Secondary School Examination

March - 2015

Marking Scheme--- Mathematics (Delhi) 30/1/1, 30/1/2, 30/1/3

General Instructions

1. The Marking Scheme provides general guidelines to reduce subjectivity and maintain uniformity among large number of examiners involved in the marking. The answers given in the marking scheme are the best suggested answers.
2. Marking is to be done as per the instructions provided in the marking scheme. (It should not be done according to one's own interpretation or any other consideration.)Marking Scheme should be strictly adhered to and religiously followed.
3. Alternative methods are accepted. Proportional marks are to be awarded.
4. The Head-Examiners have to go through the first five answer-scripts evaluated by each evaluator to ensure that the evaluation has been done as per instructions given in the marking scheme. The remaining answer scripts meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators.
5. If a question is attempted twice and the candidate has not crossed any answer, only first attempt is to be evaluated. Write 'EXTRA' with second attempt.
6. A full scale of marks 0 to 90 has to be used. Please do not hesitate to award full marks if the answer deserves it.
7. Separate Marking Scheme for all the three sets has been given.
8. The Examiners should acquaint themselves with the guidelines given in the Guidelines for Spot Evaluation before starting the actual evaluation.
9. Every Examiner should stay upto sufficiently reasonable time normally 5-6 hours every day and evaluate 20-25 answer books and should devote minimum 15-20 minutes to evaluate each answer book.
10. Every Examiner should acquaint himself/herself with the marking schemes of all the sets.

QUESTION PAPER CODE 30/1/1

EXPECTED ANSWERS/VALUE POINTS

Q.No.

SECTION - A

1. $\frac{-9}{4}$
2. $1: 3$
3. $\frac{21}{26}$
4. 25°
$1 \times 4=4 \mathrm{~m}$

SECTION - B

5. $\angle \mathrm{ABQ}=\frac{1}{2} \angle \mathrm{AOQ}=29^{\circ}$

$$
\angle \mathrm{ATQ}=180^{\circ}-(\angle \mathrm{ABQ}+\angle \mathrm{BAT})=180^{\circ}-119^{\circ}=61^{\circ}
$$

6. The given quadratic equation can be written as

$$
\left.\begin{array}{ll}
\left(4 x^{2}-4 a^{2} x+a^{2}\right)-b^{4}=0 & 1 / 2 m \\
\text { or }\left(2 x-a^{2}\right)^{2}-\left(b^{2}\right)^{2}=0 & 1 m \\
\therefore\left(2 x-a^{2}+b^{2}\right)\left(2 x-a^{2}-b^{2}\right)^{2}=0 \\
\Rightarrow x=\frac{a^{2}-b^{2}}{2}, \frac{a^{2}+b^{2}}{2}
\end{array}\right\} \quad 1 / 2 m
$$

7.

In $\Delta \mathrm{s}^{\prime} \mathrm{TPC}$ and TQC
$\mathrm{TP}=\mathrm{TQ}$
$\mathrm{TC}=\mathrm{TC}$
$\angle 1=\angle 2 \quad(\mathrm{TP}$ and TQ are equally
\quad inclined to OT$)$
1 m
$\therefore \quad \Delta \mathrm{TPC} \cong \Delta \mathrm{TQC}$
$\therefore \quad \mathrm{PC}=\mathrm{QC}$ and $\angle 3=\angle 4$
$1 / 2 \mathrm{~m}$
$\left.\begin{array}{c}\text { But } \angle 3+\angle 4=180^{\circ} \Rightarrow \angle 3=\angle 4=90^{\circ} \\ \therefore \quad \text { OT is the right bisector of PQ }\end{array}\right\} \quad 1 / 2 \mathrm{~m}$
8.

The given A.P. is $6,13,20,---, 216$
Let n be the number of terms, $\mathrm{d}=7, \mathrm{a}=6 \quad 1 / 2 \mathrm{~m}$
$\therefore \quad 216=6+(n-1) .7 \Rightarrow n=31 \quad 1 / 2 m$
\therefore Middle term is 16th $1 / 2 \mathrm{~m}$
$\therefore \mathrm{a}_{16}=6+15 \times 7=111 \quad 1 / 2 \mathrm{~m}$
9.

ABC is right triangle

$$
\begin{gathered}
\therefore \quad A C^{2}=\mathrm{BC}^{2}+\mathrm{AB}^{2} \\
\mathrm{AB}^{2}=(5-2)^{2}+(2+2)^{2}=25 \Rightarrow \mathrm{AB}=5 \\
\mathrm{BC}^{2}=(2+2)^{2}+(\mathrm{t}+2)^{2}=16+(\mathrm{t}+2)^{2} \\
\mathrm{AC} C^{2}=(5+2)^{2}+(2-\mathrm{t})^{2}=49+(2-\mathrm{t})^{2} \\
\left.\therefore \quad \begin{array}{l}
49+(2-\mathrm{t})^{2}=41+(\mathrm{t}+2)^{2} \\
\\
\\
\\
(\mathrm{t}+2)^{2}-(2-\mathrm{t})^{2}=8
\end{array}\right\}
\end{gathered}
$$

$$
1 \mathrm{~m}
$$

$$
1 \text { m }
$$

10.

SECTION - C

11.

P is the mid-point of $A B$

$$
\therefore \mathrm{x}+1=4 \Rightarrow \mathrm{x}=3
$$

$$
\text { similarly } y=2 \Rightarrow B(3,2)
$$

$$
1 \mathrm{~m}
$$

$$
\text { similarly finding } C(-1,2) \quad 1 / 2 \mathrm{~m}
$$

$\therefore \quad$ Area $\Delta \mathrm{ABC}=\frac{1}{2}[1(2-2)+3(2+4)-1(-4-2)]=\frac{1}{2} \times 24=12$ sq.u. $\quad 11 / 2 \mathrm{~m}$
12. The given quadratic eqn. can be written as

$$
(\mathrm{k}+1) \mathrm{x}^{2}-2(\mathrm{k}-1) \mathrm{x}+1=0
$$

1 m
For qual roots $\left.\begin{array}{c}4(\mathrm{k}-1)^{2}-4(\mathrm{k}+1)=0 \text { or } \mathrm{k}^{2}-3 \mathrm{k}=0 \\ \Rightarrow \mathrm{k}=0,3\end{array}\right\}$ 1 m
\therefore Non-zero value of $\mathrm{k}=3:$ Roots are $\frac{1}{2}, \frac{1}{2}$
$1 / 2+1 / 2 \mathrm{~m}$
13.

