Secondary School Certificate Examination

March 2017
 Marking Scheme —Mathematics 30/1, 30/2, 30/3 [Outside Delhi]

General Instructions:

1. The Marking Scheme provides general guidelines to reduce subjectivity in the marking. The answers given in the Marking Scheme are suggested answers. The content is thus indicative. If a student has given any other answer which is different from the one given in the Marking Scheme, but conveys the meaning, such answers should be given full weightage
2. Evaluation is to be done as per instructions provided in the marking scheme. It should not be done according to one's own interpretation or any other consideration - Marking Scheme should be strictly adhered to and religiously followed.
3. Alternative methods are accepted. Proportional marks are to be awarded.
4. If a candidate has attempted an extra question, marks obtained in the question attempted first should be retained and the other answer should be scored out.
5. A full scale of marks -0 to 90 has to be used. Please do not hesitate to award full marks if the answer deserves it.
6. Separate Marking Scheme for all the three sets has been given.
7. As per orders of the Hon'ble Supreme Court. The candidates would now be permitted to obtain photocopy of the Answer book on request on payment of the prescribed fee. All examiners/Head Examiners are once again reminded that they must ensure that evaluation is carried out strictly as per value points for each answer as given in the Marking Scheme.

QUESTION PAPER CODE 30/1

EXPECTED ANSWER/VALUE POINTS

 SECTION A1. $a_{21}-a_{7}=84 \Rightarrow(a+20 d)-(a+6 d)=84$
$\Rightarrow \quad 14 \mathrm{~d}=84$
$\Rightarrow \quad \mathrm{d}=6$
2.

$$
\begin{aligned}
& \angle \mathrm{OPA}=30^{\circ} \\
& \sin 30^{\circ}=\frac{\mathrm{a}}{\mathrm{OP}} \\
\Rightarrow & \mathrm{OP}=2 \mathrm{a}
\end{aligned}
$$

3.

$\tan \theta=\frac{30}{10 \sqrt{3}}=\sqrt{3}$
$\Rightarrow \theta=60^{\circ}$
4. Let the number of rotten apples in the heap be n .

$$
\begin{array}{lcc}
\therefore & \frac{\mathrm{n}}{900}=0.18 & \frac{1}{2} \\
\Rightarrow & \mathrm{n}=162 & \frac{1}{2}
\end{array}
$$

SECTION B

5. Let the roots of the given equation be α and 6α.

Thus the quadratic equation is $(x-\alpha)(x-6 \alpha)=0$
$\Rightarrow x^{2}-7 \alpha x+6 \alpha^{2}=0$

Given equation can be written as $\mathrm{x}^{2}-\frac{14}{\mathrm{p}} \mathrm{x}+\frac{8}{\mathrm{p}}=0$
Comparing the co-efficients in (i) \& (ii) $7 \alpha=\frac{14}{\mathrm{p}}$ and $6 \alpha^{2}=\frac{8}{\mathrm{p}}$

Solving to get $\mathrm{p}=3$
6. \quad Here $\mathrm{d}=\frac{-3}{4}$

Let the nth term be first negative term
$\therefore \quad 20+(\mathrm{n}-1)\left(\frac{-3}{4}\right)<0$
$\Rightarrow \quad 3 \mathrm{n}>83$
$\Rightarrow \quad \mathrm{n}>27 \frac{2}{3}$

Hence $28^{\text {th }}$ term is first negative term.

Case I:

Correct Figure

Since $\mathrm{PA}=\mathrm{PB}$

Therefore in $\triangle \mathrm{PAB}$
$\angle \mathrm{PAB}=\angle \mathrm{PBA}$

Case II: If the tangents at A and B are parallel then each angle between chord and tangent $=90^{\circ}$

Here $\quad \mathrm{AP}=\mathrm{AS}$

$$
\begin{align*}
& \mathrm{BP}=\mathrm{BQ} \tag{1}\\
& \mathrm{CR}=\mathrm{CQ} \\
& \mathrm{DR}=\mathrm{DS}
\end{align*}
$$

9. Let the coordinates of points P and Q be $(0, b)$ and $(a, 0)$ resp.

$$
\therefore \quad \frac{\mathrm{a}}{2}=2 \Rightarrow \mathrm{a}=4 \quad \frac{1}{2}
$$

$$
\frac{\mathrm{b}}{2}=-5 \Rightarrow \mathrm{~b}=-10
$$

$$
\therefore \quad \mathrm{P}(0,-10) \text { and } \mathrm{Q}(4,0)
$$

10. $\mathrm{PA}^{2}=\mathrm{PB}^{2}$

$$
\begin{aligned}
& \Rightarrow \quad(\mathrm{x}-5)^{2}+(\mathrm{y}-1)^{2}=(\mathrm{x}+1)^{2}+(\mathrm{y}-5)^{2} \\
& \Rightarrow \quad 12 \mathrm{x}=8 \mathrm{y} \\
& \Rightarrow \quad 3 \mathrm{x}=2 \mathrm{y}
\end{aligned}
$$

SECTION C

11. $\mathrm{D}=4(\mathrm{ac}+\mathrm{bd})^{2}-4\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)\left(\mathrm{c}^{2}+\mathrm{d}^{2}\right)$

$$
\begin{aligned}
& =-4\left(a^{2} d^{2}+b^{2} c^{2}-2 a b c d\right) \\
& =-4(a d-b c)^{2}
\end{aligned}
$$

Since $a d \neq b c$
Therefore $\mathrm{D}<0$

The equation has no real roots
12. Here $\mathrm{a}=5, l=45$ and $\mathrm{S}_{\mathrm{n}}=400$

$$
\begin{aligned}
& \therefore \frac{\mathrm{n}}{2}(\mathrm{a}+l)=400 \text { or } \frac{\mathrm{n}}{2}(5+45)=400 \\
& \Rightarrow \mathrm{n}=16
\end{aligned}
$$

Also $5+15 d=45$
$\Rightarrow \quad \mathrm{d}=\frac{8}{3}$
13.

