No. of atoms = $\frac{w}{M} \times N_A$	1/2
	$\frac{1}{M}$ $\frac{1}$	1
	$2.5 \times 10^{24} = \frac{500 \text{g}}{M} \times N_A$	1
	$M = [500 \times N_A] / 2.5 \times 10^{24} $ (ii)	
	Putting values of M in equation (i) d= $2 \times 500 \text{ g} \times \text{N}_A / [2.5 \times 10^{24} \text{ atoms} \times (400 \times 10^{-10} \text{ cm})^3 \times \text{N}_A]$	1/2
	$d = 2.5 \text{ g/cm}^3$	1
	(or any other correct method)	-
12	$p_{\text{total}} = p_1^{\ o} + (p_2^{\ o} - p_1^{\ o})^{\ \chi_2}$	1
	$600 = 450 + (700 - 450)^{-X_2}$	1
	$x_2 = 0.6$	
		1/2
	$\frac{x_2}{2} = 1 - 0.6 = 0.4$	1/2
13	$P_A = 2Po - Pt$	1/2
	$=(2\times0.4)-0.7=0.1$	1/2
	$k = \frac{2.303}{t} \log Po/P_A$	
	$k = \frac{\frac{t}{2.303}}{100} \log 0.4/0.1$	
	$\frac{100}{100}$ $\frac{1080.4}{2.303}$	1
	$k = \frac{2.303}{100} \times 0.6021$	
	$= 1.39 \times 10^{-2} \text{ s}^{-1}$	1
14	i) The process of removing an adsorbed substance from a surface on which it is	1

	adcarbad	
	adsorbed. ii) The formation of micelles takes place only above a particular concentration	1
	called CMC.	1
	iii) The catalytic reaction that depends upon the pore structure of the catalyst and	1
	size of the reactant and product molecules.	1
15	a) The metal is converted into its volatile compound and collected	1
	elsewhere. It is then decomposed to get the pure metal.	*
	b) i)Ni ii) Ti/Zr	1/2 + 1/2
	c) It is used to separate two sulphide ores by preventing one to form froth.	1
16	a) $H_2O < H_2S < H_2Te$, because of decrease in bond dissociation	1,1
	enthalpy.	_,_
	0	
	F	
	Xe	
	F	
	b)	1
-		
<u> </u>	OR	1
	a) i)Due to higher oxidation state of P in PCl ₅	1
	ii) Liberation of hydrogen prevents the formation of FeCl₃	1
	Хе	
		1
	b) 0	1
17	Hybridisation: sp ³ d ²	1
	Magnetic character : Paramagnetic	1
	Spin nature: High spin	1
18.	a) A: CH ₃ - CH=CH ₂	½ × 4
	B: CH ₃ - CH ₂ -CH ₂ Br	
	C: CH ₃ - CH ₂ -CH ₂ I	
	D: CH ₃ - CH ₂ -CH ₂ MgI	
	N,X - X	
	Cu_2X_2 + N_2	
	Aryl halide	1
	V = CL P ₂ CN	
4.0	b)	
19.	a) CH ₃ -O-CH ₃ + HI → CH ₃ -OH + CH ₃ -I	1
	b) .	
	- /, ·	