Fiqure
$1 / 2 \mathrm{~m}$
(i) $\frac{30}{y}=\tan 45^{\circ}=1 \Rightarrow y=30$

1 m
(ii) $\frac{x}{y}=\tan 30^{\circ}=\frac{1}{\sqrt{3}} \Rightarrow x=\frac{y}{\sqrt{3}}=\frac{30}{\sqrt{3}}=10 \sqrt{3}$
\therefore Height of building is $10 \sqrt{3} \mathrm{~m} \quad 1 / 2 \mathrm{~m}$
14. Total possible out comes $=36$
(i) The possible outcomes are $(2,3),(3,2),(1,4),(4,1):$ Number : 4 1 m $\therefore \quad$ Required Probability $=\frac{4}{36}=\frac{1}{9}$ $1 / 2 \mathrm{~m}$
(ii) The possible outcomes are

$$
(2,2),(2,4),(2,6),(4,2),(4,4),(4,6),(6,2),(6,4),(6,6)
$$

$$
\text { their number is } 9
$$

$$
\therefore \quad \text { Required Probabilit } y=\frac{9}{36}=\frac{1}{4}
$$

1 m $1 / 2 \mathrm{~m}$
15. Let a be the first term and d the common difference

$$
\begin{array}{lc}
S_{12}=6[2 a+11 d]=12 a+66 d & 1 \mathrm{~m} \\
S_{8}=4[2 a+7 d]=8 a+28 d & 1 / 2 m \\
S_{4}=2[2 a+3 d]=4 a+6 d & 1 / 2 m \\
3\left(S_{8}-3_{4}\right)=3(4 a+22 d)=12 a+66 d=S_{12} & 1 \mathrm{~m}
\end{array}
$$

16. Let $\mathrm{OA}=\mathrm{OB}=\mathrm{r}$

$$
\left.\begin{array}{c}
\therefore \quad 40=\frac{22}{7} \times \frac{r}{2}+\frac{22}{7} \times r+r \Rightarrow 280=40 r \\
r=7
\end{array}\right\}
$$

$$
\therefore \quad \text { shaded area }=\left(\frac{1}{2} \times \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2}+\frac{1}{2} \times \frac{22}{7} \times 7 \times 7\right) \mathrm{cm}^{2}
$$

$$
=\left(77 \times \frac{5}{4}\right) \text { or } \frac{385}{4} \mathrm{~cm}^{2}=96 \frac{1}{4} \mathrm{~cm}^{2}
$$

17.

$$
\begin{array}{ll}
\Delta \mathrm{ARQ} \sim \Delta \mathrm{ADC} & 1 / 2 \mathrm{~m} \\
\therefore \quad \frac{\mathrm{x}}{6}=\frac{4}{12} \Rightarrow \mathrm{x}=2 & 1 / 2 \mathrm{~m} \\
\mathrm{QC}=\sqrt{8^{2}+4^{2}}=4 \sqrt{5} & 1 / 2 \mathrm{~m}
\end{array}
$$

$$
\left.\begin{array}{c}
=\pi\left[(6+2) \times 4 \sqrt{5}+(6)^{2}+(2)^{2}\right] \\
=\frac{22}{7}[32 \times 2.236+40]=\frac{22}{7}(111.552)=22 \times 15.936 \\
=350.592
\end{array}\right\}
$$

18.

Volume of solid wooden toy

$$
\begin{aligned}
& 166 \frac{5}{6}=\frac{2}{3} \times \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \times \frac{7}{2}+\frac{1}{3} \times \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \times \mathrm{h} \\
& \text { or } \frac{1001}{6}=\frac{22}{7} \times \frac{7}{2} \times \frac{7}{2}[7+\mathrm{h}] \\
& \Rightarrow 7+\mathrm{h}=\frac{1001 \times 7}{22 \times 7}=13 \Rightarrow \mathrm{~h}=6 \mathrm{~cm}
\end{aligned}
$$

$$
\begin{aligned}
\text { Area of hemispherical part of toy } & =\left(2 \times \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2}\right) \mathrm{cm}^{2} \\
& =77 \mathrm{~cm}^{2}
\end{aligned}
$$

$$
\therefore \quad \text { Cost of Paenting }=\text { Rs. }(77 \times 10)=\text { Rs. } 770
$$

19. Total surfacearea of solid cuboidal block

$$
=2(15 \times 10+10 \times 5+15 \times 5) \mathrm{cm}^{2}=550 \mathrm{~cm}^{2}
$$

1 m
Area of two circular bases $=2 \times \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2}=77 \mathrm{~cm}^{2}$
$1 / 2 \mathrm{~m}$

Area of curved surface of cylinder $=2 \pi \mathrm{rh}=2 \times \frac{22}{7} \times \frac{7}{2} \times 5=110 \mathrm{~cm}^{2}$ 1 m

Reqd - area $=(550+110-77) \mathrm{cm}^{2}=583 \mathrm{~cm}^{2}$
$1 / 2 \mathrm{~m}$

$$
\begin{array}{ll}
\text { Area of Sq. } \mathrm{ABCD}=14^{2} \text { or } 196 \mathrm{~cm}^{2} & 1 / 2 \mathrm{~m} \\
\text { Area of Small Sq. }=4^{2} \text { or } 16 \mathrm{~cm}^{2} & 1 / 2 \mathrm{~m}
\end{array}
$$

$$
\text { Area of } 4 \text { semi circles }=\left[4 \cdot \frac{1}{2} 3.14(2)^{2}\right] \mathrm{cm}^{2}
$$

$$
=25.12 \mathrm{~cm}^{2}
$$

$$
\left.\begin{array}{rl}
\therefore \quad \text { Reqd. area } & =(196-16-25.12) \mathrm{cm}^{2} \\
& =154.88 \mathrm{~cm}^{2}
\end{array}\right\} \quad 1 \mathrm{~m}
$$

SECTION - D

21. Let the fraction be $\frac{x-3}{x}$

By the given condition, new fraction $\frac{x-3+2}{x+2}=\frac{x-1}{x+2}$

$$
\begin{aligned}
& \therefore \quad \frac{\mathrm{x}-3}{\mathrm{x}}+\frac{\mathrm{x}-1}{\mathrm{x}+2}=\frac{29}{20} \\
& \Rightarrow \quad 20[(\mathrm{x}-3)(\mathrm{x}+2)+\mathrm{x}(\mathrm{x}-1)]=29\left(\mathrm{x}^{2}+2 \mathrm{x}\right) \\
& =\quad 20\left(\mathrm{x}^{2}-\mathrm{x}-6+\mathrm{x}^{2}-\mathrm{x}\right)=29 \mathrm{x}^{2}+58 \mathrm{x}
\end{aligned}
$$

$$
\text { or } 11 \mathrm{x}^{2}-98 \mathrm{x}-120=0
$$

$$
\text { or } 11 x^{2}-110 x-12 x-120=0
$$

$$
(11 x+12)(x-10)=0 \quad \Rightarrow \quad x=10
$$

\therefore The Fraction is $\frac{7}{10}$
22. Money required for Ramkate for admission of daughter $=$ Rs. 2500
A.P. formed by saving
(i) $=100,120,140,---$ upto 12 terms

$$
\left.\begin{array}{rl}
\text { Sum of AP }(\mathrm{i}) & =\frac{12}{2}[2 \times 100+11 \times 20]=6[420] \\
& =\text { Rs. } 2520
\end{array}\right\} \quad 11 / 2 \mathrm{~m}
$$