Correct Figure

$$
\begin{equation*}
\Rightarrow \quad \cot \theta=\frac{\mathrm{h}}{16} \tag{ii}
\end{equation*}
$$

$$
\begin{aligned}
& \text { Solving (i) and (ii) to get } \\
& h^{2}=64 \\
& \Rightarrow \quad h=8 \mathrm{~m}
\end{aligned}
$$

14. Let the number of black balls in the bag be n.
$\therefore \quad$ Total number of balls are $15+n$
$\operatorname{Prob}($ Black ball $)=3 \times \operatorname{Prob}($ White ball $)$

$$
\begin{align*}
& \Rightarrow \quad \frac{\mathrm{n}}{15+\mathrm{n}}=3 \times \frac{15}{15+\mathrm{n}} \tag{1}\\
& \Rightarrow \mathrm{n}=45
\end{align*}
$$

15.

Let PA: AQ = k: 1

$$
\begin{aligned}
& \therefore \quad \frac{2+3 \mathrm{k}}{\mathrm{k}+1}=\frac{24}{11} \\
& \Rightarrow \quad \mathrm{k}=\frac{2}{9}
\end{aligned}
$$

Hence the ratio is $2: 9$.

$$
\begin{equation*}
\text { Therefore } \mathrm{y}=\frac{-18+14}{11}=\frac{-4}{11} \tag{1}
\end{equation*}
$$

$$
\text { Area of semi-circle } \mathrm{PQR}=\frac{\pi}{2}\left(\frac{9}{2}\right)^{2}=\frac{81}{8} \pi \mathrm{~cm}^{2} \quad \frac{1}{2}
$$

$$
\text { Area of region } \mathrm{A}=\pi\left(\frac{9}{4}\right)^{2}=\frac{81}{16} \pi \mathrm{~cm}^{2}
$$

$$
\text { Area of region }(\mathrm{B}+\mathrm{C})=\pi\left(\frac{3}{2}\right)^{2}=\frac{9}{4} \pi \mathrm{~cm}^{2}
$$

$$
\text { Area of region } \mathrm{D}=\frac{\pi}{2}\left(\frac{3}{2}\right)^{2}=\frac{9}{8} \pi \mathrm{~cm}^{2}
$$

$$
\begin{align*}
& \text { Area of shaded region }=\left(\frac{81}{8} \pi-\frac{81}{16} \pi-\frac{9}{4} \pi+\frac{9}{8} \pi\right) \mathrm{cm}^{2} \\
& \qquad=\frac{63}{16} \pi \mathrm{~cm}^{2} \text { or } \frac{99}{8} \mathrm{~cm}^{2} \tag{1}
\end{align*}
$$

17. Area of region $\mathrm{ABDC}=\pi \frac{60}{360} \times\left(42^{2}-21^{2}\right)$

$$
\begin{aligned}
& =\frac{22}{7} \times \frac{1}{6} \times 63 \times 21 \\
& =693 \mathrm{~cm}^{2}
\end{aligned}
$$

Area of shaded region $=\pi\left(42^{2}-21^{2}\right)-$ region ABDC

$$
\begin{align*}
& =\frac{22}{7} \times 63 \times 21-693 \tag{1}\\
& =4158-693 \\
& =3465 \mathrm{~cm}^{2}
\end{align*}
$$

18. Volume of water flowing in $40 \mathrm{~min}=5.4 \times 1.8 \times 25000 \times \frac{40}{60} \mathrm{~m}^{3}$

$$
=162000 \mathrm{~m}^{3}
$$

Height of standing water $=10 \mathrm{~cm}=0.10 \mathrm{~m}$

$$
\begin{aligned}
& \therefore \quad \text { Area to be irrigated }=\frac{162000}{0.10} \\
& \quad=1620000 \mathrm{~m}^{2}
\end{aligned}
$$

19. Here $l=4 \mathrm{~cm}, 2 \pi \mathrm{r}_{1}=18 \mathrm{~cm}$ and $2 \pi \mathrm{r}_{2}=6 \mathrm{~cm}$
$\Rightarrow \quad \pi r_{1}=9, \pi r_{2}=3$
Curved surface area of frustum $=\pi\left(\mathrm{r}_{1}+\mathrm{r}_{2}\right) \times l$ or $\left(\pi \mathrm{r}_{1}+\pi \mathrm{r}_{2}\right) \times l$

$$
\begin{aligned}
& =(9+3) \times 4 \\
& =48 \mathrm{~cm}^{2}
\end{aligned}
$$

20. Volume of cuboid $=4.4 \times 2.6 \times 1 \mathrm{~m}^{3}$

Inner and outer radii of cylindrical pipe $=30 \mathrm{~cm}, 35 \mathrm{~cm}$
$\therefore \quad$ Volume of materialused $=\frac{\pi}{100^{2}}\left(35^{2}-30^{2}\right) \times \mathrm{hm}^{3}$

$$
=\frac{\pi}{100^{2}} \times 65 \times 5 \mathrm{~h}
$$

$$
\frac{1}{2}
$$

$$
\begin{aligned}
& \text { Now } \frac{\pi}{100^{2}} \times 65 \times 5 \mathrm{~h}=4.4 \times 2.6 \\
& \Rightarrow \quad \mathrm{~h}=\frac{7 \times 4.4 \times 2.6 \times 100 \times 100}{22 \times 65 \times 5} \\
& \Rightarrow \quad \mathrm{~h}=112 \mathrm{~m}
\end{aligned}
$$

SECTION D

21. Here $[(5 x+1)+(x+1) 3](x+4)=5(x+1)(5 x+1)$

$$
\begin{aligned}
& \Rightarrow \quad(8 x+4)(x+4)=5\left(5 x^{2}+6 x+1\right) \\
& \Rightarrow \quad 17 x^{2}-6 x-11=0 \\
& \Rightarrow \quad(17 x+11)(x-1)=0 \\
& \Rightarrow \quad x=\frac{-11}{17}, x=1
\end{aligned}
$$

22. Let one tap fill the tank in x hrs.

Therefore, other tap fills the tank in $(x+3)$ hrs.