	Protonation of alkene to form carbocation by electrophilic	
	attack of H ₃ O ⁺ .	
	$H_2O + H^+ \rightarrow H_3O^+$	
	$>C = C < + H - \ddot{O}_{+} + H \Longrightarrow - \ddot{C}_{-} - \ddot{C}_{-} + H^{5}\ddot{O}_{-}$	1/2
	Nucleophilic attack of water on carbocation.	
	H H	
	$-\overset{H}{_{{}{}{}}}-\overset{H}{_{{}{}{}}}-\overset{H}{_{{}{}{}}}-\overset{H}{_{{}{}{}}}-\overset{H}{}$	
	Deprotonation to form an alcohol.	1/2
	H H OH	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
		1
20.	i) A: CH ₃ - CH ₂ CN; B: CH ₃ - CH ₂ - CH ₂ NH ₂ ; C: CH ₃ - CH ₂ - CH ₂ -NH-COCH ₃ NO ₂ NH ₂	½ ×3
	NO ₂ NH ₂	
	ii) A: $Ar - \frac{1}{N_2}BF_4$; B: C:	½ ×3
24		4
21	a) Glycosidic linkage b) Source : Meat, Fish, egg, curd (any one) ; Pernicious anaemia	1 ½,½
	c) DNA is double strand while RNA is single strand molecule (or any other	1
	correct difference)	
22	i) Treatment of hyperacidity Class : Antacids	½ ½
	ii) Relieve pain and produce sleep	/2 1/ ₂
	Class: Narcotic analgesics	1/2
	iii) Relieve pain and reduce fever Class: Non- Narcotic analgesics / Analgesics	1/2
•	<u> </u>	1/2
23	a) Poly β -hydroxybutyrate – co - β -hydroxy valerate / (PHBV) OH	1/2
	Monomers: CH ₃ -CH-CH ₂ -COOH CH ₃ -CH-CH ₂ -COOH Repeating unit:	1/2 , 1/2
		1/2
	$(O-CH-CH_2-C -O-CH-CH_2-C)$ CH_3 CH_2CH_3 CH_2CH_3	/2
	b) PHBV is used in speciality packaging, orthopaedic devices and in controlled	1/2 , 1/2
	release of drugs.(any two)	1/2 , 1/2 1/2 , 1/2
	c) Concern for environment , caring (or any other)	
24	a) E ⁰ value of silver is lower than that of gold, hence silver displaces gold	1
	which gets deposited on the silver object.	
	E ⁰ value of copper is lower than that of silver, hence silver cannot displace copper from its solution.	1
	b) i) Electrons flow from Zn to Ag plate.	1/2
	ii) Zn as anode and Ag acts as cathode	1/2
	iii) Cell will stop functioning	1/2
	iv) Concentration of Zn ²⁺ ions will increase and that of Ag ⁺ ions will decrease.	1/2, 1/2
	v) No change	1/2
<u> </u>	OR	

24	a) When concentration approaches zero, the molar conductivity is known as limiting	
	molar conductivity	1
	The change in Am with dilution is due to the increase in the degree of dissociation and	1
	consequently the number of ions in the total volume of the solution that contains 1 mol of	
	electrolyte, hence Λm increases steeply.	
	b) $E_{cell} = E_{cell}^{o} - \frac{0.059}{n} \log \frac{[Mg^2 +]}{[Cu^2 +]}$	1
	$=2.71 \text{ V} - \frac{0.059}{2} \log \frac{0.1}{0.001}$	
	0.001	1
	$=2.71 \text{ V} - \frac{0.059}{2} \log 10^2$	
	= 2.651 V	1
25	a) A: Na ₂ CrO ₄ ; B: Na ₂ Cr ₂ O ₇ ; C: K ₂ Cr ₂ O ₇	1/2,1/2,1
	$4 \operatorname{FeCr_2O_4} + 8 \operatorname{Na_2CO_3} + 7 \operatorname{O_2} \rightarrow 8 \operatorname{Na_2CrO_4} + 2 \operatorname{Fe_2O_3} + 8 \operatorname{CO_2}$	1
	$2Na_2CrO_4 + 2 H^+ \rightarrow Na_2Cr_2O_7 + 2 Na^+ + H_2O$	
		1
	$Na_2Cr_2O_7 + 2 KCl \rightarrow K_2Cr_2O_7 + 2 NaCl$	1
	OP.	
25	OR The state of th	1/ 1/
25	a) i)Copper; Due to high $\Delta_{a}H^{\Theta}$ and low $\Delta_{hyd}H^{\Theta}$	½,½ 1/ 1/
	ii) Cerium; Due to stable 4f ⁰ configuration / Tb; Due to stable 4f ⁷ configuration	½,½ 1
	b) i) Due to ability of oxygen to form multiple bonds to metal	1
	ii) HCl is oxidized to chlorine iii) Due to strong interatomic metallic bonding.	1
	iii) Due to strong interatornic metallic boriding.	
26	a) i).	
	Q Q	1
	$+$ $CH_3 - C - Cl$ $\xrightarrow{Anhyd. AlCl_3}$ CH_3	
	ii).	
	CH	
	$CH_3 CO CH_3 + CH_3 MgX \longrightarrow CH_3 -C - OMgX \xrightarrow{H_2O} CH_3 -C - OH$	
	CH₃ CH₃	1
	b) i) Because it is a deactivating group / Due to electron withdrawing carboxylic	
	group resulting in decreased electron density at o- and p- position.	
	ii) Due to extensive association of carboxylic acid molecules through intermolecular	1
	hydrogen bonding.	1
	iii) Due to steric and + I effect of two methyl groups in propanone	1
	OR	1
26	a) i) .	
	N-NH-CO-NH₂	1
	ii) CH₃COOH	1
	iii) CH ₃ -CH(Br)-COOH	1
	b) i) Add ammonical solution of silver nitrate / Tollen's reagent to both the	-
	compounds, propanal will give silver mirror while propanone does not.	1
	ii) Add NaHCO ₃ solution to both the compounds, benzoic acid will give	1
	effervescence and liberate CO ₂ while benzaldehyde will not. (Or any other suitable	
	test)	
	•	•