$\therefore \quad$ She can get her doughter admitied
23. $\frac{2}{x+1}+\frac{3}{2(x-2)}=\frac{23}{5 x}$
or $5 \mathrm{x}[4(\mathrm{x}-2)+3 \mathrm{x}+3]=46(\mathrm{x}+1)(\mathrm{x}-2)$

$$
\begin{array}{cc}
5 x(7 x-5)=46\left(x^{2}-x-2\right) \Rightarrow 11 x^{2}-21 x-92=0 & 1 \mathrm{~m} \\
\Rightarrow x=\frac{21 \pm \sqrt{441+4048}}{22}=\frac{21 \pm 67}{22} & 1 \mathrm{~m} \\
=4, \frac{-23}{11} & 1 / 2 \mathrm{~m}
\end{array}
$$

24. Correctly stated

> Given, to Prove, Construction and correct figure
25. $\mathrm{PR}=\mathrm{PQ} \Rightarrow \angle \mathrm{PRQ}=\angle \mathrm{PQR}=\frac{(180-30)^{\circ}}{2}=75^{\circ}$

1 m
$\mathrm{SR} \| \mathrm{QP}$ and QR is a transversal $\Rightarrow \angle \mathrm{SRQ}=75^{\circ}$
1 m

$$
\therefore \quad \angle \mathrm{ORQ}=\angle \mathrm{RQO}=90^{\circ}-75^{\circ}=15^{\circ}
$$

$$
\begin{array}{rll}
\therefore & \angle \mathrm{QOR}=(180-2 \times 15)^{\circ}=150^{\circ} \Rightarrow \angle \mathrm{QSR}=75^{\circ} & 1 \mathrm{~m} \\
& \angle \mathrm{RQS}=180^{\circ}-(\angle \mathrm{SRQ}+\angle \mathrm{SQR})=30^{\circ} & 1 \mathrm{~m}
\end{array}
$$

26. Correctly drawn $\triangle \mathrm{ABC}$
27.

figure 1 m

Writing the trigonometric equations

$$
\left.\begin{array}{ll}
\text { (i) } \frac{x}{y}=\tan 30^{\circ}=\frac{1}{\sqrt{3}} \Rightarrow y=\sqrt{3} x & 1 \mathrm{~m} \\
\text { (ii) } \quad \frac{x+5}{y}=\tan 60^{\circ}=\sqrt{3} \text { or } \frac{x+5}{\sqrt{3} x}=\sqrt{3} & 11 / 2 \mathrm{~m} \\
\Rightarrow \quad 3 x=x+5 \\
& \quad \text { or } x=2.5 \\
\therefore & \text { Height of Tower }=2.5 \mathrm{~m}
\end{array}\right\} \quad 1 / 2 \mathrm{~m}
$$

28. (i) Numbers divisible by 2 or 3 from 1 to 20 are
$2,4,6,8,10,12,14,16,18,3,9,15$ Their number is 13
$\therefore \quad$ Required Probability $=\frac{13}{20}$
(ii) Prime numbers from 1 to 20 are 2, 3, 5, 7, 11, 13, 17, $19: 8$ in number 1 m

$$
\therefore \quad \text { Required Probability }=\frac{8}{20} \text { or } \frac{2}{5}
$$

$$
\begin{aligned}
& \text { Area } \triangle \mathrm{ABC} \\
& =\frac{1}{2}[-4(-4+5)-3(-5-8)+0(8+4)]
\end{aligned}
$$

$$
=\frac{1}{2}|-4+39|=\frac{35}{2}
$$

Area of $\triangle \mathrm{ACD}$

$$
\begin{array}{ll}
=\frac{1}{2}[-4(-5-6)+0(6-8)+5(8+5)] & \\
=\frac{109}{2} & 11 / 2 \mathrm{~m}
\end{array}
$$

$\therefore \quad$ Area of Qurd. $A B C D=\frac{35}{2}+\frac{109}{2}=72$ sq.u.
30. Volume of earth taken out after digging the well

$$
\begin{equation*}
=\left(\frac{22}{7} \times 2 \times 2 \times 14\right) \text { cu.m }=176 \text { cu.m } . . \tag{i}
\end{equation*}
$$

Let x be the width of embankment formed by using (i)

$$
\begin{aligned}
& \text { Volume ofembankment }=\frac{22}{7}\left[(2+x)^{2}-(2)^{2}\right] \times \frac{40}{100}=176 \\
& \Rightarrow x^{2}+4 x-140=0 \quad \Rightarrow \quad(x+14)(x-10)=0 \\
& \Rightarrow x=10
\end{aligned}
$$

\therefore Width of embankment $=10 \mathrm{~m}$
31. Let $\mathrm{x} m$ be the internal radius of the pipe

Radius of base of $\operatorname{tank}=40 \mathrm{~cm}=\frac{2}{5} \mathrm{~m}$

Level of water raised in the $\operatorname{tank}=3.15$ or $\frac{315}{100}$

$$
2.52 \mathrm{~km} / \text { hour } \Rightarrow 1.26 \mathrm{~km} \text { in half hour }=1260 \mathrm{~m}
$$

\therefore Getting the equation

$$
\left.\begin{array}{llr}
\pi & x^{2} \cdot 1260=\pi \cdot \frac{2}{5} \cdot \frac{2}{5} \times \frac{315}{100} & 1 \mathrm{~m} \\
\Rightarrow & x^{2}=\frac{4}{25} \cdot \frac{315}{100} \times \frac{1}{1260}=\frac{1}{2500} \\
\quad \Rightarrow x=\frac{1}{50} \mathrm{~m}=2 \mathrm{~cm}
\end{array}\right\} \quad 1
$$

QUESTION PAPER CODE 30/1/2

EXPECTED ANSWERS/VALUE POINTS

Q.No.

SECTION - A

1. $\frac{21}{26}$
2. 25°
3. $1: 3$
4. $\frac{-9}{4}$
$1 \times 4=4 \mathrm{~m}$

SECTION - B

5.

ABC is right triangle

$$
\left.\begin{array}{l}
\therefore \quad A C^{2}=\mathrm{BC}^{2}+\mathrm{AB}^{2} \\
\mathrm{AB}^{2}=(5-2)^{2}+(2+2)^{2}=25 \Rightarrow \mathrm{AB}=5 \\
\mathrm{BC}^{2}=(2+2)^{2}+(\mathrm{t}+2)^{2}=16+(\mathrm{t}+2)^{2} \\
\mathrm{~A} C^{2}=(5+2)^{2}+(2-\mathrm{t})^{2}=49+(2-\mathrm{t})^{2}
\end{array}\right\} \quad \begin{aligned}
& 1 \mathrm{~m} \\
& \left.\therefore \quad \begin{array}{l}
49+(2-\mathrm{t})^{2}=41+(\mathrm{t}+2)^{2} \\
\\
\left.\begin{array}{l}
\mathrm{t}+2)^{2}-(2-\mathrm{t})^{2}=8 \\
4
\end{array}\right\}+2 \mathrm{t}=8 \Rightarrow \mathrm{t}=1
\end{array}\right\}
\end{aligned}
$$

6.