Work done by both the taps in one hour is

$$
\begin{aligned}
& \frac{1}{x}+\frac{1}{x+3}=\frac{13}{40} \\
\Rightarrow & (2 x+3) 40=13\left(x^{2}+3 x\right) \\
\Rightarrow & 13 x^{2}-41 x-120=0 \\
\Rightarrow & (13 x+24)(x-5)=0 \\
\Rightarrow & x=5
\end{aligned}
$$

(rejecting the negative value)

Hence one tap takes 5 hrs and another 8 hrs separately to fill the tank.
23. Let the first terms be a and a^{\prime} and d and d^{\prime} be their respective common differences.

$$
\begin{aligned}
& \frac{S_{n}}{S_{n}^{\prime}}=\frac{\frac{n}{2}(2 a+(n-1) d)}{\frac{n}{2}\left(2 a^{\prime}+(n-1) d^{\prime}\right)}=\frac{7 n+1}{4 n+27} \\
\Rightarrow & \frac{a+\left(\frac{n-1}{2}\right) d}{a^{\prime}+\left(\frac{n-1}{2}\right) d^{\prime}}=\frac{7 n+1}{4 n+27}
\end{aligned}
$$

To get ratio of $9^{\text {th }}$ terms, replacing $\frac{\mathrm{n}-1}{2}=8$
$\Rightarrow \quad \mathrm{n}=17$

Hence $\frac{\mathrm{t}_{9}}{\mathrm{t}_{9}^{\prime}}=\frac{\mathrm{a}+8 \mathrm{~d}}{\mathrm{a}^{\prime}+8 \mathrm{~d}^{\prime}}=\frac{120}{95}$ or $\frac{24}{19}$
24. Correct given, to prove, construction and figure

Correct Proof
25. In right angled $\triangle \mathrm{POA}$ and $\triangle \mathrm{OCA}$

$$
\Delta \mathrm{OPA} \cong \triangle \mathrm{OCA}
$$

$$
\therefore \quad \angle \mathrm{POA}=\angle \mathrm{AOC}
$$

$\therefore \quad \angle \mathrm{QOB}=\angle \mathrm{BOC}$
Therefore $\angle \mathrm{AOB}=\angle \mathrm{AOC}+\angle \mathrm{COB}$

$$
\begin{aligned}
& =\frac{1}{2} \angle \mathrm{POC}+\frac{1}{2} \angle \mathrm{COQ} \\
& =\frac{1}{2}(\angle \mathrm{POC}+\angle \mathrm{COQ}) \\
& =\frac{1}{2} \times 180^{\circ} \\
& =90^{\circ}
\end{aligned}
$$

26. Correct construction of $\triangle \mathrm{ABC}$ and corresponding similar triangle
27.

Correct Figure

$$
\tan 45^{\circ}=\frac{300}{y}
$$

$$
\Rightarrow \quad 1=\frac{300}{\mathrm{y}} \text { or } \mathrm{y}=300
$$

$$
\tan 60^{\circ}=\frac{300}{x}
$$

$$
\Rightarrow \quad \sqrt{3}=\frac{300}{x} \text { or } x=\frac{300}{\sqrt{3}}=100 \sqrt{3}
$$

$$
\text { Width of river }=300+100 \sqrt{3}=300+173.2
$$

$$
=473.2 \mathrm{~m}
$$

28. Points A, B and C are collinear

Therefore $\frac{1}{2}[(\mathrm{k}+1)(2 \mathrm{k}+3-5 \mathrm{k})+3 \mathrm{k}(5 \mathrm{k}-2 \mathrm{k})+(5 \mathrm{k}-1)(2 \mathrm{k}-2 \mathrm{k}-3)]=0$
29. Total number of outcomes $=36$
(i) $P($ even sum $)=\frac{18}{36}=\frac{1}{2}$
(ii) $\mathrm{P}($ even product $)=\frac{27}{36}=\frac{3}{4}$
30. Area of shaded region $=(21 \times 14)-\frac{1}{2} \times \pi \times 7 \times 7$

$$
\begin{aligned}
& =294-\frac{1}{2} \times \frac{22}{7} \times 7 \times 7 \\
& =294-77 \\
& =217 \mathrm{~cm}^{2}
\end{aligned}
$$

$$
\text { Perimeter of shaded region }=21+14+21+\frac{22}{7} \times 7
$$

$$
=56+22
$$

$$
=78 \mathrm{~cm}
$$

31. Volume of rain water on the roof $=$ Volume of cylindrical tank
i.e., $\quad 22 \times 20 \times \mathrm{h}=\frac{22}{7} \times 1 \times 1 \times 3.5$
$\Rightarrow \quad \mathrm{h}=\frac{1}{40} \mathrm{~m}$
$=2.5 \mathrm{~cm}$

Water conservation must be encouraged or views relevant to it.

QUESTION PAPER CODE 30/2

EXPECTED ANSWER/VALUE POINTS

SECTION A

1. 30 m

$$
\begin{aligned}
& \tan \theta=\frac{30}{10 \sqrt{3}}=\sqrt{3} \\
\Rightarrow & \frac{1}{2} \\
\Rightarrow & \theta=60^{\circ}
\end{aligned} \frac{\frac{1}{2}}{}
$$

2. Let the number of rotten apples in the heap be n .

$$
\begin{array}{lll}
\therefore & \frac{\mathrm{n}}{900}=0.18 & \frac{1}{2} \\
\Rightarrow & \mathrm{n}=162 & \frac{1}{2}
\end{array}
$$

3. $a_{21}-a_{7}=84 \Rightarrow(a+20 d)-(a+6 d)=84$
$\Rightarrow \quad 14 \mathrm{~d}=84$

$$
\Rightarrow \quad d=6
$$

4.

$$
\begin{aligned}
& \angle \mathrm{OPA}=30^{\circ} \frac{1}{2} \\
& \sin 30^{\circ}=\frac{\mathrm{a}}{\mathrm{OP}} \\
& \Rightarrow \mathrm{OP}=2 \mathrm{a}
\end{aligned}
$$

SECTION B

5. Let the coordinates of points P and Q be $(0, b)$ and $(a, 0)$ resp.

$$
\therefore \quad \frac{\mathrm{a}}{2}=2 \Rightarrow \mathrm{a}=4
$$

$$
\begin{array}{ll}
& \frac{\mathrm{b}}{2}=-5 \Rightarrow \mathrm{~b}=-10 \\
\therefore & \mathrm{P}(0,-10) \text { and } \mathrm{Q}(4,0)
\end{array}
$$

6. $\mathrm{PA}^{2}=\mathrm{PB}^{2}$

$$
\begin{aligned}
& \Rightarrow \quad(\mathrm{x}-5)^{2}+(\mathrm{y}-1)^{2}=(\mathrm{x}+1)^{2}+(\mathrm{y}-5)^{2} \\
& \Rightarrow \quad 12 \mathrm{x}=8 \mathrm{y} \\
& \Rightarrow \quad 3 \mathrm{x}=2 \mathrm{y}
\end{aligned}
$$

7. Let the roots of the given equation be α and 6α.

Thus the quadratic equation is $(x-\alpha)(x-6 \alpha)=0$
$\Rightarrow x^{2}-7 \alpha \mathrm{x}+6 \alpha^{2}=0$

Given equation can be written as $\mathrm{x}^{2}-\frac{14}{\mathrm{p}} \mathrm{x}+\frac{8}{\mathrm{p}}=0$
Comparing the co-efficients in (i) \& (ii) $7 \alpha=\frac{14}{\mathrm{p}}$ and $6 \alpha^{2}=\frac{8}{\mathrm{p}}$

Solving to get $\mathrm{p}=3$
8.