1	Dr. (Mrs.) Sangeeta Bhatia	6	Sh. Rakesh Dhawan	
2	Dr. K.N. Uppadhya	7	Dr. (Mrs.) Sunita Ramrakhiani	
3	Prof. R.D. Shukla	8	Mrs. Preeti Kiran	
4	Sh. S.K. Munjal	9	Dr. Azhar Aslam Khan	
5	Sh. D.A. Mishra	10	Ms. Garima Bhutani	

Marking scheme – 2017 (Compartment)

CHEMISTRY (043)/ CLASS XII

Set 56/1/2

Q.No	Value Points	Marks
1	Orbital splitting energies are not sufficiently large for forcing pairing	1
2	2,3-dinitro phenol	1
3	Having α- hydrogen	1
4	(NH ₄) ₃ PO ₄ / PO ₄ ³⁻	1
5	ccp / fcc	1
6	Hypophosphorous acid is a good reducing agent as it contains two P-H bonds. There	1
	is no P-H bond in orthophosphoric acid , so it is not a reducing agent	
	Example: It reduces AgNO ₃ to metallic silver/ chemical equation	1
	OR	
6	a) 4	1
	b) Due to lower bond dissociation enthalpy of BiH ₃ as compared to SbH ₃	1
7	i) (b) is chiral	1
	ii) (a)	1
8	(i) Zero order	1
	(ii) Mol L ⁻¹ s ⁻¹	1
9	Vapour pressure of the solvent decreases in the presence of non – voilatile solute	2
	(glucose) hence boiling point increases	
10.	i. Due to resonance the two S-O bond lengths are identical.	1
	ii. Absence of d- orbitals and most electronegative element.	1
11	a) Peptide linakge	1
	b) Water soluble – Vit. B/C , Fat soluble- Vit. A/D/E/K/B ₁₂	1/2 , 1/2
	c).	,
	CH ₂ OH H 5 OH H OH H OH H OH H OH H OH H	1
	H OH OI H OH	
12	a) Temperature above which micelle formation takes place.	1
	b) Process of converting freshly prepared precipitate into sol by shaking it	
	with dispersion medium along with a small amount of suitable electrolyte.	1
	c) The potential difference between fixed layer and the diffused layer	1
13	i) Treatment of hyperacidity	1/2
	Class : Antacids	1/2
	ii) Relieve pain and produce sleep	1/2
	Class: Narcotic analgesics	1/2
	iii) Relieve pain and reduce fever	1/2
	Class: Non- Narcotic analgesics / Analgesics	1/2
14	a) Glycosidic linkage	1
	b) Source : Meat, Fish, egg, curd (any one) ; Pernicious anaemia	1/2 , 1/2
	c) DNA is double strand while RNA is single strand molecule (or any other	1
	correct difference)	
15	a) CH ₃ -O-CH ₃ + HI → CH ₃ -OH + CH ₃ -I	1