In $\Delta \mathrm{s}^{\prime}$ TPC and TQC

$$
\begin{aligned}
& \mathrm{TP}=\mathrm{TQ} \\
& \mathrm{TC}=\mathrm{TC} \\
& \angle 1=\angle 2 \quad(\mathrm{TP} \text { and } \mathrm{TQ} \text { are equally } \\
& \quad \text { inclined to } \mathrm{OT})
\end{aligned}
$$

$\therefore \quad \Delta \mathrm{TPC} \cong \Delta \mathrm{TQC}$

$$
\therefore \quad \mathrm{PC}=\mathrm{QC} \text { and } \angle 3=\angle 4 \quad 1 / 2 \mathrm{~m}
$$

$\left.\begin{array}{c}\text { But } \quad \angle 3+\angle 4=180^{\circ} \Rightarrow \angle 3=\angle 4=90^{\circ} \\ \therefore \quad \text { OT is the right bisector of PQ }\end{array}\right\} \quad 1 / 2 \mathrm{~m}$
7. $\angle \mathrm{ABQ}=\frac{1}{2} \angle \mathrm{AOQ}=29^{\circ}$

$$
\angle \mathrm{ATQ}=180^{\circ}-(\angle \mathrm{ABQ}+\angle \mathrm{BAT})=180^{\circ}-119^{\circ}=61^{\circ}
$$

1 m
8. The given quadratic equation can be written as

$$
\left.\begin{array}{ll}
\left(4 x^{2}-4 a^{2} x+a^{2}\right)-b^{4}=0 & 1 / 2 m \\
\text { or }\left(2 x-a^{2}\right)^{2}-\left(b^{2}\right)^{2}=0 & 1 m \\
\therefore\left(2 x-a^{2}+b^{2}\right)\left(2 x-a^{2}-b^{2}\right)^{2}=0 \\
\Rightarrow x=\frac{a^{2}-b^{2}}{2}, \frac{a^{2}+b^{2}}{2}
\end{array}\right\} \quad 1 / 2 m
$$

9.

$$
\begin{aligned}
& 1 / 2 \mathrm{~m} \\
& \therefore \text { Required ratio }=1: 5
\end{aligned}
$$

10. Here $\mathrm{a}=213, \mathrm{~d}=-8, \mathrm{a}_{\mathrm{n}}=37$, where n is the number of terms

$$
\left.\begin{array}{ll}
\therefore & 37=213+(\mathrm{n}-1)(-8) \\
& \frac{-176}{-8}=n-1 \Rightarrow n=23
\end{array}\right\}
$$

$\therefore \quad$ Middle term $=\mathrm{a}_{12}=213+11(-8)=125$

SECTION - C

11. Let $\mathrm{OA}=\mathrm{OB}=\mathrm{r}$

$$
\left.\begin{array}{rlr}
\therefore \quad 40=\frac{22}{7} \times \frac{r}{2}+\frac{22}{7} \times r+r \Rightarrow 280=40 r \\
r=7
\end{array}\right\} \quad 1 \mathrm{~m}
$$

Volume of solid wooden toy

$$
\left.\begin{array}{l}
166 \frac{5}{6}=\frac{2}{3} \times \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \times \frac{7}{2}+\frac{1}{3} \times \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \times \mathrm{h} \\
\text { or } \frac{1001}{6}=\frac{22}{7} \times \frac{7}{2} \times \frac{7}{2}[7+\mathrm{h}]
\end{array}\right\} \begin{aligned}
& 1 \mathrm{~m} \\
& \Rightarrow 7+\mathrm{h}=\frac{1001 \times 7}{22 \times 7}=13 \Rightarrow \mathrm{~h}=6 \mathrm{~cm}
\end{aligned}
$$

$$
\left.\begin{array}{rl}
\text { Area of hemispherical part of toy } & =\left(2 \times \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2}\right) \mathrm{cm}^{2} \\
& =77 \mathrm{~cm}^{2}
\end{array}\right\}
$$

$$
\therefore \quad \text { Cost of Paenting }=\text { Rs. }(77 \times 10)=\text { Rs. } 770 \quad 1 / 2 m
$$

13.

P is the mid-point of $A B$

$$
\begin{array}{ll}
\therefore & x+1=4 \Rightarrow x=3 \\
& \text { similarly } y=2 \Rightarrow B(3,2)
\end{array}
$$

$$
\text { similarly finding } C(-1,2)
$$

$1 / 2 \mathrm{~m}$
$\therefore \quad$ Area $\triangle \mathrm{ABC}=\frac{1}{2}[1(2-2)+3(2+4)-1(-4-2)]=\frac{1}{2} \times 24=12$ sq.u.
14.

$$
\begin{array}{ll}
\Delta \mathrm{ARQ} \sim \Delta \mathrm{ADC} & 1 / 2 \mathrm{~m} \\
\therefore \quad \frac{\mathrm{x}}{6}=\frac{4}{12} \Rightarrow \mathrm{x}=2 & 1 / 2 \mathrm{~m} \\
\mathrm{QC}=\sqrt{8^{2}+4^{2}}=4 \sqrt{5} & 1 / 2 \mathrm{~m}
\end{array}
$$

Total surface area of frustum PQCB

$$
=\pi\left\lfloor(6+2) \times 4 \sqrt{5}+(6)^{2}+(2)^{2}\right\rfloor
$$

$$
\left.\begin{array}{rl}
=\frac{22}{7}[32 \times 2.236+40]=\frac{22}{7}(111.552) & =22 \times 15.936 \\
& =350.592
\end{array}\right\}
$$

1 m
15. Total surfacearea of solid cuboidal block

$$
=2(15 \times 10+10 \times 5+15 \times 5) \mathrm{cm}^{2}=550 \mathrm{~cm}^{2}
$$

1 m
Area of two circular bases $=2 \times \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2}=77 \mathrm{~cm}^{2}$ $1 / 2 \mathrm{~m}$

Area of curved surface of cylinder $=2 \pi \mathrm{rh}=2 \times \frac{22}{7} \times \frac{7}{2} \times 5=110 \mathrm{~cm}^{2}$ 1 m

Reqd - area $=(550+110-77) \mathrm{cm}^{2}=583 \mathrm{~cm}^{2}$
16.