Case I:

Correct Figure

Since $P A=P B$

Therefore in $\triangle \mathrm{PAB}$
$\angle \mathrm{PAB}=\angle \mathrm{PBA}$

Case II: If the tangents at A and B are parallel then each angle between chord and tangent $=90^{\circ}$
9.

Here $\mathrm{AP}=\mathrm{AS}$

$$
\begin{aligned}
& \mathrm{BP}=\mathrm{BQ} \\
& \mathrm{CR}=\mathrm{CQ} \\
& \mathrm{DR}=\mathrm{DS}
\end{aligned}
$$

10. Here $a=8, d=6$

Let $a_{n}=72+a_{41}$
$\Rightarrow \quad 8+(\mathrm{n}-1) 6=72+8+40 \times 6$
$\Rightarrow \quad 6 \mathrm{n}=318$
$\Rightarrow \quad \mathrm{n}=53$.

SECTION C

11. Volume of cuboid $=4.4 \times 2.6 \times 1 \mathrm{~m}^{3}$

Inner and outer radii of cylindrical pipe $=30 \mathrm{~cm}, 35 \mathrm{~cm}$
$\begin{aligned} \therefore \text { Volume of material used } & =\frac{\pi}{100^{2}}\left(35^{2}-30^{2}\right) \times \mathrm{h} \mathrm{m}^{3} \\ & =\frac{\pi}{100^{2}} \times 65 \times 5 \mathrm{~h}\end{aligned}$
Now $\frac{\pi}{100^{2}} \times 65 \times 5 \mathrm{~h}=4.4 \times 2.6$
$\Rightarrow \quad \mathrm{h}=\frac{7 \times 4.4 \times 2.6 \times 100 \times 100}{22 \times 65 \times 5}$ $\frac{1}{2}+\frac{1}{2}$
$\Rightarrow \quad \mathrm{h}=112 \mathrm{~m}$
12. Area of region $\mathrm{ABDC}=\pi \frac{60}{360} \times\left(42^{2}-21^{2}\right)$

$$
\begin{aligned}
& =\frac{22}{7} \times \frac{1}{6} \times 63 \times 21 \\
& =693 \mathrm{~cm}^{2}
\end{aligned}
$$

Area of shaded region $=\pi\left(42^{2}-21^{2}\right)-$ region ABDC

$$
\begin{aligned}
& =\frac{22}{7} \times 63 \times 21-693 \\
& =4158-693 \\
& =3465 \mathrm{~cm}^{2}
\end{aligned}
$$

13. Volume of water flowing in $40 \mathrm{~min}=5.4 \times 1.8 \times 25000 \times \frac{40}{60} \mathrm{~m}^{3}$

$$
=162000 \mathrm{~m}^{3}
$$

Height of standing water $=10 \mathrm{~cm}=0.10 \mathrm{~m}$

$$
\begin{aligned}
& \therefore \quad \text { Area to be irrigated }=\frac{162000}{0.10} \\
& \quad=1620000 \mathrm{~m}^{2}
\end{aligned}
$$

14. Let $\mathrm{PA}: \mathrm{AQ}=\mathrm{k}: 1$

$$
\begin{array}{lll}
\stackrel{\mathrm{k}}{\mathrm{P}(2,-2)} \quad \mathrm{A}\left(\frac{24}{11}, \mathrm{y}\right) & \mathrm{Q}(3,7) & \therefore \\
& \Rightarrow \quad \frac{2+3 \mathrm{k}}{\mathrm{k}+1}=\frac{24}{11} \\
& & \mathrm{k}=\frac{2}{9}
\end{array}
$$

Hence the ratio is $2: 9$.

$$
\text { Therefore } \mathrm{y}=\frac{-18+14}{11}=\frac{-4}{11}
$$

Correct Figure
$\tan (90-\theta)=\frac{\mathrm{h}}{16}$
$\Rightarrow \quad \cot \theta=\frac{\mathrm{h}}{16}$
$\tan \theta=\frac{\mathrm{h}}{4}$

Solving (i) and (ii) to get

$$
\begin{aligned}
& h^{2}=64 \\
\Rightarrow \quad & h=8 m
\end{aligned}
$$

16. Let the number of black balls in the bag be n.
$\therefore \quad$ Total number of balls are $15+\mathrm{n}$
$\operatorname{Prob}($ Black ball $)=3 \times \operatorname{Prob}($ White ball $)$

$$
\begin{aligned}
& \Rightarrow \quad \frac{\mathrm{n}}{15+\mathrm{n}}=3 \times \frac{15}{15+\mathrm{n}} \\
& \Rightarrow \mathrm{n}=45
\end{aligned}
$$

17.

18.