	b)	
	b).	
	Protonation of alkene to form carbocation by electrophilic attack of H ₃ O ⁺ .	
	$H_2O + H^+ \rightarrow H_3O^+$	
	H H	1/2
	$>C = C < + H - \ddot{O} + H \Longrightarrow - \ddot{C} - \ddot{C} < + H^2 \ddot{O}$	/2
	Nucleophilic attack of water on carbocation.	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	-C C + H₂O ← -C - C - O - H	1/2
	Deprotonation to form an alcohol.	
	Н Н ОН	
	$-\overset{-}{{{{}{{}{}{$	
	1 1 2 3	1
16	In fcc, z=4;	
10	111 100, 2—7 ,	
	$d = (zxM) / a^3 x N_A (i)$	1/2
	No. of atoms = $\frac{w}{M} \times N_A$	/2
	$2.5 \times 10^{24} = \frac{250 \frac{M}{g}}{M} \times N_A$	1
	$M = [250 \times N_A] / 2.5 \times 10^{24} $ (ii)	_
	Putting values of M in equation (i)	
	$d= 4 \times 250 \text{ g} \times N_A / [2.5 \times 10^{24} \text{ atoms} \times (400 \times 10^{-10} \text{ cm})^3 \times N_A]$	1/2
	d= 6.25 g/ cm ³	1
	(or any other correct method)	
17	a) The metal is converted into its volatile compound and collected	1
	elsewhere. It is then decomposed to get the pure metal.	
	b) i)Ni ii) Ti/Zr	1/2 + 1/2
	c) It is used to separate two sulphide ores by preventing one to form froth.	1
18.	$p_{\text{total}} = p_1^{\circ} + (p_2^{\circ} - p_1^{\circ})^{\times 2}$	1
	600= 450 + (700-450) X ₂	1
	×2 = 0.6	1/2
	$X_2 = 1 - 0.6 = 0.4$	1/2
10		
19.	a) $H_2O < H_2S < H_2Te$, because of decrease in bond dissociation enthalpy.	1,1
	entrialpy.	
	F	
	Xe	
	F	
	b)	1
	OD.	
	OR	1
	a) i)Due to higher oxidation state of P in PCI ₅ ii) Liberation of hydrogen provents the formation of EaCl	1
	ii) Liberation of hydrogen prevents the formation of FeCl ₃	1
1		
	Хе	
	o Xe	1
	b) xe	1

20.	Hybridisation: sp ³ d ²	1
20.	Magnetic character : Paramagnetic	1
	Spin nature: High spin	1
21	a) A: CH ₃ - CH=CH ₂	-
21	B: CH ₃ - CH ₂ -CH ₂ Br	½ × 4
	C: CH ₃ - CH ₂ -CH ₂ I	
	D: CH ₃ - CH ₂ -CH ₂ MgI	
	5. 6113 6112 6112/vigi	
	N ₂ X Cu ₂ X ₃	
	+ N ₂	
	Aryl halide	1
	b) $X = Cl, Bl, CN$	
22	P _A = 2Po – Pt	1/2
	$= (2 \times 0.3) - 0.5 = 0.1$	1/2
	$k = \frac{2.303}{a} \log PO/P_A$	
	1	
	$k = \frac{2.303}{100} \log 0.3/0.1$	1
	$k = \frac{2.303}{100} \times 0.4771$	
	$= 1.1 \times 10^{-2} \text{s}^{-1}$	1
	-1.1 \ 10 \ 3	
23	a) Poly β-hydroxybutyrate – co-β-hydroxy valerate / (PHBV)	1/2
23	OH OH	/2
		1/2 , 1/2
	Monomers: CH ₃ -CH-CH ₂ -COOH CH ₃ -CH ₂ -CH-CH ₂ -COOH	/2 , /2
	Repeating unit:	
		1/2
	CH_CH ₂ -C -O-CH-CH ₂ -C CH ₃ CH ₂ CH ₃	/2
	, CH O CH CH O	
	b) PHBV is used in speciality packaging, orthopaedic devices and in controlled	1/2 , 1/2
	release of drugs.(any two)	-
	c) Concern for environment , caring (or any other)	1/2 , 1/2
24	a) A: Na ₂ CrO ₄ ; B: Na ₂ Cr ₂ O ₇ ; C : K ₂ Cr ₂ O ₇	1/2,1/2,1
	$4 \text{ FeCr}_2O_4 + 8 \text{ Na}_2CO_3 + 7 O_2 \rightarrow 8 \text{ Na}_2CrO_4 + 2 \text{ Fe}_2O_3 + 8 CO_2$	1
		-
	$2Na_2CrO_4 + 2 H^+ \rightarrow Na_2Cr_2O_7 + 2 Na^+ + H_2O$	1
	$Na_2Cr_2O_7 + 2 KCl \rightarrow K_2Cr_2O_7 + 2 NaCl$	1
		-
	OR	
24		1/2 , 1/2
	a) i)Copper; Due to high $\Delta_a H^{\oplus}$ and low $\Delta_{hyd} H^{\oplus}$	1/2, 1/2
	ii) Cerium; Due to stable 4f ⁰ configuration / Tb; Due to stable 4f ⁷ configuration	1
	b) i) Due to ability of oxygen to form multiple bonds to metal	1
	ii) HCl is oxidized to chlorine	1
	iii) Due to strong interatomic metallic bonding.	1
25	a) i).	
	0	1
		_
	$+$ $CH_3 - C - C1$ $\xrightarrow{\text{Anhyd. AlCl}_3}$ CH_3	
	T CM3 - C - C1	
	ii).	
	", ·	
	I	