$$
\begin{array}{ll}
\text { Area of Sq. } \mathrm{ABCD}=14^{2} \text { or } 196 \mathrm{~cm}^{2} & 1 / 2 \mathrm{~m} \\
\text { Area of Small Sq. }=4^{2} \text { or } 16 \mathrm{~cm}^{2} & 1 / 2 \mathrm{~m}
\end{array}
$$

$$
\left.\begin{array}{rl}
\text { Area of } 4 \text { semi circles } & =\left[4 \cdot \frac{1}{2} 3.14(2)^{2}\right] \mathrm{cm}^{2} \\
& =25.12 \mathrm{~cm}^{2}
\end{array}\right\}
$$

$$
\left.\begin{array}{rl}
\therefore \quad \text { Reqd. area } & =(196-16-25.12) \mathrm{cm}^{2} \\
& =154.88 \mathrm{~cm}^{2}
\end{array}\right\} \quad 1 \mathrm{~m}
$$

17. Tower

Fiqure
$1 / 2 \mathrm{~m}$
(i) $\frac{30}{y}=\tan 45^{\circ}=1 \Rightarrow y=30 \quad 1 \mathrm{~m}$
(ii) $\frac{x}{y}=\tan 30^{\circ}=\frac{1}{\sqrt{3}} \Rightarrow x=\frac{y}{\sqrt{3}}=\frac{30}{\sqrt{3}}=10 \sqrt{3} \quad 1 \mathrm{~m}$
$\therefore \quad$ Height of building is $10 \sqrt{3} \mathrm{~m} \quad 1 / 2 \mathrm{~m}$
18. $\quad \mathrm{Sn}=\frac{1}{2}\left(3 \mathrm{n}^{2}+7 \mathrm{n}\right) \Rightarrow \mathrm{S}_{1}=\mathrm{a}_{1}=\frac{1}{2}(10)=5$
$S_{2}=a_{2}+a_{1}=\frac{1}{2}(26)=13 \Rightarrow a_{2}=8$
1 m
$\therefore \quad$ It is an A.P. with $\mathrm{a}=5$ and $\mathrm{d}=3 \quad 1 / 2 \mathrm{~m}$
$\therefore \quad$ an $=5+(n-1) 3=3 n+2 \quad 1 m$
$\therefore \mathrm{t}_{20}=62 \quad 1 / 2 \mathrm{~m}$
19. The total number of possible outcomes $=8 \quad 1 \mathrm{~m}$
(i) $\quad \mathrm{P}($ at least two heads $)=\frac{4}{8}=\frac{1}{2}$
(ii) $\quad \mathrm{P}($ at most two heads $)=\frac{7}{8}$

1 m
20. For the given quadratic equation to have equal roots

$$
\left.\begin{array}{c}
{[6(p+1)]^{2}-4(p+1) \cdot 3(p+9)=0} \\
\text { or } 36(p+1)^{2}-12(p+1)(p+9)=0 \\
12(p+1)[3 p+3-p-9]=0
\end{array}\right\}
$$

1 m

1 m

$$
\text { As } \mathrm{p} \neq-1, \quad 2 \mathrm{p}=6 \text { or } \mathrm{p}=3 \quad 1 / 2 \mathrm{~m}
$$

SECTION - D

21. $\mathrm{PR}=\mathrm{PQ} \Rightarrow \angle \mathrm{PRQ}=\angle \mathrm{PQR}=\frac{(180-30)^{\circ}}{2}=75^{\circ}$
$\mathrm{SR} \| \mathrm{QP}$ and QR is a transversal $\Rightarrow \angle \mathrm{SRQ}=75^{\circ}$
$\therefore \angle \mathrm{ORQ}=\angle \mathrm{RQO}=90^{\circ}-75^{\circ}=15^{\circ}$
$\therefore \angle \mathrm{QOR}=(180-2 \times 15)^{\circ}=150^{\circ} \Rightarrow \angle \mathrm{QSR}=75^{\circ}$

$$
\angle \mathrm{RQS}=180^{\circ}-(\angle \mathrm{SRQ}+\angle \mathrm{SQR})=30^{\circ}
$$

22.

figure
Writing the trigonometric equations
(i) $\frac{x}{y}=\tan 30^{\circ}=\frac{1}{\sqrt{3}} \Rightarrow y=\sqrt{3} x \quad 1 m$
(ii) $\frac{x+5}{y}=\tan 60^{\circ}=\sqrt{3}$ or $\frac{x+5}{\sqrt{3} x}=\sqrt{3} \quad 11 / 2 \mathrm{~m}$

$$
\begin{aligned}
& \Rightarrow \quad 3 x=x+5 \\
& \text { or } x=2.5
\end{aligned}
$$

$\therefore \quad$ Height of Tower $=2.5 \mathrm{~m}$
23. Money required for Ramkate for admission of daughter = Rs. 2500
A.P. formed by saving

1 m
(i) $=100,120,140,---$ upto 12 terms

$$
\left.\begin{array}{rl}
\text { Sum of AP }(\text { i) }) & =\frac{12}{2}[2 \times 100+11 \times 20]=6[420] \\
& =\text { Rs. } 2520
\end{array}\right\}
$$

\therefore She can get her doughter admitied $\quad 1 / 2 \mathrm{~m}$
Value : Small saving can fulfill your big desires or any else
1 m
24. (i) Numbers divisible by 2 or 3 from 1 to 20 are
$2,4,6,8,10,12,14,16,18,3,9,15$ Their number is $13 \quad 1 \mathrm{~m}$

$$
\therefore \quad \text { Required Probability }=\frac{13}{20}
$$

1 m
(ii) Prime numbers from 1 to 20 are 2, 3, 5, 7, 11, 13, 17, 19:8 in number 1 m

$$
\therefore \quad \text { Required Probability }=\frac{8}{20} \text { or } \frac{2}{5}
$$

25. Let $\mathrm{x} m$ be the internal radius of the pipe

Radius of base of tank $=40 \mathrm{~cm}=\frac{2}{5} \mathrm{~m}$
Level of water raised in the tank $=3.15$ or $\frac{315}{100}$
$2.52 \mathrm{~km} /$ hour $\Rightarrow 1.26 \mathrm{~km}$ in half hour $=1260 \mathrm{~m}$
\therefore Getting the equation

$$
\left.\begin{array}{l}
\pi \quad x^{2} \cdot 1260=\pi \cdot \frac{2}{5} \cdot \frac{2}{5} \times \frac{315}{100} \\
\Rightarrow \quad x^{2}=\frac{4}{25} \cdot \frac{315}{100} \times \frac{1}{1260}=\frac{1}{2500} \\
\Rightarrow \quad x=\frac{1}{50} m=2 \mathrm{~cm}
\end{array}\right\}
$$

$\therefore \quad$ Internal diameter of pipe $=4 \mathrm{~cm}$
26. Volume of earth taken out after digging the well

$$
\begin{equation*}
=\left(\frac{22}{7} \times 2 \times 2 \times 14\right) \text { cu.m }=176 \mathrm{cu} . \mathrm{m} . \tag{i}
\end{equation*}
$$