Total surface area of remaining soild

$$
\begin{align*}
& =\pi \mathrm{r} l+\pi \mathrm{r}^{2}+2 \pi \mathrm{rh} \tag{1}\\
& l=\sqrt{(2.4)^{2}+(0.7)^{2}}=2.5 \mathrm{~cm} \\
\therefore \quad & \mathrm{TSA}=\pi \mathrm{r}(1+\mathrm{r}+2 \mathrm{~h}) \\
& =\frac{22}{7} \times 0.7(2.5+0.7+4.8) \\
& =17.6 \mathrm{~cm}^{2}
\end{align*}
$$

19. Here $\mathrm{a}_{10}=52$

$$
\begin{equation*}
\Rightarrow \quad \mathrm{a}+9 \mathrm{~d}=52 \tag{i}
\end{equation*}
$$

Also $\mathrm{a}_{17}=20+\mathrm{a}_{13}$
$\Rightarrow \quad a+16 d=20+a+12 d$
$\Rightarrow \quad 4 \mathrm{~d}=20$

Solving to get $\mathrm{d}=5$ and $\mathrm{a}=7$
or A.P. is $7,12,17,22, \ldots \ldots$
20. For equal roots $D=0$

Therefore $4\left(a^{2}-b c\right)^{2}-4\left(c^{2}-a b\right)\left(b^{2}-a c\right)=0$

$$
\begin{aligned}
& 4\left[a^{4}+b^{2} c^{2}-2 a^{2} b c-b^{2} c^{2}+a c^{3}+a b^{3}-a^{2} b c\right]=0 \\
& \Rightarrow a\left(a^{3}+b^{3}+c^{3}-3 a b c\right)=0 \\
& \Rightarrow a=0 \text { or a } \\
& 3+b^{3}+c^{3}=3 a b c
\end{aligned}
$$

SECTION D

21. Points A, B and C are collinear

Therefore $\frac{1}{2}[(\mathrm{k}+1)(2 \mathrm{k}+3-5 \mathrm{k})+3 \mathrm{k}(5 \mathrm{k}-2 \mathrm{k})+(5 \mathrm{k}-1)(2 \mathrm{k}-2 \mathrm{k}-3)]=0$

$$
=(\mathrm{k}+1)(3-3 \mathrm{k})+9 \mathrm{k}^{2}-3(5 \mathrm{k}-1)=0
$$

$$
=2 \mathrm{k}^{2}-5 \mathrm{k}+2=0
$$

$$
=(\mathrm{k}-2)(2 \mathrm{k}-1)=0
$$

$\Rightarrow \quad \mathrm{k}=2, \frac{1}{2}$
22. Total number of outcomes $=36$
(i) $P($ even sum $)=\frac{18}{36}=\frac{1}{2}$
(ii) $\mathrm{P}($ even product $)=\frac{27}{36}=\frac{3}{4}$
23. Correct construction of $\triangle \mathrm{ABC}$ and corresponding similar triangle
24. Volume of rain water on the roof $=$ Volume of cylindrical tank
i.e., $\quad 22 \times 20 \times \mathrm{h}=\frac{22}{7} \times 1 \times 1 \times 3.5$
$\Rightarrow \quad \mathrm{h}=\frac{1}{40} \mathrm{~m}$
$=2.5 \mathrm{~cm}$

Water conservation must be encouraged or views relevant to it.
25. Correct given, to prove, construction and figure
26. In right angled $\triangle \mathrm{POA}$ and $\triangle \mathrm{OCA}$

$$
\begin{aligned}
& \Delta \mathrm{OPA} \cong \triangle \mathrm{OCA} \\
\therefore \quad & \angle \mathrm{POA}=\angle \mathrm{AOC}
\end{aligned}
$$

Also $\triangle \mathrm{OQB} \cong \triangle \mathrm{OCB}$

$$
\begin{equation*}
\therefore \quad \angle \mathrm{QOB}=\angle \mathrm{BOC} \tag{ii}
\end{equation*}
$$

Therefore $\angle \mathrm{AOB}=\angle \mathrm{AOC}+\angle \mathrm{COB}$

$$
\begin{aligned}
& =\frac{1}{2} \angle \mathrm{POC}+\frac{1}{2} \angle \mathrm{COQ} \\
& =\frac{1}{2}(\angle \mathrm{POC}+\angle \mathrm{COQ}) \\
& =\frac{1}{2} \times 180^{\circ} \\
& =90^{\circ}
\end{aligned}
$$

27. Let the first terms be a and a^{\prime} and d and d^{\prime} be their respective common differences.

$$
\begin{aligned}
& \frac{S_{n}}{S_{n}^{\prime}}=\frac{\frac{n}{2}(2 a+(n-1) d)}{\frac{n}{2}\left(2 a^{\prime}+(n-1) d^{\prime}\right)}=\frac{7 n+1}{4 n+27} \\
\Rightarrow & \frac{a+\left(\frac{n-1}{2}\right) d}{a^{\prime}+\left(\frac{n-1}{2}\right) d^{\prime}}=\frac{7 n+1}{4 n+27}
\end{aligned}
$$

To get ratio of $9^{\text {th }}$ terms, replacing $\frac{\mathrm{n}-1}{2}=8$
$\Rightarrow \quad \mathrm{n}=17$
Hence $\frac{\mathrm{t}_{9}}{\mathrm{t}_{9}^{\prime}}=\frac{\mathrm{a}+8 \mathrm{~d}}{\mathrm{a}^{\prime}+8 \mathrm{~d}^{\prime}}=\frac{120}{95}$ or $\frac{24}{19}$
28. $[(x-5)+(2 x+3)] 9=10(2 x-3)(x-5)$
$\Rightarrow \quad 20 x^{2}-157 x+222=0$

$$
\begin{align*}
& \Rightarrow \quad(x-6)(20 x-37)=0 \tag{1}\\
& \Rightarrow \quad x=6, \frac{37}{20}
\end{align*}
$$

29. Let original speed of train be $x \mathrm{~km} / \mathrm{hr}$

Therefore $\frac{300}{x}-\frac{300}{x+5}=2$
$\Rightarrow \quad \mathrm{x}^{2}+5 \mathrm{x}-750=0$
$\Rightarrow \quad(x+30)(x-25)=0$
$\Rightarrow \quad \mathrm{x}=25$ or $\mathrm{x}=-30$
$\therefore \quad$ Speed $=25 \mathrm{~km} / \mathrm{hr}$
30.

$$
\begin{align*}
& \text { Correct Figure } \\
& \frac{\mathrm{h}}{\mathrm{x}}=\tan 45^{\circ}=1 \\
\Rightarrow \quad & \mathrm{~h}=\mathrm{x} \quad \ldots \text { (i) } \tag{i}\\
& \frac{\mathrm{h}}{\mathrm{x}+\mathrm{y}}=\tan 30^{\circ}=\frac{1}{\sqrt{3}} \\
\Rightarrow \quad & \sqrt{3} \mathrm{~h}=\mathrm{x}+\mathrm{y} \quad \ldots \text { (ii) } \tag{ii}
\end{align*}
$$