		_
	CH₃ CH₃	
	$CH_3 \stackrel{CO}{CO} CH_3 + CH_3 \stackrel{MgX}{MgX} \longrightarrow CH_3 \stackrel{-}{C} - OMgX \stackrel{H_2O}{\longrightarrow} CH_3 \stackrel{-}{C} - OH$	1
	·	
	CH₃ CH₃	
	b) i) Because it is a deactivating group / Due to electron withdrawing carboxylic	1
	group resulting in decreased electron density at o- and p- position.	1
	ii) Due to extensive association of carboxylic acid molecules through intermolecular	
	hydrogen bonding. iii) Due to steric and + I effect of two methyl groups in propanone	1
	OR	
25	a) i) .	
	\backslash \models N-NH-CO-NH ₂	1
	ii) CH₃COOH	1
	iii) CH ₃ -CH(Br)-COOH	1
	b) i) Add ammonical solution of silver nitrate / Tollen's reagent to both the	
	compounds, propanal will give silver mirror while propanone does not. ii) Add NaHCO ₃ solution to both the compounds, Benzoic acid will give	1
	effervescence and liberate CO ₂ while benzaldehyde will not. (Or any other suitable	1
	test)	
26	a) E^0 value of silver is lower than that of gold, hence silver displaces gold	1
	which gets deposited on the silver object.	
	E ⁰ value of copper is lower than that of silver, hence silver cannot displace	
	copper from its solution.	1
	b) i) Electrons flow from Zn to Ag plate.	1/2
	ii) Zn as anode and Ag acts as cathode	1/2
	iii) Cell will stop functioning	½ ½, ½
	iv) Concentration of Zn ²⁺ ions will increase and that of Ag ⁺ ions will decrease.	1/2, /2
	v) No change OR	/2
26	a) When concentration approaches zero, the molar conductivity is known as limiting	
20	molar conductivity	1
	The change in Δ m with dilution is due to the increase in the degree of dissociation and	1
	consequently the number of ions in the total volume of the solution that contains 1 mol of	
	electrolyte, hence Λm increases steeply.	
	b) $E_{cell} = E_{cell}^{o} - \frac{0.059}{n} \log \frac{[Mg^2 +]}{[Cu^2 +]}$	1
	$=2.71 \text{ V} - \frac{0.059}{2} \log \frac{0.1}{0.001}$	
	$= 2.71 \text{ V} - \frac{0.059}{2} \log 10^2$	1
		1
	= 2.651 V	_

1	Dr. (Mrs.) Sangeeta Bhatia	6	5	Sh. Rakesh Dhawan	
2	Dr. K.N. Uppadhya	7		Dr. (Mrs.) Sunita Ramrakhiani	
3	Prof. R.D. Shukla	8	3	Mrs. Preeti Kiran	