Let x be the width of embankment formed by using (i)

$$
\begin{aligned}
& \text { Volume ofembankment }=\frac{22}{7}\left[(2+x)^{2}-(2)^{2}\right] \times \frac{40}{100}=176 \\
& \Rightarrow \quad x^{2}+4 x-140=0 \quad \Rightarrow \quad(x+14)(x-10)=0
\end{aligned}
$$

$$
\Rightarrow \quad x=10
$$

$\therefore \quad$ Width of embankment $=10 \mathrm{~m}$
27. $\frac{2}{x+1}+\frac{3}{2(x-2)}=\frac{23}{5 x}$

$$
\begin{aligned}
& \text { or } 5 \mathrm{x}[4(\mathrm{x}-2)+3 \mathrm{x}+3]=46(\mathrm{x}+1)(\mathrm{x}-2) \\
& \begin{array}{rl}
5 \mathrm{x}(7 \mathrm{x}-5)=46\left(\mathrm{x}^{2}-x-2\right) \Rightarrow 11 x^{2}-21 x-92=0 & 11 / 2 \mathrm{~m} \\
\Rightarrow x=\frac{21 \pm \sqrt{441+4048}}{22}=\frac{21 \pm 67}{22} & 1 \mathrm{~m} \\
=4, \frac{-23}{11} & 1 \mathrm{~m}
\end{array} \\
& \begin{array}{c}
1 / 2 \mathrm{~m}
\end{array}
\end{aligned}
$$

28. Let the bigger pipe fills the tank in x hours
$\Rightarrow \quad$ the smaller pipe fills the tanks in $(\mathrm{x}+10)$ hours

$$
\begin{aligned}
& \therefore \quad \frac{4}{x}+\frac{9}{x+10}=\frac{1}{2} \\
& \quad \Rightarrow \quad 2(13 x+40)=x^{2}+10 x
\end{aligned}
$$

$$
\begin{aligned}
& \text { or } \quad x^{2}-16 x-80=0 \\
& \begin{array}{c}
\Rightarrow \quad(x-20)(x+4)=0 \\
\quad \Rightarrow \quad x=20
\end{array}
\end{aligned}
$$

the pipe with larger diameter fills the tank in 20 hours and the pipe with smaller diameter fills the tank in 30 hour
29. Correctly state given. To prove \& Construction and Correct figure
30. Correct
i) Construction of isoscetes triangle with base 6 cm and altitute 4 cm
ii) Construction of a similar triangle to (i) with given scale factor
i) Area of $\triangle \mathrm{PQC}$

$$
=\frac{1}{2}[-5(-6+3)-4(-3+3)+2(-3+6)]=\frac{21}{2} \quad 11 / 2 \mathrm{~m}
$$

ii) Area of \triangle PRS

$$
=\frac{1}{2}[-5(-3-2)+2(2+3)+1(-3+3)]=\frac{35}{2} \quad 11 / 2 m
$$

$\therefore \quad$ Area of Qurd. $\mathrm{PQRS}=\frac{21}{2}+\frac{35}{2}=28$ sq.u.

QUESTION PAPER CODE 30/1/3

EXPECTED ANSWERS/VALUE POINTS

Q.No.

SECTION - A

1. 25°
2. $\frac{-9}{4}$
3. $1: 3$
4. $\frac{21}{26}$
$1 \times 4=4 \mathrm{~m}$

SECTION - B

5.

In $\Delta \mathrm{s}^{\prime} \mathrm{TPC}$ and TQC
$\mathrm{TP}=\mathrm{TQ}$
$\mathrm{TC}=\mathrm{TC}$
$\angle 1=\angle 2$ (TP and TQ are equally inclined to OT)
$\therefore \quad \Delta \mathrm{TPC} \cong \Delta \mathrm{TQC}$
$\therefore \quad \mathrm{PC}=\mathrm{QC}$ and $\angle 3=\angle 4 \quad 1 / 2 \mathrm{~m}$
$\left.\begin{array}{c}\text { But } \angle 3+\angle 4=180^{\circ} \Rightarrow \angle 3=\angle 4=90^{\circ} \\ \therefore \quad \text { OT is the right bisector of } \mathrm{PQ}\end{array}\right\} \quad 1 / 2 \mathrm{~m}$
6.

The given A.P. is $6,13,20,---, 216$
Let n be the number of terms, $\mathrm{d}=7, \mathrm{a}=6$
$1 / 2 \mathrm{~m}$
$\therefore \quad 216=6+(n-1) .7 \Rightarrow n=31$
$1 / 2 \mathrm{~m}$
$\therefore \quad$ Middle term is 16th
$1 / 2 \mathrm{~m}$
$\therefore \quad a_{16}=6+15 \times 7=111$
$1 / 2 \mathrm{~m}$
7. $\angle \mathrm{ABQ}=\frac{1}{2} \angle \mathrm{AOQ}=29^{\circ}$

1 m
$\angle \mathrm{ATQ}=180^{\circ}-(\angle \mathrm{ABQ}+\angle \mathrm{BAT})=180^{\circ}-119^{\circ}=61^{\circ}$
1 m
8.

ABC is right triangle

$$
\left.\begin{array}{rl}
& \therefore \quad A C^{2}=B C^{2}+A B^{2} \\
& \mathrm{AB}^{2}=(5-2)^{2}+(2+2)^{2}=25 \Rightarrow \mathrm{AB}=5 \\
& \mathrm{BC} C^{2}=(2+2)^{2}+(\mathrm{t}+2)^{2}=16+(\mathrm{t}+2)^{2} \\
& \mathrm{AC} \\
2 & =(5+2)^{2}+(2-t)^{2}=49+(2-\mathrm{t})^{2}
\end{array}\right\}
$$

9.

\therefore Required ratio $=1: 5$
10. The given quadratic equation can be written as

$$
\begin{array}{cc}
\left(9 x^{2}-6 b^{2} x+b^{4}\right)-a^{4}=0 & 1 / 2 m \\
\text { or }\left(3 x-b^{2}\right)^{2}-\left(a^{2}\right)^{2}=0 \text { or }\left(3 x-b^{2}+a^{2}\right)\left(3 x-b^{2}-a^{2}\right)=0 & 1 m \\
\Rightarrow \quad x=\frac{b^{2}-a^{2}}{3}, \frac{b^{2}+a^{2}}{3} & 1 / 2 m
\end{array}
$$

SECTION - C

11. Let $\mathrm{OA}=\mathrm{OB}=\mathrm{r}$

$$
\left.\begin{array}{c}
\therefore \quad 40=\frac{22}{7} \times \frac{r}{2}+\frac{22}{7} \times r+r \Rightarrow 280=40 r \\
r=7
\end{array}\right\}
$$

$\therefore \quad$ shaded area $=\left(\frac{1}{2} \times \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2}+\frac{1}{2} \times \frac{22}{7} \times 7 \times 7\right) \mathrm{cm}^{2}$
1 m

1 m
12.