Therefore from (i) \& (ii) $\sqrt{3} x=x+y$

$$
\Rightarrow \quad y=x(\sqrt{3}-1)
$$

To cover a distance of $x(\sqrt{3}-1)$, car takes 12 min .
\therefore Time taken by car to cover a distance of x units $=\frac{12}{\sqrt{3}-1}$ minutes

$$
\begin{array}{ll}
= & 6(\sqrt{3}+1) \min \\
\text { or } & 16.4 \min (\text { approx }) .
\end{array}
$$

31.

$$
\mathrm{BC}=\sqrt{3^{2}+4^{2}}=5 \mathrm{~cm}
$$

$$
\begin{align*}
\text { Area }\left(\mathrm{R}_{1}\right. & \left.+\mathrm{R}_{2}\right)=\frac{\pi}{2}\left(\frac{5}{2}\right)^{2}-\frac{1}{2} \times 3 \times 4 \mathrm{~cm}^{2} \\
& =\left(\frac{25}{8} \pi-6\right) \mathrm{cm}^{2} \tag{i}
\end{align*}
$$

$$
\begin{aligned}
& \text { Area of shaded region }=\frac{\pi}{2}\left(\frac{3}{2}\right)^{2}+\frac{\pi}{2}(2)^{2}-\left[\frac{25}{8} \pi-6\right] \mathrm{cm}^{2} \\
& \quad=\frac{\pi}{2}\left(\frac{9}{4}+4-\frac{25}{4}\right)+6 \\
& \quad=6 \mathrm{~cm}^{2}
\end{aligned}
$$

QUESTION PAPER CODE 30/3

EXPECTED ANSWER/VALUE POINTS SECTION A

1. Let the number of rotten apples in the heap be n.

$$
\begin{aligned}
& \therefore \quad \frac{\mathrm{n}}{900}=0.18 \\
& \Rightarrow \quad \mathrm{n}=162
\end{aligned}
$$

2.

$$
\begin{aligned}
& \tan \theta=\frac{30}{10 \sqrt{3}}=\sqrt{3} \\
\Rightarrow & \frac{1}{2} \\
\Rightarrow & \theta=60^{\circ}
\end{aligned} \frac{\frac{1}{2}}{}
$$

3.

$$
\angle \mathrm{OPA}=30^{\circ}
$$

$$
\sin 30^{\circ}=\frac{\mathrm{a}}{\mathrm{OP}}
$$

$$
\Rightarrow \quad \mathrm{OP}=2 \mathrm{a}
$$

4. $a_{21}-a_{7}=84 \Rightarrow(a+20 d)-(a+6 d)=84$
$\Rightarrow \quad 14 \mathrm{~d}=84$
$\Rightarrow \quad \mathrm{d}=6$

SECTION B

Here $\quad \mathrm{AP}=\mathrm{AS}$

$$
\mathrm{BP}=\mathrm{BQ}
$$

$$
\mathrm{CR}=\mathrm{CQ}
$$

$$
\mathrm{DR}=\mathrm{DS}
$$

$$
\begin{array}{ll}
\text { Adding }(\mathrm{AP}+\mathrm{PB})+(\mathrm{CR}+\mathrm{RD})=(\mathrm{AS}+\mathrm{SD})+(\mathrm{BQ}+\mathrm{QC}) & \frac{1}{2} \\
\Rightarrow \quad \mathrm{AB}+\mathrm{CD}=\mathrm{AD}+\mathrm{BC} & \frac{1}{2}
\end{array}
$$

6.

Case I:
Correct Figure $\quad \frac{1}{2}$
Since $\mathrm{PA}=\mathrm{PB}$

Therefore in $\triangle \mathrm{PAB}$
$\angle \mathrm{PAB}=\angle \mathrm{PBA}$

Case II: If the tangents at A and B are parallel then each angle between chord and tangent $=90^{\circ} \quad \frac{1}{2}$
7. Let the coordinates of points P and Q be $(0, b)$ and $(a, 0)$ resp.
$\therefore \quad \frac{\mathrm{a}}{2}=2 \Rightarrow \mathrm{a}=4$

$$
\frac{\mathrm{b}}{2}=-5 \Rightarrow \mathrm{~b}=-10
$$

$\therefore \quad \mathrm{P}(0,-10)$ and $\mathrm{Q}(4,0)$
8. $\mathrm{PA}^{2}=\mathrm{PB}^{2}$

$$
\begin{aligned}
& \Rightarrow \quad(\mathrm{x}-5)^{2}+(\mathrm{y}-1)^{2}=(\mathrm{x}+1)^{2}+(\mathrm{y}-5)^{2} \\
& \Rightarrow \quad 12 \mathrm{x}=8 \mathrm{y} \\
& \Rightarrow \quad 3 \mathrm{x}=2 \mathrm{y}
\end{aligned}
$$

9. Let the roots of the given equation be α and 6α.

Thus the quadratic equation is $(x-\alpha)(x-6 \alpha)=0$
$\Rightarrow x^{2}-7 \alpha x+6 \alpha^{2}=0$

Given equation can be written as $\mathrm{x}^{2}-\frac{14}{\mathrm{p}} \mathrm{x}+\frac{8}{\mathrm{p}}=0$
Comparing the co-efficients in (i) \& (ii) $7 \alpha=\frac{14}{\mathrm{p}}$ and $6 \alpha^{2}=\frac{8}{\mathrm{p}}$

Solving to get $\mathrm{p}=3$
10. Here $\mathrm{a}_{\mathrm{n}}=\mathrm{a}_{\mathrm{n}}^{\prime}$

$$
\begin{aligned}
& \Rightarrow \quad 63+(\mathrm{n}-1) 2=3+(\mathrm{n}-1) 7 \\
& \Rightarrow \quad 5 \mathrm{n}=65 \\
& \Rightarrow \quad \mathrm{n}=13
\end{aligned}
$$

SECTION C

11.