4	Sh. S.K. Munjal	9	Dr. Azhar Aslam Khan	
5	Sh. D.A. Mishra	10	Ms. Garima Bhutani	

Marking scheme – 2017 (Compartment)

CHEMISTRY (043)/ CLASS XII

Set 56/1/3

Q.No	Value Points	Marks
1	Having no α- hydrogen	1
2	Frenkel Defect	1
3	$K_4[Fe(CN)_6] / [Fe(CN)_6]^{4-}$	1
4	Orbital splitting energies are not sufficiently large for forcing pairing	1
5	2,3-dinitro phenol	1
6	(i) First order	1
	(ii) s ⁻¹ / time ⁻¹	1
7	i) In NH ₄ ⁺ , all are bond pairs whereas in ammonia the lone pair of electron on	1
	nitrogen repels the bond pairs and reduces the bond angle.	
	ii) I-Cl bond is weaker than I-I bond / low bond dissociation enthalpy in I-Cl	1
8	Vapour pressure of the solvent decreases in the presence of non – voilatile solute	2
	(glucose) hence boiling point increases	
9	i) (b) is chiral	1
	ii) (a) will undergo S _N 2 reaction faster	1
10.	Hypophosphorous acid is a good reducing agent as it contains two P-H bonds. There	1
	is no P-H bond in orthophosphoric acid , so it is not a reducing agent	
	Example: It reduces AgNO ₃ to metallic silver/ chemical equation	1
	OR	
10	a) 4	1
	b) Due to lower bond dissociation enthalpy of BiH ₃ as compared to SbH ₃	1
11	i) The process of removing an adsorbed substance from a surface on which it is	1
	adsorbed.	
	ii) The formation of micelles takes place only above a particular concentration	1
	called CMC.	
	iii) The catalytic reaction that depends upon the pore structure of the catalyst and	1
	size of the reactant and product molecules.	
12	a) $H_2O < H_2S < H_2Te$, because of decrease in bond dissociation	1,1
	enthalpy.	
	0	
	F	
	Xe	
	F	
	b)	1
	OR	
12	a) i)Due to higher oxidation state of P in PCl₅	1
12	ii) Liberation of hydrogen prevents the formation of FeCl ₃	1
	in Liberation of hydrogen prevents the formation of reci3	
	Xe	
		1
	b)	1

	L VA OUL OUL	
13	a) A: CH ₃ - CH=CH ₂	½ × 4
	B: CH ₃ - CH ₂ -CH ₂ Br	
	C: CH ₃ - CH ₂ -CH ₂ I	
	D: CH ₃ - CH ₂ -CH ₂ MgI	
	t.t.	
	$ \begin{array}{c} N_2 X \\ Cu_2 X_1 \end{array} $ + N_2	
1		
	Aryl halide	1
1	b) X = Cl, Bi , CN	
14	a) CH ₃ -O-CH ₃ + HI → CH ₃ -OH + CH ₃ -I	1
1 -7	-, -, -, -, -, -, -, -, -, -, -, -, -, -	-
	b) .	
	Protonation of alkene to form carbocation by electrophilic	
	attack of H ₃ O ⁺ .	
	$H_2O + H^+ \rightarrow H_3O^+$	
	Н 11	
	$>C = C < + H - \ddot{O} + H \Longrightarrow - \ddot{C} - \ddot{C} < + H^2 \ddot{O}$	
	$C = C + H - O - H \Longrightarrow -C - C + H^5O$	1/
	l l	1/2
1	Nucleophilic attack of water on carbocation.	
1	H H	
1	$-\overset{H}{_{-}}{}{$	
	Ţ - ` .~2 ` Ţ Ţ ~ .*	
	Deprotonation to form an alcohol.	1/2
		12
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
1	$-C-C-O^{\dagger}-H$ + $H_2O \rightarrow -C-C-$ + H_2O^{\dagger}	
		1
15	In bcc, z=2;	
13	, ,	
	$d = (zxM) / a^3 x N_A $ (i)	1/
	1	1/2
	No. of atoms = $\frac{w}{M} \times N_A$	
	$2.5 \times 10^{24} = \frac{250 g}{M} \times N_A$	1
	$M = 250 \times NA / 2.5 \times 10^{24} $ (ii)	
	Putting values of M in equation (i)	
	d= 2 x 250 g × N_A / [2.5 × 10 ²⁴ atoms × (400x10 ⁻¹⁰ cm) ³ x N_A]	1/2
	$d = 2 \times 250 \text{ g} \times N_A / [2.5 \times 10^{\circ} \text{ atoms } \times (400 \times 10^{\circ} \text{ cm}) \times N_A]$ $d = 3.125 \text{ g/cm}^3$	
		1
1.0	(or any other correct method)	1/
16	$P_A = 2PO - Pt$	1/2
	$= (2 \times 35) - 63 = 7$	1/2
	$k = \frac{2.303}{t} \log Po/P_A$	
	2.303	
	$k = \frac{2.303}{100} \log 35/7$	1
	$k = \frac{2.303}{100} \times 0.6990$	-
	100	
	$= 2.236 \times 10^{-3} \text{ s}^{-1}$	1
	(or any other correct method)	
17	i) A: CH ₃ - CH ₂ CN; B: CH ₃ - CH ₂ - CH ₂ NH ₂ ; C: CH ₃ - CH ₂ - CH ₂ -NH-COCH ₃	½ ×3
	NO ₂ NH ₂	
1	+ -	1/2
	1	½ ×3
	$:: A \cdot Ar - N_2BF_4 \cdot B \cdot C \cdot $,
	ii) A: Ar – $\frac{1}{N_2}BF_4$; B: C:	
18.	ii) A: Ar - N ₂ BF ₄ ; B: C: a) Glycosidic linkage b) Source : Meat, Fish, egg, curd (any one) ; Pernicious anaemia	1