Volume of solid wooden toy

$$
\begin{aligned}
& 166 \frac{5}{6}=\frac{2}{3} \times \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \times \frac{7}{2}+\frac{1}{3} \times \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \times \mathrm{h} \\
& \text { or } \frac{1001}{6}=\frac{22}{7} \times \frac{7}{2} \times \frac{7}{2}[7+\mathrm{h}] \\
& \Rightarrow 7+\mathrm{h}=\frac{1001 \times 7}{22 \times 7}=13 \Rightarrow \mathrm{~h}=6 \mathrm{~cm}
\end{aligned}
$$

$$
\left.\begin{array}{rl}
\text { Area of hemispherical part of toy } & =\left(2 \times \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2}\right) \mathrm{cm}^{2} \\
& =77 \mathrm{~cm}^{2}
\end{array}\right\}
$$

$$
1 / 2 \mathrm{~m}
$$

$$
\therefore \quad \text { Cost of Paenting }=\text { Rs. }(77 \times 10)=\text { Rs. } 770
$$

13.

$$
\begin{array}{ll}
\Delta \mathrm{ARQ} \sim \Delta \mathrm{ADC} & 1 / 2 \mathrm{~m} \\
\therefore \quad \frac{\mathrm{x}}{6}=\frac{4}{12} \Rightarrow \mathrm{x}=2 & 1 / 2 \mathrm{~m} \\
\mathrm{QC}=\sqrt{8^{2}+4^{2}}=4 \sqrt{5} & 1 / 2 \mathrm{~m}
\end{array}
$$

$$
\text { Total surface area of frustum PQCB }\} \quad 1 \mathrm{~m}
$$

$$
=\pi\left\lfloor(6+2) \times 4 \sqrt{5}+(6)^{2}+(2)^{2}\right]
$$

$$
=\frac{22}{7}[32 \times 2.236+40]=\frac{22}{7}(111.552)=22 \times 15.936
$$

$$
=350.592
$$

14. Total surfacearea of solid cuboidal block

$$
=2(15 \times 10+10 \times 5+15 \times 5) \mathrm{cm}^{2}=550 \mathrm{~cm}^{2}
$$

1 m
Area of two circular bases $=2 \times \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2}=77 \mathrm{~cm}^{2} \quad 1 / 2 \mathrm{~m}$
Area of curved surface of cylinder $=2 \pi \mathrm{rh}=2 \times \frac{22}{7} \times \frac{7}{2} \times 5=110 \mathrm{~cm}^{2}$
Reqd - area $=(550+110-77) \mathrm{cm}^{2}=583 \mathrm{~cm}^{2}$
$1 / 2 \mathrm{~m}$
15.

Fiqure
$1 / 2 \mathrm{~m}$
(i) $\frac{30}{y}=\tan 45^{\circ}=1 \Rightarrow y=30 \quad 1 \mathrm{~m}$
(ii) $\frac{x}{y}=\tan 30^{\circ}=\frac{1}{\sqrt{3}} \Rightarrow\left\{x=\frac{y}{\sqrt{3}}=\frac{30}{\sqrt{3}}=10 \sqrt{3} \quad 1 \mathrm{~m}\right.$
$\therefore \quad$ Height of building is $10 \sqrt{3} \mathrm{~m} \quad 1 / 2 \mathrm{~m}$
16.

$$
\begin{array}{ll}
\text { Area of Sq. } \mathrm{ABCD}=14^{2} \text { or } 196 \mathrm{~cm}^{2} & 1 / 2 \mathrm{~m} \\
\text { Area of Small Sq. }=4^{2} \text { or } 16 \mathrm{~cm}^{2} & 1 / 2 \mathrm{~m}
\end{array}
$$

$$
\left.\begin{array}{rl}
\text { Area of } 4 \text { semi circles } & =\left[4 . \frac{1}{2} 3.14(2)^{2}\right] \mathrm{cm}^{2} \\
& =25.12 \mathrm{~cm}^{2}
\end{array}\right\}
$$

$$
\begin{aligned}
\therefore \quad \text { Reqd. area } & =(196-16-25.12) \mathrm{cm}^{2} \\
& =154.88 \mathrm{~cm}^{2}
\end{aligned}
$$

1 m
17. The given quadratic eqn. can be written as

$$
(\mathrm{k}+1) \mathrm{x}^{2}-2(\mathrm{k}-1) \mathrm{x}+1=0
$$

1 m

$$
\text { For qual roots } \left.\begin{array}{c}
4(\mathrm{k}-1)^{2}-4(\mathrm{k}+1)=0 \quad \text { or } \quad \mathrm{k}^{2}-3 \mathrm{k}=0 \\
\Rightarrow \mathrm{k}=0,3
\end{array}\right\}
$$

18. Number of redface cards removed $=6$

$$
\therefore \quad \text { Remaining cards }=46
$$

(i) $\quad \mathrm{P}($ a redcard $)=\frac{20}{46}$ or $\frac{10}{23}$

1 m
(ii) $\quad \mathrm{P}(\mathrm{a}$ facecard $)=\frac{6}{46}$ or $\frac{3}{23}$
(iii) $\quad \mathrm{P}(\mathrm{a}$ card of clubs $)=\frac{13}{46}$

1 m
19.

$\begin{array}{lll}\text { Getting } \mathrm{x}=1, \mathrm{y}=-4 & \Rightarrow \mathrm{P}(1,-4) & 1 \mathrm{~m} \\ \mathrm{z}=-1, \mathrm{t}=2 & \Rightarrow \mathrm{R}(-1,2) & 1 / 2 \mathrm{~m} \\ \text { Area } \Delta \mathrm{PQR} & & 1 \mathrm{~m}\end{array}$

$$
=\frac{1}{2}|[1(2-2)-1(2+4)+3(-4-2)]|=\frac{1}{2} \times 24
$$

$$
=12 \text { sq.u. } \quad 1 \frac{1}{2} \mathrm{~m}
$$

20. Let a be the first term and d the common difference of the A.P.

$$
\begin{array}{cc}
\mathrm{S}_{30}=15[2 \mathrm{a}+29 \mathrm{~d}]=30 \mathrm{a}+435 \mathrm{~d} & 1 \mathrm{~m} \\
\mathrm{~S}_{20}=10[2 \mathrm{a}+19 \mathrm{~d}]=20 \mathrm{a}+190 \mathrm{~d} & 1 / 2 \mathrm{~m} \\
\mathrm{~S}_{10}=5[2 \mathrm{a}+9 \mathrm{~d}]=10 \mathrm{a}+45 \mathrm{~d} & 1 / 2 \mathrm{~m} \\
3\left(\mathrm{~S}_{20}-\mathrm{S}_{10}\right)=3(10 \mathrm{a}+145 \mathrm{~d})=30 \mathrm{a}+435 \mathrm{~d}=\mathrm{S}_{30} & 1 \mathrm{~m}
\end{array}
$$