Correct Figure
$\tan \theta=\frac{\mathrm{h}}{4}$
$\tan (90-\theta)=\frac{\mathrm{h}}{16}$
$\Rightarrow \quad \cot \theta=\frac{\mathrm{h}}{16}$
Solving (i) and (ii) to get

$$
\begin{aligned}
& \mathrm{h}^{2}=64 \\
\Rightarrow \quad & \mathrm{~h}=8 \mathrm{~m}
\end{aligned}
$$

12. Let the number of black balls in the bag be n.
$\therefore \quad$ Total number of balls are $15+\mathrm{n}$
$\operatorname{Prob}($ Black ball $)=3 \times \operatorname{Prob}($ White ball $)$

$$
\begin{align*}
& \Rightarrow \quad \frac{\mathrm{n}}{15+\mathrm{n}}=3 \times \frac{15}{15+\mathrm{n}} \tag{1}\\
& \Rightarrow \mathrm{n}=45
\end{align*}
$$

13.

$$
\begin{aligned}
& \text { Area of semi-circle } \mathrm{PQR}=\frac{\pi}{2}\left(\frac{9}{2}\right)^{2}=\frac{81}{8} \pi \mathrm{~cm}^{2} \\
& \text { Area of region } \mathrm{A}=\pi\left(\frac{9}{4}\right)^{2}=\frac{81}{16} \pi \mathrm{~cm}^{2} \\
& \text { Area of region }(\mathrm{B}+\mathrm{C})=\pi\left(\frac{3}{2}\right)^{2}=\frac{9}{4} \pi \mathrm{~cm}^{2} \\
& \text { Area of region } \mathrm{D}=\frac{\pi}{2}\left(\frac{3}{2}\right)^{2}=\frac{9}{8} \pi \mathrm{~cm}^{2} \\
& \text { Area of shaded region }=\left(\frac{81}{8} \pi-\frac{81}{16} \pi-\frac{9}{4} \pi+\frac{9}{8} \pi\right) \mathrm{cm}^{2} \\
& \qquad=\frac{63}{16} \pi \mathrm{~cm}^{2} \text { or } \frac{99}{8} \mathrm{~cm}^{2}
\end{aligned}
$$

14.

$\underset{\mathrm{P}(2,-2)}{\mathrm{k}} \quad \begin{gathered}\mathrm{A}\left(\frac{24}{11}, \mathrm{y}\right)\end{gathered} \mathrm{Q}(3,7)$

$$
\therefore \quad \frac{2+3 \mathrm{k}}{\mathrm{k}+1}=\frac{24}{11}
$$

$$
\Rightarrow \quad \mathrm{k}=\frac{2}{9}
$$

Therefore $\mathrm{y}=\frac{-18+14}{11}=\frac{-4}{11}$
15. Volume of water flowing in $40 \mathrm{~min}=5.4 \times 1.8 \times 25000 \times \frac{40}{60} \mathrm{~m}^{3}$

$$
=162000 \mathrm{~m}^{3}
$$

Height of standing water $=10 \mathrm{~cm}=0.10 \mathrm{~m}$

$$
\begin{aligned}
& \therefore \quad \text { Area to be irrigated }=\frac{162000}{0.10} \\
& \quad=1620000 \mathrm{~m}^{2}
\end{aligned}
$$

16. Area of region $\mathrm{ABDC}=\pi \frac{60}{360} \times\left(42^{2}-21^{2}\right)$

$$
\begin{aligned}
& =\frac{22}{7} \times \frac{1}{6} \times 63 \times 21 \\
& =693 \mathrm{~cm}^{2}
\end{aligned}
$$

Area of shaded region $=\pi\left(42^{2}-21^{2}\right)-$ region ABDC

$$
\begin{aligned}
& =\frac{22}{7} \times 63 \times 21-693 \\
& =4158-693 \\
& =3465 \mathrm{~cm}^{2}
\end{aligned}
$$

17. Volume of cuboid $=4.4 \times 2.6 \times 1 \mathrm{~m}^{3}$

Inner and outer radii of cylindrical pipe $=30 \mathrm{~cm}, 35 \mathrm{~cm}$
$\therefore \quad$ Volume of material used $=\frac{\pi}{100^{2}}\left(35^{2}-30^{2}\right) \times \mathrm{hm}^{3}$

$$
\begin{equation*}
=\frac{\pi}{100^{2}} \times 65 \times 5 \mathrm{~h} \tag{1}
\end{equation*}
$$

Now $\frac{\pi}{100^{2}} \times 65 \times 5 \mathrm{~h}=4.4 \times 2.6$

$$
\begin{aligned}
& \Rightarrow \quad \mathrm{h}=\frac{7 \times 4.4 \times 2.6 \times 100 \times 100}{22 \times 65 \times 5} \\
& \Rightarrow \quad \mathrm{~h}=112 \mathrm{~m}
\end{aligned}
$$

18.

$$
\begin{aligned}
& \text { Height of cone }=15.5-3.5=12 \mathrm{~cm} \\
& \therefore \quad l=\sqrt{(3.5)^{2}+12^{2}}=12.5 \mathrm{~cm}
\end{aligned}
$$

$$
\text { Total surface area }=\pi r \mathrm{rl}+2 \pi \mathrm{r}^{2}
$$

$$
\begin{equation*}
=\frac{22}{7} \times 3.5(12.5+7) \tag{1}
\end{equation*}
$$

$$
=214.5 \mathrm{~cm}^{2}
$$

19. Here $a=9, d=8, S n=636$

$$
\begin{align*}
& \text { Therefore } 636=\frac{\mathrm{n}}{2}[18+(\mathrm{n}-1) 8] \tag{1}\\
& \Rightarrow \quad 4 \mathrm{n}^{2}+5 \mathrm{n}-636=0 \\
& \Rightarrow \quad(4 \mathrm{n}+53)(\mathrm{n}-12)=0 \\
& \quad \mathrm{n}=12
\end{align*}
$$

20. For equal roots $D=0$

$$
\begin{aligned}
& \Rightarrow \quad 4(a c+b d)^{2}-4\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)=0 \\
& \Rightarrow \quad 4\left(a^{2} c^{2}+b^{2} d^{2}+2 a b c d-a^{2} c^{2}-a^{2} d^{2}-b^{2} c^{2}-b^{2} d^{2}\right)=0 \\
& \Rightarrow \quad-4\left(a^{2} d^{2}+b^{2} c^{2}-2 a b c d\right)=0 \\
& \Rightarrow \quad(a d-b c)^{2}=0 \\
& \Rightarrow \quad a d=b c \\
& \Rightarrow \quad \frac{a}{b}=\frac{c}{d}
\end{aligned}
$$