	c) DNA is double strand while RNA is single strand molecule (or any other	1/2 , 1/2					
	correct difference)	1					
19.	Hybridisation: dsp ²	1					
	Magnetic character : Diamagnetic	1					
	Spin nature: Low spin	1					
20.	i) Controlling depression and hypertension	1/2					
	Class: Tranquilizers	1/2					
	ii) Relieve pain and reduce fever						
	Class: Non- Narcotic analgesics / Analgesics						
	iii) Kills or inhibits the growth of micro organisms Class: Antibiotics						
	Class. Artibiotics	1/2					
21	$p_{\text{total}} = p_1^{\circ} + (p_2^{\circ} - p_1^{\circ})^{\chi_2}$	1					
	$600 = 450 + (700 - 450)^{-\chi_2}$	1					
	$x_2 = 0.6$						
		1/2					
	$x_2 = 1 - 0.6 = 0.4$	1/2					
22	a) Impurities are more soluble in the melt than in the solid state of the metal.	1/2					
	Example : Ge/ Si/ B (any other)	1/2					
	b) i)Zn/ Hg	1					
	ii) Sn	1					
23	a) Poly β-hydroxybutyrate – co-β-hydroxy valerate / (PHBV)	1/2					
	ОН						
	CH-CH-CH-COOH CH CH CH COOH	1/2,1/2					
	Monomers: CH ₃ -CH-CH ₂ -COOH CH ₃ -CH ₂ -CH-CH ₂ -COOH						
	Repeating unit:						
	(0 CH CH C 0 CH CH C)	1/2					
	$ \begin{array}{c c} \begin{array}{c c} \hline \text{O-CH-CH}_2-\text{C} & \text{-O-CH-CH}_2-\text{C}\\ & & & & \\ \text{CH}_3 & & & \text{CH}_2\text{CH}_3 \\ \end{array} $						
	CH ₃ CH ₂ CH ₃ O						
	b) PHBV is used in speciality packaging, orthopaedic devices and in controlled	1/2,1/2					
	release of drugs.(any two)	1/2, 1/2					
	c) Concern for environment, caring (or any other)						
24	a) i).						
	O II	1					
	$+$ $CH_3 - C - Cl$ $\xrightarrow{Anhyd. AlCl_3}$ CH_3						
	$+$ CH_3 $ C$ $ C1$ $\xrightarrow{Anhyd. AlCl_3}$ CH_3						
	ii).						
	CH₃ CH₃						
	$CH_{3} CO CH_{3} + CH_{3} MgX \longrightarrow CH_{3} -C - OMgX \xrightarrow{H_{2}O} CH_{3} -C - OH$						
	CIB MgA CIB-C-OMgA						
	CH ₃ CH ₃	1					
	b) i) Because it is a deactivating group / Due to electron withdrawing carboxylic						
	group resulting in decreased electron density at o- and p- position.	1					
	ii) Due to extensive association of carboxylic acid molecules through intermolecular						
	hydrogen bonding.						
	iii) Due to steric and +I effect of two methyl groups in propanone	1					
	OR						
24	a) i) .						
	N-NH-CO-NH ₂	1					