SECTION - D

21. Correctly stated

$$
\begin{array}{ll}
\text { Given, to Prove, Construction and correct figure } & 2 \mathrm{~m} \\
\text { correct Proof } & 2 \mathrm{~m}
\end{array}
$$

22. $\mathrm{PR}=\mathrm{PQ} \Rightarrow \angle \mathrm{PRQ}=\angle \mathrm{PQR}=\frac{(180-30)^{\circ}}{2}=75^{\circ}$

1 m

$$
\left.\begin{array}{cl}
\mathrm{SR} \| \mathrm{QP} \text { and } \mathrm{QR} \text { is a transversal } \Rightarrow \angle \mathrm{SRQ}=75^{\circ} \\
\therefore \angle \mathrm{ORQ}=\angle \mathrm{RQO}=90^{\circ}-75^{\circ}=15^{\circ}
\end{array}\right\} \quad 1 \mathrm{~m}
$$

23.

figure
1 m Writing the trigonometric equations (i) $\frac{x}{y}=\tan 30^{\circ}=\frac{1}{\sqrt{3}} \Rightarrow y=\sqrt{3} x \quad 1 m$

$$
\left.\begin{array}{ll}
\text { (ii) } \quad \frac{\mathrm{x}+5}{\mathrm{y}}=\tan 60^{\circ}=\sqrt{3} \text { or } \frac{\mathrm{x}+5}{\sqrt{3} x}=\sqrt{3} & 11 / 2 \mathrm{~m} \\
\Rightarrow \quad 3 \mathrm{x}=\mathrm{x}+5 \\
& \text { or } \mathrm{x}=2.5 \\
\therefore & \text { Height of Tower }=2.5 \mathrm{~m}
\end{array}\right\} \quad 11 / 2 \mathrm{~m}
$$

24. Money required for Ramkate for admission of daughter $=$ Rs. 2500
A.P. formed by saving

1 m

$$
\text { (i) }=100,120,140,--- \text { upto } 12 \text { terms }
$$

$$
\left.\begin{array}{rl}
\text { Sum of AP }(\text { i }) & =\frac{12}{2}[2 \times 100+11 \times 20]=6[420] \\
& =\text { Rs. } 2520
\end{array}\right\} \quad 11 / 2 \mathrm{~m}
$$

$\therefore \quad$ She can get her doughter admitied
25. Let the fraction be $\frac{x-3}{x}$

$$
\begin{aligned}
& \therefore \quad \frac{\mathrm{x}-3}{\mathrm{x}}+\frac{\mathrm{x}-1}{\mathrm{x}+2}=\frac{29}{20} \\
& \Rightarrow \quad 20[(\mathrm{x}-3)(\mathrm{x}+2)+\mathrm{x}(\mathrm{x}-1)]=29\left(\mathrm{x}^{2}+2 \mathrm{x}\right) \\
& =\quad 20\left(\mathrm{x}^{2}-\mathrm{x}-6+\mathrm{x}^{2}-\mathrm{x}\right)=29 \mathrm{x}^{2}+58 \mathrm{x}
\end{aligned}
$$

$$
\text { or } 11 \mathrm{x}^{2}-98 \mathrm{x}-120=0
$$

$$
\text { or } 11 x^{2}-110 x-12 x-120=0
$$

$$
(11 x+12)(x-10)=0 \quad \Rightarrow \quad x=10
$$

\therefore The Fraction is $\frac{7}{10}$
26. Let $\mathrm{x} m$ be the internal radius of the pipe

Radius of base of tank $=40 \mathrm{~cm}=\frac{2}{5} \mathrm{~m}$
Level of water raised in the tank $=3.15$ or $\frac{315}{100}$

$$
2.52 \mathrm{~km} / \text { hour } \Rightarrow 1.26 \mathrm{~km} \text { in half hour }=1260 \mathrm{~m}
$$

\therefore Getting the equation

$$
\left.\begin{array}{l}
\pi \quad \mathrm{x}^{2} \cdot 1260=\pi \cdot \frac{2}{5} \cdot \frac{2}{5} \times \frac{315}{100} \\
\Rightarrow \quad \mathrm{x}^{2}=\frac{4}{25} \cdot \frac{315}{100} \times \frac{1}{1260}=\frac{1}{2500} \\
\quad \Rightarrow \mathrm{x}=\frac{1}{50} \mathrm{~m}=2 \mathrm{~cm}
\end{array}\right\}
$$

$$
\therefore \quad \text { Internal diameter of pipe }=4 \mathrm{~cm}
$$

27.

Area $\triangle \mathrm{ABC}$
$=\frac{1}{2}[-4(-4+5)-3(-5-8)+0(8+4)]$
$=\frac{1}{2}|-4+39|=\frac{35}{2}$
$11 / 2 \mathrm{~m}$

Area of $\triangle \mathrm{ACD}$

$$
\begin{aligned}
& =\frac{1}{2}[-4(-5-6)+0(6-8)+5(8+5)] \\
& =\frac{109}{2} \\
& 11 / 2 \mathrm{~m}
\end{aligned}
$$

$$
\therefore \quad \text { Area of } \mathrm{Qurd} . \mathrm{ABCD}=\frac{35}{2}+\frac{109}{2}=72 \text { sq.u. }
$$

1 m .
28. Volume of earth taken out after digging the well

$$
=\left(\frac{22}{7} \times 3 \times 3 \times 21\right) \text { cu.m }=594 \text { cu.m } \quad 1+1 \mathrm{~m}
$$

Let h be the height of the platform

$$
\begin{aligned}
\therefore \quad 27 & \times 11 \times \mathrm{h}=594 \\
\Rightarrow \quad \mathrm{~h} & =\frac{594}{27 \times \mathrm{h}}
\end{aligned}
$$

\therefore Height of platform $=2 \mathrm{~m}$
29. i) Number of numbers dividible by 3 or 5 in numbers 1 to 25

$$
(3,6,9,12,15,18,21,24,5,10,20,25): \text { their number is } 12
$$

No. of favourable outcomes $=5$
ii) $\quad \mathrm{P}(\mathrm{a}$ Perfect square number $)=\frac{5}{25}=\frac{1}{5} \quad(1,4,9,16,25)$
30. Correct Construction
31. $\frac{3}{\mathrm{x}+1}+\frac{4}{\mathrm{x}-1}=\frac{29}{4 \mathrm{x}-1}$
$[3(x-1)+4(x+1)][4 x-1]=29\left(x^{2}-1\right)$
1 m
$(7 \mathrm{x}+1)(4 \mathrm{x}-1)=29 \mathrm{x}^{2}-29$
$28 x^{2}-3 x-1=29 x^{2}-29 \quad$ or $\quad x^{2}+3 x-28=0$

$$
\begin{aligned}
& (x+7)(x-4)=0 \\
& \Rightarrow x=-7,4
\end{aligned}
$$