SECTION D

21. Points A, B and C are collinear

Therefore $\frac{1}{2}[(\mathrm{k}+1)(2 \mathrm{k}+3-5 \mathrm{k})+3 \mathrm{k}(5 \mathrm{k}-2 \mathrm{k})+(5 \mathrm{k}-1)(2 \mathrm{k}-2 \mathrm{k}-3)]=0$

$$
\begin{equation*}
=(\mathrm{k}-2)(2 \mathrm{k}-1)=0 \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\Rightarrow \quad \mathrm{k}=2, \frac{1}{2} \tag{1}
\end{equation*}
$$

22. Correct construction of $\triangle \mathrm{ABC}$ and corresponding similar triangle
23. Total number of outcomes $=36$
(i) $P($ even sum $)=\frac{18}{36}=\frac{1}{2}$
(ii) $\mathrm{P}($ even product $)=\frac{27}{36}=\frac{3}{4}$
24. In right angled $\triangle \mathrm{POA}$ and $\triangle \mathrm{OCA}$

$$
\begin{align*}
& \Delta \mathrm{OPA} \cong \triangle \mathrm{OCA} \\
\therefore & \angle \mathrm{POA}=\angle \mathrm{AOC} \tag{i}
\end{align*}
$$

Also $\triangle \mathrm{OQB} \cong \triangle \mathrm{OCB}$

$$
\therefore \quad \angle \mathrm{QOB}=\angle \mathrm{BOC} \quad \ldots(\mathrm{ii})
$$

Therefore $\angle \mathrm{AOB}=\angle \mathrm{AOC}+\angle \mathrm{COB}$

$$
\begin{aligned}
& =\frac{1}{2} \angle \mathrm{POC}+\frac{1}{2} \angle \mathrm{COQ} \\
& =\frac{1}{2}(\angle \mathrm{POC}+\angle \mathrm{COQ}) \\
& =\frac{1}{2} \times 180^{\circ} \\
& =90^{\circ}
\end{aligned}
$$

25. Volume of rain water on the roof $=$ Volume of cylindrical tank

$$
\begin{aligned}
& \text { i.e., } \quad 22 \times 20 \times \mathrm{h}=\frac{22}{7} \times 1 \times 1 \times 3.5 \\
& \Rightarrow \quad \mathrm{~h}=\frac{1}{40} \mathrm{~m} \\
& \quad=2.5 \mathrm{~cm}
\end{aligned}
$$

Water conservation must be encouraged or views relevant to it.
26. Correct given, to prove, construction and figure

Correct Proof
27. Let the first terms be a and a^{\prime} and d and d^{\prime} be their respective common differences.

$$
\begin{aligned}
& \frac{S_{n}}{S_{n}^{\prime}}=\frac{\frac{n}{2}(2 a+(n-1) d)}{\frac{n}{2}\left(2 a^{\prime}+(n-1) d^{\prime}\right)}=\frac{7 n+1}{4 n+27} \\
\Rightarrow \quad & \frac{a+\left(\frac{n-1}{2}\right) d}{a^{\prime}+\left(\frac{n-1}{2}\right) d^{\prime}}=\frac{7 n+1}{4 n+27}
\end{aligned}
$$

To get ratio of $9^{\text {th }}$ terms, replacing $\frac{\mathrm{n}-1}{2}=8$
$\Rightarrow \quad \mathrm{n}=17$
Hence $\frac{\mathrm{t}_{9}}{\mathrm{t}_{9}^{\prime}}=\frac{\mathrm{a}+8 \mathrm{~d}}{\mathrm{a}^{\prime}+8 \mathrm{~d}^{\prime}}=\frac{120}{95}$ or $\frac{24}{19}$
28. $(x-1)^{2}+(2 x+1)^{2}=2(2 x+1)(x-1)$

$$
\Rightarrow \quad \mathrm{x}^{2}+1-2 \mathrm{x}+4 \mathrm{x}^{2}+1+4 \mathrm{x}=4 \mathrm{x}^{2}-4 \mathrm{x}+2 \mathrm{x}-2
$$

$$
\begin{aligned}
& \Rightarrow \quad x^{2}+4 \mathrm{x}+4=0 \\
& \Rightarrow \quad(\mathrm{x}+2)^{2}=0 \\
& \Rightarrow \quad \mathrm{x}=-2
\end{aligned}
$$

29. Let B take x days to finish the work.

Therefore number of days taken by $\mathrm{A}=\mathrm{x}-6$

Work done by both in one day is

$$
\begin{aligned}
& \frac{1}{x}+\frac{1}{x-6}=\frac{1}{4} \\
\Rightarrow & x^{2}-14 x+24=0 \\
\Rightarrow & (x-12)(x-2)=0 \\
\Rightarrow & x=12 \text { or } x=2
\end{aligned}
$$

$$
\mathrm{x} \neq 2 \quad \therefore \mathrm{~B} \text { takes } 12 \text { days to complete the work }
$$

30.

$$
\begin{gather*}
\text { Correct Figure } \\
\\
\begin{array}{c}
\frac{100}{x}=\tan 45^{\circ}=1 \\
\Rightarrow \quad \\
\\
\\
\\
\\
\frac{100}{y}=100 \quad \ldots \text { (i) } \\
\Rightarrow \quad \\
y=100 \sqrt{3} \quad \ldots(\text { ii) }
\end{array} \tag{i}
\end{gather*}
$$

Distance between the cars $=x+y=100(\sqrt{3}+1)$

$$
=273.2 \mathrm{~m}
$$

31.

$$
\begin{align*}
& \text { Diameter } \mathrm{BC}=\sqrt{24^{2}+7^{2}}=25 \mathrm{~cm} \\
& \text { Area } \triangle \mathrm{CAB}=\frac{1}{2} \times 24 \times 7=84 \mathrm{~cm}^{2}
\end{align*}
$$

Area of shaded region $=\frac{\pi}{2}\left(\frac{25}{2}\right)^{2}-84+\frac{\pi}{4}\left(\frac{25}{2}\right)^{2}$

$$
\begin{aligned}
& =\left(\frac{1875 \pi}{16}-84\right) \mathrm{cm}^{2} \\
& =(117.18 \pi-84) \mathrm{cm}^{2} \\
\text { or } \quad & =283.94 \mathrm{~cm}^{2}
\end{aligned}
$$