	::/ CIT COOT	1					
	ii) CH ₃ COOH	1 1					
	iii) CH ₃ -CH(Br)-COOH						
	b) i) Add ammonical solution of silver nitrate / Tollen's reagent to both the						
	compounds, propanal will give silver mirror while propanone does not.	1					
	ii) Add NaHCO ₃ solution to both the compounds, Benzoic acid will give	1					
	effervescence and liberate CO ₂ while benzaldehyde will not. (Or any other suitable						
	test)						
25	a) E ⁰ value of silver is lower than that of gold, hence silver displaces gold	1					
	which gets deposited on the silver object.						
	E^0 value of copper is lower than that of silver, hence silver cannot displace						
	copper from its solution.	1					
	b) i) Electrons flow from Zn to Ag plate.	1/2					
	ii) Zn as anode and Ag acts as cathode	1/2					
	iii) Cell will stop functioning	1/2					
	iv) Concentration of Zn ²⁺ ions will increase and that of Ag ⁺ ions will decrease.	1/2, 1/2					
	v) No change	1/2					
	OR						
25							
23	molar conductivity	1					
	The change in Λ m with dilution is due to the increase in the degree of dissociation and	1					
	consequently the number of ions in the total volume of the solution that contains 1 mol of						
	electrolyte, hence Δm increases steeply.						
	b) $E_{cell} = E_{cell}^{\circ} - \frac{0.059}{n} \log \frac{[Mg^2 + 1]}{[Cu^2 + 1]}$	1					
	16 (***=*)						
	=2.71 V - $\frac{0.059}{2} \log \frac{0.1}{0.001}$						
	$=2.71 \text{ V} - \frac{0.059}{2} \log 10^2$						
	= 2.651 V	1					
26	a) A: Na_2CrO_4 ; B: $Na_2Cr_2O_7$; C: $K_2Cr_2O_7$	½,½,1					
	$4 \operatorname{FeCr_2O_4} + 8 \operatorname{Na_2CO_3} + 7 \operatorname{O_2} \rightarrow 8 \operatorname{Na_2CrO_4} + 2 \operatorname{Fe_2O_3} + 8 \operatorname{CO_2}$	1					
	$2Na_2CrO_4 + 2 H^+ \rightarrow Na_2Cr_2O_7 + 2 Na^+ + H_2O$						
		1					
	$Na_2Cr_2O_7 + 2 KCl \rightarrow K_2Cr_2O_7 + 2 NaCl$	1					
	OR						
26	a) i)Copper; Due to high $\Delta_{a}H^{\Theta}$ and low $\Delta_{hyd}H^{\Theta}$	1/2 , 1/2					
	ii) Cerium; Due to stable 4f ⁰ configuration / Tb; Due to stable 4f ⁷ configuration	1/2 , 1/2					
	b) i) Due to ability of oxygen to form multiple bonds to metal	1					
	ii) HCl is oxidized to chlorine	1					
	iii) Due to strong interatomic metallic bonding.	1					
	,						
L		1					

1	Dr. (Mrs.) Sangeeta Bhatia	6	Sh. Rakesh Dhawan	
2	Dr. K.N. Uppadhya	7	Dr. (Mrs.) Sunita Ramrakhiani	
3	Prof. R.D. Shukla	8	Mrs. Preeti Kiran	

4	Sh. S.K. Munjal	9	9	Dr. Azhar Aslam Khan	
5	Sh. D.A. Mishra	1	10	Ms. Garima Bhutani	